CRAN Package Check Results for Package portvine

Last updated on 2025-12-20 09:49:56 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.0.3 101.34 397.68 499.02 OK
r-devel-linux-x86_64-debian-gcc 1.0.3 87.26 141.51 228.77 ERROR
r-devel-linux-x86_64-fedora-clang 1.0.3 176.00 327.04 503.04 ERROR
r-devel-linux-x86_64-fedora-gcc 1.0.3 235.00 333.03 568.03 ERROR
r-devel-windows-x86_64 1.0.3 114.00 377.00 491.00 OK
r-patched-linux-x86_64 1.0.3 124.76 382.89 507.65 OK
r-release-linux-x86_64 1.0.3 127.56 380.41 507.97 OK
r-release-macos-arm64 1.0.3 OK
r-release-macos-x86_64 1.0.3 70.00 348.00 418.00 OK
r-release-windows-x86_64 1.0.3 120.00 384.00 504.00 OK
r-oldrel-macos-arm64 1.0.3 NOTE
r-oldrel-macos-x86_64 1.0.3 66.00 224.00 290.00 NOTE
r-oldrel-windows-x86_64 1.0.3 147.00 510.00 657.00 NOTE

Check Details

Version: 1.0.3
Check: tests
Result: ERROR Running ‘testthat.R’ [53s/60s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(portvine) > data("sample_returns_small") > > test_check("portvine", reporter = "summary") S4accessors: WW1WW2 default_garch_spec: ........ dvine_ordering: .......... estimate_dependence_and_risk: SS estimate_marginal_models: ........................ estimate_risk_roll: .......................WW3. Fit marginal models: AAPL GOOG AMZN Fit vine copula models and estimate risk. Vine windows: (1/4) WW4S marginal_settings: ................ rcondvinecop: ............................. risk_measures: .................... utils: ..... vine_settings: ............. ══ Skipped ═════════════════════════════════════════════════════════════════════ 1. unconditional case ('test-estimate_dependence_and_risk.R:30:3') - Reason: On CRAN 2. conditional case ('test-estimate_dependence_and_risk.R:148:3') - Reason: On CRAN 3. parallel functionality ('test-estimate_risk_roll.R:558:3') - Reason: On CRAN ══ Warnings ════════════════════════════════════════════════════════════════════ 1. risk_estimates() basic functionality & input checks ('test-S4accessors.R:14:3') - Caught simpleError. Canceling all iterations ... 2. risk_estimates() basic functionality & input checks ('test-S4accessors.R:14:3') - Caught simpleError. Canceling all iterations ... 3. fitted_vines() & fitted_marginals() basic functionality ('test-S4accessors.R:312:3') - Caught simpleError. Canceling all iterations ... 4. fitted_vines() & fitted_marginals() basic functionality ('test-S4accessors.R:312:3') - Caught simpleError. Canceling all iterations ... 5. basic functionality (unconditionally) ('test-estimate_risk_roll.R:331:3') - Caught simpleError. Canceling all iterations ... 6. basic functionality (unconditionally) ('test-estimate_risk_roll.R:331:3') - Caught simpleError. Canceling all iterations ... 7. basic functionality (conditionally) ('test-estimate_risk_roll.R:449:3') - Caught simpleError. Canceling all iterations ... 8. basic functionality (conditionally) ('test-estimate_risk_roll.R:449:3') - Caught simpleError. Canceling all iterations ... ══ Failed ══════════════════════════════════════════════════════════════════════ ── 1. Error ('test-S4accessors.R:14:3'): risk_estimates() basic functionality & Error in ``[.data.table`(melt(copy(`_DT20`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.578201794627553, 0.880868175931793, 0.517810527044137, 0.256589241326138, 0.0979687227136983, 0.660189160822713, 0.81037665590413, 0.919382893611711, 0.0867535542953043, 0.379607032647451), AMZN = c(0.658274263081842, 0.231269139870612, 0.281129397862948, 0.443146746871388, 0.0545715090988038, 0.506437187157292, 0.620413598339964, 0.821571452410769, 0.0572355878244887, 0.811476337174829), GOOG = c(0.445439859991893, 0.796342961490154, 0.357123116031289, 0.446822927100584, 0.68993764044717, 0.881138469092548, 0.807336007710546, 0.799850859912112, 0.383977591991425, 0.859617260750383)), row.names = c(NA, -10L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55764745e070>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), dim = 4:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-S4accessors.R:14:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── 2. Error ('test-S4accessors.R:312:3'): fitted_vines() & fitted_marginals() ba Error in ``[.data.table`(melt(copy(`_DT40`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852), AMZN = c(0.727275700776839, 0.497831594774484, 0.926712432760271, 0.728073662156042, 0.180619089695493, 0.650550117018671, 0.524986570938091, 0.659393919367129, 0.605271896510454, 0.68913203415724, 0.64185721643082, 0.815848883298488, 0.325730498738788, 0.354398306030123, 0.560442129810854, 0.4610225562892, 0.871252950711959, 0.501805610904383, 0.315322226922995, 0.796131558024706), GOOG = c(0.873436078860569, 0.645326839101712, 0.90883573040416, 0.884287838781525, 0.477552896552331, 0.0996596922647145, 0.840817822859976, 0.923958548461944, 0.740113884914583, 0.537370424454878, 0.381412664684986, 0.910847754478136, 0.340041611233873, 0.834594927284443, 0.205756337012799, 0.841541469392678, 0.842479288557781, 0.777054621505351, 0.563423345998431, 0.560715146310089)), row.names = c(NA, -20L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55764745e070>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(0, 0, 1, 1, 1, 1), dim = 2:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-S4accessors.R:312:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── 3. Error ('test-estimate_risk_roll.R:331:3'): basic functionality (unconditio Error in ``[.data.table`(melt(copy(`_DT128`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.549610975041999, 0.894561615818902, 0.1074252164448, 0.648908230825255, 0.611436970644487, 0.320596789061017, 0.553480300331406, 0.976404734671898, 0.561770139478496, 0.14727248803048), AMZN = c(0.225360877614775, 0.830992632188716, 0.157274792061562, 0.856342813301013, 0.939683945360318, 0.957064986869127, 0.757336084783787, 0.998074943498775, 0.480787756760803, 0.103592601075322), GOOG = c(0.235222621122375, 0.710756477667019, 0.306960089830682, 0.471550224581733, 0.856856647646055, 0.934285488445312, 0.074981790734455, 0.997351538157091, 0.62274733860977, 0.565104542532936)), row.names = c(NA, -10L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55764745e070>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), dim = 4:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-estimate_risk_roll.R:331:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── 4. Error ('test-estimate_risk_roll.R:449:3'): basic functionality (conditiona Error in ``[.data.table`(melt(copy(`_DT148`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.0324429803911682, 0.0509325493528145, 0.0268332855510151, 0.228438321183695, 0.187291164623914, 0.0316193067273703, 0.0941870478096414, 0.0256199653727551, 0.0582299190025192, 0.0416314835642533, 0.0224752217516764, 0.694638177752739, 0.769146430805694, 0.282667618473025, 0.518540916305428, 0.747173691519889, 0.620238444200701, 0.37600183245196, 0.819505969323705, 0.348140375596243, 0.510999211829488, 0.292795983261251, 0.0790970515732684, 0.665687227632352, 0.928663196317867, 0.697318820502479, 0.44697235121023, 0.469093945321462, 0.881419537097589, 0.599100957226074, 0.69466724130645, 0.841353438832694, 0.686599379099196), AMZN = c(0.056989525632702, 0.0271495764305241, 0.0110074978477239, 0.184344796827555, 0.234206152763673, 0.0168044622121139, 0.0590588422503478, 0.0539666576706348, 0.149211573143473, 0.297745187322034, 0.0140447709339953, 0.330005867925273, 0.209411723428877, 0.180862299476403, 0.488647368032893, 0.494892489277662, 0.331079893887238, 0.43231612681868, 0.851490182768305, 0.647644367179118, 0.685225551507598, 0.610141840094866, 0.370274388319433, 0.469840328547428, 0.627584363739511, 0.644773644896777, 0.570981533989094, 0.380702921693167, 0.621749735097913, 0.383588564444806, 0.664420849357193, 0.761134165137564, 0.160411293865158), GOOG = c(0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.60416480751054, 0.60416480751054, 0.60416480751054, 0.60416480751054, 0.60416480751054, 0.60416480751054, 0.60416480751054, 0.60416480751054, 0.60416480751054, 0.60416480751054, 0.60416480751054)), row.names = c(NA, -33L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55764745e070>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1), dim = 4:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-estimate_risk_roll.R:449:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ══ DONE ════════════════════════════════════════════════════════════════════════ Keep trying! Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0.3
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: ... --- re-building ‘get_started.Rmd’ using rmarkdown Quitting from get_started.Rmd:142-157 [unnamed-chunk-9] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 3/3 in VECTOR_ELT --- Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'get_started.Rmd' failed with diagnostics: attempt access index 3/3 in VECTOR_ELT --- failed re-building ‘get_started.Rmd’ SUMMARY: processing the following file failed: ‘get_started.Rmd’ Error: Vignette re-building failed. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0.3
Check: tests
Result: ERROR Running ‘testthat.R’ [144s/246s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(portvine) > data("sample_returns_small") > > test_check("portvine", reporter = "summary") S4accessors: WW1WW2 default_garch_spec: ........ dvine_ordering: .......... estimate_dependence_and_risk: SS estimate_marginal_models: ........................ estimate_risk_roll: .......................WW3. Fit marginal models: AAPL GOOG AMZN Fit vine copula models and estimate risk. Vine windows: (1/4) WW4S marginal_settings: ................ rcondvinecop: ............................. risk_measures: .................... utils: ..... vine_settings: ............. ══ Skipped ═════════════════════════════════════════════════════════════════════ 1. unconditional case ('test-estimate_dependence_and_risk.R:30:3') - Reason: On CRAN 2. conditional case ('test-estimate_dependence_and_risk.R:148:3') - Reason: On CRAN 3. parallel functionality ('test-estimate_risk_roll.R:558:3') - Reason: On CRAN ══ Warnings ════════════════════════════════════════════════════════════════════ 1. risk_estimates() basic functionality & input checks ('test-S4accessors.R:14:3') - Caught simpleError. Canceling all iterations ... 2. risk_estimates() basic functionality & input checks ('test-S4accessors.R:14:3') - Caught simpleError. Canceling all iterations ... 3. fitted_vines() & fitted_marginals() basic functionality ('test-S4accessors.R:312:3') - Caught simpleError. Canceling all iterations ... 4. fitted_vines() & fitted_marginals() basic functionality ('test-S4accessors.R:312:3') - Caught simpleError. Canceling all iterations ... 5. basic functionality (unconditionally) ('test-estimate_risk_roll.R:331:3') - Caught simpleError. Canceling all iterations ... 6. basic functionality (unconditionally) ('test-estimate_risk_roll.R:331:3') - Caught simpleError. Canceling all iterations ... 7. basic functionality (conditionally) ('test-estimate_risk_roll.R:449:3') - Caught simpleError. Canceling all iterations ... 8. basic functionality (conditionally) ('test-estimate_risk_roll.R:449:3') - Caught simpleError. Canceling all iterations ... ══ Failed ══════════════════════════════════════════════════════════════════════ ── 1. Error ('test-S4accessors.R:14:3'): risk_estimates() basic functionality & Error in ``[.data.table`(melt(copy(`_DT20`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.718526606436132, 0.475833436610043, 0.412313807859543, 0.0413088490476586, 0.264754283048327, 0.147318070178771, 0.308031697651182, 0.0524908230571793, 0.247831249898646, 0.106815355637443), AMZN = c(0.969039768207111, 0.750929720353668, 0.667926191224881, 0.312971944303855, 0.0574310920039367, 0.34805695284484, 0.255674251839462, 0.117643167359739, 0.0432653992964187, 0.352708479138105), GOOG = c(0.974323860835284, 0.835823182249442, 0.339577862294391, 0.230673882411793, 0.00366069958545268, 0.0836545054335147, 0.508594640064985, 0.180221837712452, 0.0564712160266936, 0.281191827729344)), row.names = c(NA, -10L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x556ae6e34d10>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), dim = 4:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-S4accessors.R:14:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── 2. Error ('test-S4accessors.R:312:3'): fitted_vines() & fitted_marginals() ba Error in ``[.data.table`(melt(copy(`_DT40`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852), AMZN = c(0.825695284946677, 0.655505338927785, 0.887488186692416, 0.701234704695342, 0.924937575638415, 0.152555059777903, 0.756022870712266, 0.320059807102566, 0.13681825007663, 0.367096454841227, 0.972890765941204, 0.418325751468481, 0.469053773119616, 0.329709911270878, 0.987518561445917, 0.500328764274174, 0.471440705798752, 0.994093203042766, 0.426633674652524, 0.47701833571023), GOOG = c(0.71531444133358, 0.53433257385978, 0.802152882730699, 0.727987320907963, 0.914021155182108, 0.300997356173101, 0.642549070794169, 0.45861552107405, 0.0960497744170484, 0.253807090581922, 0.919972897303793, 0.483778045278035, 0.748785572429732, 0.26482453089679, 0.98518294286714, 0.583221769364675, 0.250351653269404, 0.944582764963066, 0.465590177284757, 0.865426906703334)), row.names = c(NA, -20L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x556ae6e34d10>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(0, 0, 1, 1, 1, 1), dim = 2:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-S4accessors.R:312:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── 3. Error ('test-estimate_risk_roll.R:331:3'): basic functionality (unconditio Error in ``[.data.table`(melt(copy(`_DT128`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.282699765535377, 0.0381585150924177, 0.656742228526312, 0.567724234336142, 0.745679573467504, 0.778639787117334, 0.595001351262847, 0.422014253159912, 0.543008178627907, 0.847914759511941), AMZN = c(0.390961113559897, 0.0552335052898831, 0.747264768809378, 0.859719849374102, 0.390111608241735, 0.764847483242016, 0.608642674533241, 0.868848007763797, 0.335473787166811, 0.54283666236452), GOOG = c(0.286428900901228, 0.0561732288915664, 0.163319104816765, 0.805340382736176, 0.819574760971591, 0.525371882598847, 0.507191417738795, 0.68498287955299, 0.278877399628982, 0.543300217948854)), row.names = c(NA, -10L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x556ae6e34d10>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), dim = 4:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-estimate_risk_roll.R:331:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── 4. Error ('test-estimate_risk_roll.R:449:3'): basic functionality (conditiona Error in ``[.data.table`(melt(copy(`_DT148`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.19185045963516, 0.244540019320445, 0.156068741507922, 0.389366047228772, 0.508178213882051, 0.208594799966003, 0.127441903324975, 0.0950219730617204, 0.835838639140958, 0.0699385004398883, 0.164091707797963, 0.34310989102025, 0.621312572260519, 0.273983894623184, 0.589991500148622, 0.588234847797333, 0.152688413101007, 0.251512780517547, 0.230182690690897, 0.686086491143567, 0.521191142915592, 0.667476890479493, 0.973842923639935, 0.613520714140452, 0.832351913458827, 0.84576337391864, 0.701710303490789, 0.237742473035078, 0.999232362829045, 0.0941717831471827, 0.2326125982126, 0.736067518193621, 0.0427822865887598), AMZN = c(0.145130173899164, 0.017652901140712, 0.202039037964811, 0.272432695561184, 0.0840294703282516, 0.0238828718958994, 0.311340657464489, 0.143601010498087, 0.0713595686250142, 0.0395755360242773, 0.100285776596697, 0.452545970258498, 0.944242708278853, 0.529644313143013, 0.324797166871501, 0.372614177705597, 0.402254002014107, 0.773345062976102, 0.0673234089457325, 0.622880849668136, 0.603948825306637, 0.449257848021354, 0.670074479604711, 0.455167775713569, 0.693064061762711, 0.639959342147089, 0.794674322612641, 0.290082313877256, 0.770037592373215, 0.161878580171191, 0.693976741819808, 0.712089590611978, 0.55142703527453), GOOG = c(0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784)), row.names = c(NA, -33L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x556ae6e34d10>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1), dim = 4:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-estimate_risk_roll.R:449:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ══ DONE ════════════════════════════════════════════════════════════════════════ Don't worry, you'll get it. Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0.3
Check: re-building of vignette outputs
Result: ERROR Error(s) in re-building vignettes: --- re-building ‘get_started.Rmd’ using rmarkdown Quitting from get_started.Rmd:142-157 [unnamed-chunk-9] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <error/rlang_error> Error in `[.data.table`: ! attempt access index 3/3 in VECTOR_ELT --- Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Error: processing vignette 'get_started.Rmd' failed with diagnostics: attempt access index 3/3 in VECTOR_ELT --- failed re-building ‘get_started.Rmd’ SUMMARY: processing the following file failed: ‘get_started.Rmd’ Error: Vignette re-building failed. Execution halted Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc

Version: 1.0.3
Check: tests
Result: ERROR Running ‘testthat.R’ [137s/225s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > library(testthat) > library(portvine) > data("sample_returns_small") > > test_check("portvine", reporter = "summary") S4accessors: WW1WW2 default_garch_spec: ........ dvine_ordering: .......... estimate_dependence_and_risk: SS estimate_marginal_models: ........................ estimate_risk_roll: .......................WW3. Fit marginal models: AAPL GOOG AMZN Fit vine copula models and estimate risk. Vine windows: (1/4) WW4S marginal_settings: ................ rcondvinecop: ............................. risk_measures: .................... utils: ..... vine_settings: ............. ══ Skipped ═════════════════════════════════════════════════════════════════════ 1. unconditional case ('test-estimate_dependence_and_risk.R:30:3') - Reason: On CRAN 2. conditional case ('test-estimate_dependence_and_risk.R:148:3') - Reason: On CRAN 3. parallel functionality ('test-estimate_risk_roll.R:558:3') - Reason: On CRAN ══ Warnings ════════════════════════════════════════════════════════════════════ 1. risk_estimates() basic functionality & input checks ('test-S4accessors.R:14:3') - Caught simpleError. Canceling all iterations ... 2. risk_estimates() basic functionality & input checks ('test-S4accessors.R:14:3') - Caught simpleError. Canceling all iterations ... 3. fitted_vines() & fitted_marginals() basic functionality ('test-S4accessors.R:312:3') - Caught simpleError. Canceling all iterations ... 4. fitted_vines() & fitted_marginals() basic functionality ('test-S4accessors.R:312:3') - Caught simpleError. Canceling all iterations ... 5. basic functionality (unconditionally) ('test-estimate_risk_roll.R:331:3') - Caught simpleError. Canceling all iterations ... 6. basic functionality (unconditionally) ('test-estimate_risk_roll.R:331:3') - Caught simpleError. Canceling all iterations ... 7. basic functionality (conditionally) ('test-estimate_risk_roll.R:449:3') - Caught simpleError. Canceling all iterations ... 8. basic functionality (conditionally) ('test-estimate_risk_roll.R:449:3') - Caught simpleError. Canceling all iterations ... ══ Failed ══════════════════════════════════════════════════════════════════════ ── 1. Error ('test-S4accessors.R:14:3'): risk_estimates() basic functionality & Error in ``[.data.table`(melt(copy(`_DT20`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.209526518594617, 0.888801740485287, 0.880086159491367, 0.982563181147936, 0.851817354623519, 0.327326762054149, 0.864145719693954, 0.9058113201714, 0.506971232891706, 0.104884515229914), AMZN = c(0.171110863125932, 0.413130016297171, 0.347645071950379, 0.520931748390738, 0.639416839798479, 0.249509386838978, 0.478589034472945, 0.990310112714462, 0.437671833052118, 0.0526139439824615), GOOG = c(0.719122365582734, 0.585058780387044, 0.867405500262976, 0.834015868371353, 0.762314558960497, 0.3776250469964, 0.728003450203687, 0.340336070163175, 0.58039515465498, 0.0901855339761823)), row.names = c(NA, -10L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x39f1c4a0>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), dim = 4:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-S4accessors.R:14:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── 2. Error ('test-S4accessors.R:312:3'): fitted_vines() & fitted_marginals() ba Error in ``[.data.table`(melt(copy(`_DT40`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852, 0.727447098696852), AMZN = c(0.444866215751782, 0.628593477283579, 0.520855319984916, 0.156222642167859, 0.553944506416007, 0.777213271501424, 0.398388293741356, 0.47505402040871, 0.509443814204446, 0.384254462128248, 0.407129909701973, 0.484859761166073, 0.192622567955219, 0.16835877792208, 0.738648191114862, 0.814797735537648, 0.294067885505825, 0.25719934846251, 0.840337610427712, 0.530428837903932), GOOG = c(0.311061521802173, 0.520483637116283, 0.737218004132263, 0.362397672958788, 0.79210034775356, 0.784367600471135, 0.474584164317475, 0.716676449213835, 0.758024230334118, 0.643883593599405, 0.58079529751331, 0.647216157711304, 0.3471484341708, 0.15752329822806, 0.70369533616663, 0.586169478934378, 0.344716040724017, 0.300914784812098, 0.690035567183748, 0.634055257675292)), row.names = c(NA, -20L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x39f1c4a0>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(0, 0, 1, 1, 1, 1), dim = 2:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-S4accessors.R:312:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── 3. Error ('test-estimate_risk_roll.R:331:3'): basic functionality (unconditio Error in ``[.data.table`(melt(copy(`_DT128`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.316017737483609, 0.984920103473055, 0.616457431950822, 0.546045223958843, 0.0460986991532727, 0.706085798114056, 0.0205603667530673, 0.10892143728145, 0.688835805351214, 0.611960919412703), AMZN = c(0.190530428182826, 0.558974788455794, 0.881708455507389, 0.298013812668616, 0.0957197921039991, 0.427908683264522, 0.144343779480111, 0.764404012126395, 0.776145371201081, 0.840432336231161), GOOG = c(0.126073424238712, 0.465829518157989, 0.742902743397281, 0.333654104731977, 0.0120420018211007, 0.272319915238768, 0.00978341395966709, 0.625954698538408, 0.569327579112723, 0.333761575864628)), row.names = c(NA, -10L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x39f1c4a0>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), dim = 4:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-estimate_risk_roll.R:331:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── 4. Error ('test-estimate_risk_roll.R:449:3'): basic functionality (conditiona Error in ``[.data.table`(melt(copy(`_DT148`)[, `:=`(sample_id = seq(nrow(structure(list(AAPL = c(0.0521097794712437, 0.0457964223086946, 0.00640723535007526, 0.382560855578069, 0.388009270394654, 0.0182644498775305, 0.998658854776191, 0.0565972795053729, 0.544422455653062, 0.0849078667134904, 0.422868781326148, 0.67725439700215, 0.82571413233788, 0.985152530979974, 0.954835187647013, 0.49481362453126, 0.455316346367263, 0.234017881147352, 0.544291014828739, 0.564694186098919, 0.146658953906134, 0.643361299392134, 0.37363677394706, 0.763151489204603, 0.352505876189958, 0.478443762560652, 0.291368700119701, 0.761586188810779, 0.825929654963075, 0.639989906752788, 0.460761545834917, 0.891116650296842, 0.913862712288067), AMZN = c(0.090486280940577, 0.083564726359194, 0.0282303647368748, 0.0632207038088541, 0.566266436349274, 0.0291773090197369, 0.535153081258915, 0.0305919759434213, 0.215770669138778, 0.0629827078234699, 0.339614405764356, 0.856401403756023, 0.617636711208802, 0.582300403600638, 0.958777111989064, 0.45080054176498, 0.241327265066479, 0.598577492363748, 0.469945257030295, 0.933513443739573, 0.514584199848292, 0.171974737152868, 0.948132457634868, 0.623369315065158, 0.684340401846625, 0.630598956273145, 0.261470170390827, 0.450934506641964, 0.825286874133172, 0.252728002384227, 0.569850002999883, 0.575907441988026, 0.897178524131068), GOOG = c(0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784, 0.60420106897784)), row.names = c(NA, -33L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x39f1c4a0>))))], measure.vars = c("AAPL", "AMZN", "GOOG"), variable.name = "asset", value.name = "sample", variable.factor = FALSE)[, `:=`(sample = trans_vals[["mu"]][trans_vals[["asset"]] == asset] + trans_vals[["sigma"]][trans_vals[["asset"]] == asset] * rugarch::qdist(distribution = trans_vals[["marg_dist"]][trans_vals[["asset"]] == asset], p = sample, skew = trans_vals[["skew"]][trans_vals[["asset"]] == asset], shape = trans_vals[["shape"]][trans_vals[["asset"]] == asset])), by = .(asset)], , `:=`(weight = structure(c(1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1), dim = 4:3, dimnames = list(NULL, c("AAPL", "GOOG", "AMZN")))[1L, asset]), by = .(asset))`: attempt access index 3/3 in VECTOR_ELT Backtrace: ▆ 1. └─portvine::estimate_risk_roll(...) at test-estimate_risk_roll.R:449:3 2. └─portvine:::estimate_dependence_and_risk(...) 3. └─future.apply::future_lapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ══ DONE ════════════════════════════════════════════════════════════════════════ Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.0.3
Check: installed package size
Result: NOTE installed size is 39.8Mb sub-directories of 1Mb or more: libs 38.6Mb Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64