Package 'BayesDesign'

July 21, 2025

Type Package
Title Bayesian Single-Arm Design with Survival Endpoints
Version 0.1.1
Description The proposed event-driven approach for Bayesian two-stage single-arm phase II trial design is a novel clinical trial design and can be regarded as an extension of the Simon's two-stage design with the time-to-event endpoint. This design is motivated by cancer clinical trials with immunotherapy and molecularly targeted therapy, in which time-to-event endpoint is often a desired endpoint.
License GPL-2
Encoding UTF-8
NeedsCompilation no
Author Chia-Wei Hsu [aut, cre], Haitao Pan [aut], Jianrong Wu [aut]
Maintainer Chia-Wei Hsu <chia-wei.hsu@stjude.org></chia-wei.hsu@stjude.org>
Repository CRAN
Date/Publication 2021-05-04 06:30:16 UTC
Contents
optimal_OneStage 2 optimal_TwoStage 3 tot_time 5
Index 7

2 optimal_OneStage

optimal_OneStage	Obtain design settings for one-stage Bayesian Single-Arm Phase II Trial with Time-to-Event Endpoints

Description

Obtain design parameters, type I error, power and operating characteristics of the Bayesian Single-Arm Phase II Trial Designs with Time-to-Event Endpoints (Wu et al. 2021). The exponential distribution is assumed for the survival time. The gamma prior is used here

Usage

Arguments

•	•	
	alphacutoff	the desired type I error to be controlled
	powercutoff	the desired power to be achieved
	S0	the survival probability at timepoint x
	x	the survival probability S0 at timepoint x
	ta	accrual duration
	tf	follow-up duration
	а	shape parameter of prior distribution. The default value is $a = 2$
	delta	hazard ratio
	ntrial	the number of simulated trials
	complete	whether output the full or partial information. The default value is complete = "partial". If want to show full results, it would be complete = "complete"
	seed	the seed. The default value is seed = 8232

Value

optimal_OneStage() depending on the argument "complete", it returns a vector of partial information/complete information which includes:

partial information: (1) m: number of events of the whole design (2) n: number of patients of the whole design (3) k: total observation time of the whole design (4) typeI: type I error of the whole design (5) power: power of the whole design (6) ES1: expected sample size under alternative hypothesis (7) ES0: expected sample size under null hypothesis

full information: (1) eta: cutoff point of "Go" at final stage of analysis (2) zeta: cutoff point of "no-Go" at final stage of analysis (3) m: number of events of the whole design (4) n: number of patients of the whole design (5) k: total observation time of the whole design (6) typeI: type I error of the whole design (7) power: power of the whole design (8) ES1: expected sample size under alternative hypothesis (9) ES0: expected sample size under null hypothesis

optimal_TwoStage 3

Author(s)

Chia-Wei Hsu, Haitao Pan, Jianrong Wu

References

Jianrong Wu, Haitao Pan, Chia-Wei Hsu (2021). "Bayesian Single-Arm Phase II Trial Designs with Time-to-Event Endpoints." Pharmaceutical Statistics. Accepted

Examples

optimal_TwoStage

Obtain design settings for two-stage Bayesian Single-Arm Phase II Trial with Time-to-Event Endpoints

Description

Obtain design parameters, type I error, power and operating characteristics of the Bayesian Single-Arm Phase II Trial Designs with Time-to-Event Endpoints (Wu et al. 2021). The exponential distribution is assumed for the survival time. The gamma prior is used here

Usage

4 optimal_TwoStage

Arguments

alphacutoff the desired type I error to be controlled powercutoff the desired power to be achieved

S0 the survival probability at timepoint x

x the survival probability S0 at timepoint x

ta accrual duration
tf follow-up duration

a shape parameter of prior distribution. The default value is a = 2

delta hazard ratio

frac a information fraction for interim analysis. The fefault value is frac = 0.5

ntrial the number of simulated trials

complete whether output the full or partial information. The default value is complete =

"partial". If want to show full results, it would be complete = "complete"

seed the seed. The default value is seed = 8232

Value

optimal() depending on the argument "complete", it returns a vector of partial information/complete information which includes:

partial information: (1) m1: number of events at stage 1 (2) n1: number of patients at stage 1 (3) k1: total observation time at stage 1 (4) m: number of events of the whole design (5) n: number of patients of the whole design (6) k: total observation time of the whole design (7) typeI: type I error of the whole design (8) power: power of the whole design (9) PET1: early stopping probabilites under alternative hypothesis (10) ES1: expected sample size under alternative hypothesis (11) PET0: early stopping probabilites under null hypothesis (12) ES0: expected sample size under null hypothesis

full information: (1) eta: cutoff point of "Go" at final stage of analysis (2) xi: cutoff point of "no-Go" at final stage of analysis (3) m1: number of events at stage 1 (4) n1: number of patients at stage 1 (5) k1: total observation time at stage 1 (6) m: number of events of the whole design (7) n: number of patients of the whole design (8) k: total observation time of the whole design (9) typeI: type I error of the whole design (10) power: power of the whole design (11) PET1: early stopping probabilites under alternative hypothesis (12) ES1: expected sample size under alternative hypothesis (13) PET0: early stopping probabilites under null hypothesis (14) ES0: expected sample size under null hypothesis

Author(s)

Chia-Wei Hsu, Haitao Pan, Jianrong Wu

References

Jianrong Wu, Haitao Pan, Chia-Wei Hsu (2021). "Bayesian Single-Arm Phase II Trial Designs with Time-to-Event Endpoints." Pharmaceutical Statistics. Accepted

tot_time 5

Examples

tot_time

Sum up transformed observation time for each patient

Description

Sum up transformed observation time for each patient to get U in order to determine the trial: (1) goes to second stage (2) stops for futility (3) declares the treatment is promising and warrants for further study in a large scale phase III trial (4) declares the treatment is unpromising and is not worth for further study.

Usage

```
tot_time(obs_time, S0, x)
```

Arguments

obs_time a vector. Each element represents an observation time of the patient
the survival probability at timepoint x

the survival probability S0 at timepoint x

Value

the function returns the total transformed observation time for all patients

Author(s)

Chia-Wei Hsu, Haitao Pan, Jianrong Wu

6 tot_time

References

Jianrong Wu, Haitao Pan, Chia-Wei Hsu (2021). "Bayesian Single-Arm Phase II Trial Designs with Time-to-Event Endpoints." Pharmaceutical Statistics. Accepted

Examples

Index

```
optimal_OneStage, 2
optimal_TwoStage, 3
tot_time, 5
```