
Package ‘CliquePercolation’
July 21, 2025

Version 0.4.0

Date 2022-11-08

Title Clique Percolation for Networks

Description Clique percolation community detection for weighted and
unweighted networks as well as threshold and plotting functions.
For more information see Farkas et al. (2007) <doi:10.1088/1367-2630/9/6/180>
and Palla et al. (2005) <doi:10.1038/nature03607>.

Maintainer Jens Lange <lange.jens@outlook.com>

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.6.0)

Imports colorspace, graphics, igraph, magrittr, Matrix, methods,
Polychrome, qgraph, stats, utils, parallel, lessR, ohenery,
pbapply

RoxygenNote 7.2.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Jens Lange [aut, cre],
Janis Zickfeld [ctb],
Alexander P. Christensen [ctb],
Pedro Henrique Ribeiro Santiago [ctb]

Repository CRAN

Date/Publication 2022-11-09 08:40:37 UTC

Contents
cpAlgorithm . 2
cpColoredGraph . 5

1

https://doi.org/10.1088/1367-2630/9/6/180
https://doi.org/10.1038/nature03607

2 cpAlgorithm

cpCommunityGraph . 10
cpCommunitySizeDistribution . 12
cpPermuteEntropy . 14
cpThreshold . 16
FuzzyMod . 20
immuno . 21
Obama . 22
print.cpAlgorithm . 23
print.cpPermuteEntropy . 24
SignedFuzzyMod . 24
summary.cpAlgorithm . 26

Index 28

cpAlgorithm Clique Percolation Community Detection

Description

Function for clique percolation community detection algorithms for weighted and unweighted net-
works.

Usage

cpAlgorithm(W, k, method = c("unweighted", "weighted", "weighted.CFinder"), I)

Arguments

W A qgraph object or a symmetric matrix; see also qgraph
k Clique size (number of nodes that should form a clique)
method A string indicating the method to use ("unweighted", "weighted", or "weighted.CFinder");

see Details
I Intensity threshold for weighted networks

Details

method = "unweighted" conducts clique percolation for unweighted networks as described in Palla
et al. (2005). method = "weighted" conducts clique percolation for weighted graphs with inclusion
of cliques if their Intensity is higher than the specified Intensity (I), which is the method described in
Farkas et al. (2007). method = "weighted.CFinder" conducts clique percolation as in the CFinder
program. The Intensity (I) threshold is applied twice, namely first to the Intensity of the cliques (as
before) and then also to their k-1 overlap with other cliques (e.g., in the case of k = 3, it is applied
to the edge that two cliques share).

For weighted networks, the absolute value of the edge weights is taken. Therefore, negative edges
are treated like positive edges just like in the CFinder program. Thus, the Intensity threshold I can
only be positive.

cpAlgorithm produces a solution for all networks, even if there are no communities or communities
have no overlap. The respective output is empty in such cases.

cpAlgorithm 3

Value

A list object with the following elements:

list.of.communities.numbers list of communities with numbers as identifiers of nodes

list.of.communities.labels list of communities with labels from qgraph object or row or column
names of matrix as identifiers of nodes

shared.nodes.numbers vector with all nodes that belong to multiple communities with numbers
as identifiers of nodes

shared.nodes.labels vector with all nodes that belong to multiple communities with labels from
qgraph object or row or column names of matrix as identifiers of nodes

isolated.nodes.numbers vector with all nodes that belong to no community with numbers as iden-
tifiers of nodes

isolated.nodes.labels vector with all nodes that belong to no community with labels from qgraph
object or row or column names of matrix as identifiers of nodes

k user-specified k

method user-specified method

I user-specified I (if method was "weighted" or "weighted.CFinder")

Author(s)

Jens Lange, <lange.jens@outlook.com>

References

Farkas, I., Abel, D., Palla, G., & Vicsek, T. (2007). Weighted network modules. New Journal of
Physics, 9, 180-180. http://doi.org/10.1088/1367-2630/9/6/180

Palla, G., Derenyi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community struc-
ture of complex networks in nature and society. Nature, 435, 814-818. http://doi.org/10.1038/nature03607

Examples

Example for unweighted networks

create qgraph object
W <- matrix(c(0,1,1,1,0,0,0,0,

0,0,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,0,
0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0), nrow = 8, ncol = 8, byrow = TRUE)

W <- Matrix::forceSymmetric(W)
W <- qgraph::qgraph(W)

run clique percolation for unweighted networks
results <- cpAlgorithm(W = W, k = 3, method = "unweighted")

4 cpAlgorithm

print results overview
results

extract more information about communities
summary(results)

Example for weighted networks

create qgraph object
W <- matrix(c(0,1,1,1,0,0,0,0,

0,0,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,0,
0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0), nrow = 8, ncol = 8, byrow = TRUE)

set.seed(4186)
rand_w <- stats::rnorm(length(which(W == 1)), mean = 0.3, sd = 0.1)
W[which(W == 1)] <- rand_w
W <- Matrix::forceSymmetric(W)
W <- qgraph::qgraph(W)

run clique percolation for weighted networks
results <- cpAlgorithm(W = W, k = 3, method = "weighted", I = 0.1)

print results overview
results

extract more information about communities
summary(results)

Example with Obama data set (see ?Obama)

get data
data(Obama)

estimate network
net <- qgraph::EBICglasso(qgraph::cor_auto(Obama), n = nrow(Obama))

run clique percolation algorithm with specific k and I
cpk3I.16 <- cpAlgorithm(net, k = 3, I = 0.16, method = "weighted")

print results overview
cpk3I.16

extract more information about communities
summary(cpk3I.16)

cpColoredGraph 5

cpColoredGraph Colored Network According To Clique Percolation Communities

Description

Function for plotting the original network with nodes colored according to the community partition
identified via the clique percolation community detection algorithm, taking predefined sets of nodes
into account.

Usage

cpColoredGraph(
W,
list.of.communities,
list.of.sets = NULL,
larger.six = FALSE,
h.cp = c(0, 360 * (length(cplist) - 1)/length(cplist)),
c.cp = 80,
l.cp = 60,
set.palettes.size = NULL,
own.colors = NULL,
avoid.repeated.mixed.colors = FALSE,
...

)

Arguments

W A qgraph object or a symmetric matrix; see also qgraph
list.of.communities

List object taken from results of cpAlgorithm function; see also cpAlgorithm

list.of.sets List object specifying predefined groups of nodes in original network; default is
NULL; see Details

larger.six Integer indicating whether length(list.of.communities) is larger six (if list.of.sets
= NULL) or length(list.of.sets) is larger six (if list.of.sets is not NULL);
default is FALSE; see Details

h.cp Vector of integers indicating the range of hue from which colors should be drawn
for elements in list.of.communities (if list.of.sets = NULL) or for ele-
ments in list.of.sets (if list.of.sets is not NULL); default is the value
specified in colorspace::qualitative_hcl(); see Details

c.cp Integer indicating the chroma from which colors should be drawn for elements in
list.of.communities (if list.of.sets = NULL) or for elements in list.of.sets
(if list.of.sets is not NULL); default is 80 as specified in colorspace::qualitative_hcl();
see Details

l.cp Integer indicating the luminance from which colors should be drawn for ele-
ments in list.of.communities (if list.of.sets = NULL) or for elements in

6 cpColoredGraph

list.of.sets (if list.of.sets is not NULL); default is 60 as specified in
colorspace::qualitative_hcl(); see Details

set.palettes.size

Integer indicating the number of sets for which smooth gradients of a set color
should be generated using colorspace::sequential_hcl(); default is the number of
pure communities of a set plus one; see Details

own.colors Vector of hex code colors of length of list.of.communities (if list.of.sets
= NULL) or list.of.sets (if list.of.sets is not NULL); if specified, col-
ors are used for coloring the communities and no other colors are generated; if
NULL (default), reasonable colors are generated; see Details

avoid.repeated.mixed.colors

Logical indicating whether it should be avoided that multiple mixed communi-
ties are assigned the same color; default is FALSE; see Details

... any additional argument from qgraph; see also qgraph

Details

The function takes the results of cpAlgorithm (see also cpAlgorithm), that is, either the list.of.communities.numbers
or the list.of.communities.labels and plots the original network, coloring the nodes accord-
ing to the community partition. If there are no predefined sets of nodes (list.of.sets = NULL;
the default), each community is assigned a color by using a palette generation algorithm from the
package colorspace, which relies on HCL color space. Specifically, the function qualitative_hcl
(see also colorspace::qualitative_hcl() is used, which generates a balanced set of colors over a range
of hue values, holding chroma and luminance constant. This method is preferred over other palette
generating algorithms in other color spaces (Zeileis et al., subm.). The default values recommended
in qualitative_hcl are used, adapted to the current context in the case of hue. Yet, h.cp, c.cp, and l.cp
can be used to overwrite the default values. Each node gets the color of the community it belongs to.
Shared nodes are split equally in multiple colors, one for each community they belong to. Isolated
nodes are colored white.

If there are predefined sets of nodes, the qualitatively different colors are assigned to the sets speci-
fied in list.of.sets. Then, it is checked whether communities are pure (they contain nodes from
only one set) or they are mixed (they contain nodes from multiple sets). For pure communities of
each set, the assigned color is taken and faded towards white with another function from colorspace,
namely sequential_hcl (see also colorspace::sequential_hcl(). For instance, if there are three pure
communities with nodes that are only from Set 1, then the basic color assigned to Set 1 is taken,
and faded toward white in 3 + 1 steps. There is one color generated more than needed (here four
colors for three communities), because the last color in the fading is always white, which is reserved
for isolated nodes. The three non-white colors are then assigned to each community, with stronger
colors being assigned to larger communities. In that sense, all communities that entail nodes from
only one specific set, will have rather similar colors (only faded towards white). All communities
that entail nodes from only one specific other set, will also have similar colors, yet they will differ
qualitatively from the colors of the communities that entail items from other sets. For communities
that entail items from multiple sets, the basic colors assigned to these sets are mixed in proportion
to the number of nodes from each set. For instance, if a community entails two nodes from Set 1
and one node from Set 2, then the colors of Sets 1 and 2 are mixed 2:1.

The mixing of colors is subtractive (how paint mixes). Subtractive color mixing is difficult to im-
plement. An algorithm proposed by Scott Burns is used (see http://scottburns.us/subtractive-color-
mixture/ and http://scottburns.us/fast-rgb-to-spectrum-conversion-for-reflectances/). Each color is

cpColoredGraph 7

transformed into a corresponding reflectance curve via the RGBC algorithm. That is, optimized
reflectance curves of red, green, and blue are adapted according to the RGB values of the respective
color. The reflectance curves of the colors that need to be mixed are averaged via the weighted
geometric mean. The resulting mixed reflectance curve is transformed back to RGB values by mul-
tiplying the curve with a derived matrix. The algorithm produces rather good color mixing and is
computationally efficient. Yet, results may not always be absolutely precise.

The mixing of colors for mixed communities can lead to multiple communities being assigned the
same color. For instance, two communities with two nodes each from Sets 1 and 2 would have the
same color, namely the colors assigned to the sets mixed in the same proportion. This is reasonable,
because these communities are structurally similar. However, it can be confusing to have two actu-
ally different communities with the same color. To avoid this, set avoid.repeated.mixed.colors
= TRUE. Doing so slightly alters the ratio with which the color of a mixed community is determined,
if the community would have been assigned a color that was already assigned. This slight variation
of the ratio is random. To reproduce results from a previous run, set a seed.

The fading of pure communities via sequential_hcl is a function of the number of sets. If there are
more pure communities from a specific set, more faded colors will be generated. This makes color-
ing results hard to compare across different networks, if such a comparison is desired. For instance,
if one network has 12 nodes that belong to three communities sized 6, 3, and 3, all of them pure
(having nodes from only one set), then their colors will be strong, average, and almost white respec-
tively. If the same 12 nodes belong to two communities size 6 and 6, both of them pure, then their
colors will be strong and average to almost white. Different numbers of pure communities therefore
change the color range. To circumvent that, one can specify set.palettes.size to any number
larger than the number of pure communities of a set plus one. For all sets, sequential_hcl then
generates as many shades towards white of a respective color as specified in set.palettes.size.
Colors for each community are then picked from the strongest towards whiter colors, with larger
communities being assigned stronger colors. Note that in this situation, the range of colors is always
the same for all sets in a network, making them comparable across different sets. When there are
more pure communities of one set than from another their luminance will be lower. Moreover, also
across networks, the luminance of different sets of nodes or of the same set can be compared.

In all cases, qualitatively different colors are assigned to either the elements in list.of.communities
(when list.of.sets = NULL) or the elements in list.of.sets (when list.of.sets is not NULL)
with qualitative_hcl. Zeileis et al. (subm.) argue that this function can generate up to six different
colors that people can still distinguish. For a larger number of qualitative colors, other packages
can be used. Specifically, if the argument larger.six = TRUE (default is FALSE), the qualitatively
different colors are generated via the package Polychrome (Coombes et al., 2019) with the func-
tion createPalette (see also createPalette). This function generates maximally different colors in
HCL space and can generate a higher number of distinct colors. With these colors, the rest of the
procedure is identical. The seedcolors specified in Polychrome are general red, green, and blue.
As the procedure relies on randomness, you have to set a seed to reproduce the results of a previ-
ous run. Note that the Polychrome palettes are maximally distinct, thus they are most likely not
as balanced as the palettes generated with colorspace. In general, the function cpColoredGraph is
recommended only for very small networks anyways, for which larger.six = FALSE makes sense.
For larger networks, consider plotting the community network instead (see cpCommunityGraph).

When own.colors are specified, these colors are assigned to the elements in list.of.communities
(if list.of.sets = NULL) or to the elements in list.of.sets (if list.of.sets is not NULL).
The rest of the procedure is identical.

8 cpColoredGraph

Value

The function primarily plots the original network and colors the nodes according to the communi-
ties, taking predefined sets into account. Additionally, it returns a list with the following elements:

basic.colors.sets Vector with colors assigned to the elements in list.of.sets, if list.of.sets
is not NULL. Otherwise NULL is returned.

colors.communities Vector with colors of the communities, namely assigned colors if list.of.sets
= NULL or shaded and mixed colors if list.of.sets is not NULL.

colors.nodes List with all colors assigned to each node. Isolated nodes are white. Shared nodes
have a vector of colors from each community they belong to.

Author(s)

Jens Lange, <lange.jens@outlook.com>

References

Coombes, K. R., Brock, G., Abrams, Z. B., & Abruzzo, L. V. (2019). Polychrome: Creating
and assessing qualitative palettes with many colors. Journal of Statistical Software, 90, 1-26.
https://doi.org/10.18637/jss.v090.c01

Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., Stauffer, R., &
Wilke, C. O. (subm.). colorspace: A toolbox for manipulating and assessing colors and palettes.
https://arxiv.org/abs/1903.06490

Examples

Example with fictitious data

generate qgraph object with letters as labels
W <- matrix(c(0,0.10,0,0,0,0.10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0.10,0,0,0.10,0.20,0,0,0,0,0.20,0.20,0,0,0,0,0,0,0,0,
0,0,0,0.10,0,0.10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0.10,0.10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0.10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,
0,0,0,0,0,0,0,0.20,0,0,0,0,0.20,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0.20,0,0,0,0.20,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0.20,0,0,0.20,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0.20,0,0.20,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0.20,0.20,0.30,0,0,0,0,0.30,0.30,0,
0,0,0,0,0,0,0,0,0,0,0,0,0.20,0,0,0,0,0,0,0,0,
0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.30,0,0,0,0,0.30,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.30,0,0,0,0.30,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.30,0,0,0.30,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.30,0,0.30,0.30,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.30,0.30,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.30,0,
0,

0,0), nrow = 21, ncol = 21, byrow = TRUE)

cpColoredGraph 9

W <- Matrix::forceSymmetric(W)
rownames(W) <- letters[seq(from = 1, to = nrow(W))]
colnames(W) <- letters[seq(from = 1, to = ncol(W))]

W <- qgraph::qgraph(W, layout = "spring", edge.labels = TRUE)

run clique percolation algorithm; three communities; two shared nodes, one isolated node
cp <- cpAlgorithm(W, k = 3, method = "weighted", I = 0.09)

color original graph according to community partition
all other arguments are defaults; qgraph arguments used to return same layout

results <- cpColoredGraph(W, list.of.communities = cp$list.of.communities.labels,
layout = "spring", edge.labels = TRUE)

own colors (red, green, and blue) assigned to the communities

results <- cpColoredGraph(W, list.of.communities = cp$list.of.communities.labels,
own.colors = c("#FF0000","#00FF00","#0000FF"),
layout = "spring", edge.labels = TRUE)

define sets of nodes; nodes a to o are in Set 1 and letters p to u in Set 2
list.of.sets <- list(letters[seq(from = 1, to = 15)],

letters[seq(from = 16, to = 21)])

color original graph according to community partition, taking sets of nodes into account
two communities are pure and therefore get shades of set color; smaller community is more white
one community is mixed, so both set colors get mixed

results <- cpColoredGraph(W, list.of.communities = cp$list.of.communities.labels,
list.of.sets = list.of.sets,
layout = "spring", edge.labels = TRUE)

graph as before, but specifying the set palette size to 6
from a range of 6 colors, the pure communities get the darker ones
in a different network with also two pure communities, luminance would therefore be equal

results <- cpColoredGraph(W, list.of.communities = cp$list.of.communities.labels,
list.of.sets = list.of.sets, set.palettes.size = 6,
layout = "spring", edge.labels = TRUE)

graph as before, but colors sampled only form yellow to blue range, less chroma, more luminance

results <- cpColoredGraph(W, list.of.communities = cp$list.of.communities.labels,
list.of.sets = list.of.sets, set.palettes.size = 6,
h.cp = c(50, 210), c.cp = 70, l.cp = 70,
layout = "spring", edge.labels = TRUE)

10 cpCommunityGraph

own colors (red and green) assigned to the sets
two communities in shades of red and one community is mix of green and red (brown)

results <- cpColoredGraph(W, list.of.communities = cp$list.of.communities.labels,
list.of.sets = list.of.sets,
own.colors = c("#FF0000","#00FF00"),
layout = "spring", edge.labels = TRUE)

Example with Obama data set (see ?Obama)

get data
data(Obama)

estimate network
net <- qgraph::EBICglasso(qgraph::cor_auto(Obama), n = nrow(Obama))

run clique percolation algorithm with specific k and I
cpk3I.16 <- cpAlgorithm(net, k = 3, I = 0.16, method = "weighted")

color original graph according to community partition
all other arguments are defaults

results <- cpColoredGraph(net, list.of.communities = cpk3I.16$list.of.communities.labels,
layout = "spring", theme = "colorblind")

cpCommunityGraph Plotting Clique Percolation Community Network

Description

Function for plotting a network with nodes representing communities from clique percolation com-
munity detection and edges representing the number of shared nodes of the communities.

Usage

cpCommunityGraph(
list.of.communities,
node.size.method = c("proportional", "normal"),
max.node.size = 10,
...

)

Arguments

list.of.communities

List object taken from results of cpAlgorithm function; see also cpAlgorithm

cpCommunityGraph 11

node.size.method

String indicating how node size is plotted ("proportional" or "normal"); see
Details

max.node.size Integer indicating size of the node representing the largest community, if node.size.method
= "proportional"

... any additional argument from qgraph; see also qgraph

Details

The function takes the results of cpAlgorithm (see also cpAlgorithm), that is, either the list.of.communities.numbers
or the list.of.communities.labels and plots the community network. Each node represents a
community. Edges connecting two nodes represent the number of shared nodes between the two
communities.

The nodes can be plotted proportional to the sizes of the communities (node.size.method = "proportional").
The node representing the largest community is then plotted with the size specified in max.node.size.
All other nodes are plotted relative to this largest node. Alternatively, all nodes can have the same
size (node.size.method = "normal").

For the plotting, all isolated nodes will be ignored. If there are less than two communities in the
list, plotting the network is useless. Therefore, an error is printed in this case.

Value

The function primarily plots the community network. Additionally, it returns a list with the weights
matrix (community.weights.matrix) of the community network.

Author(s)

Jens Lange, <lange.jens@outlook.com>

Examples

Example with fictitious data

create qgraph object
W <- matrix(c(0,1,1,0,0,0,0,

0,0,1,0,0,0,0,
0,0,0,1,1,1,0,
0,0,0,0,1,1,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1,
0,0,0,0,0,0,0), nrow = 7, ncol = 7, byrow = TRUE)

W <- Matrix::forceSymmetric(W)
W <- qgraph::qgraph(W)

run clique percolation for unweighted networks
cp.results <- cpAlgorithm(W = W, k = 3, method = "unweighted")

plot community network; proportional; maximum size is 7
cp.network1 <- cpCommunityGraph(cp.results$list.of.communities.numbers,

node.size.method = "proportional",

12 cpCommunitySizeDistribution

max.node.size = 7)

plot community network; proportional; maximum size is 7
change shape of nodes to triangle via qgraph argument
cp.network2 <- cpCommunityGraph(cp.results$list.of.communities.numbers,

node.size.method = "proportional",
max.node.size = 7,
shape = "triangle")

Example with Obama data set (see ?Obama)

get data
data(Obama)

estimate network
net <- qgraph::EBICglasso(qgraph::cor_auto(Obama), n = nrow(Obama))

run clique percolation algorithm with specific k and I
cpk3I.16 <- cpAlgorithm(net, k = 3, I = 0.16, method = "weighted")

plot community network; normal
Obama.network <- cpCommunityGraph(cpk3I.16$list.of.communities.numbers,

node.size.method = "proportional",
theme = "colorblind")

cpCommunitySizeDistribution

Plotting Clique Percolation Community Size Distribution

Description

Function for plotting the frequency distribution of community sizes from clique percolation com-
munity detection and testing for power-law.

Usage

cpCommunitySizeDistribution(
list.of.communities,
color.line = "#bc0031",
test.power.law = FALSE

)

Arguments

list.of.communities

List object taken from results of cpAlgorithm function; see also cpAlgorithm

color.line string indicating the color of the line in the plot as described in par; default is
"#bc0031"

cpCommunitySizeDistribution 13

test.power.law Logical indicating whether fit of power-law should be tested; default is FALSE;
see Details

Details

The function takes the results of cpAlgorithm (see also cpAlgorithm), that is, either the list.of.communities.numbers
or the list.of.communities.labels and plots the community size distribution. If there are no
communities, no plot can be generated. An error is printed indicating this.

If test.power.law = TRUE, test of a fit of a power-law is performed with the function fit_power_law
(see also fit_power_law). Fit is tested for the entire distribution from the smallest community size
onward (i.e., typically k as specified in cpAlgorithm). Moreover, test uses the plfit implementation
of fit_power_law. For other arguments, default values are used.

Value

The function primarily plots the community size distribution. Additionally, it returns a list with a
data frame containing all community sizes and their frequencies (size.distribution). If test.power.law
= TRUE, a test of fit of a power-law distribution is also returned as a list object with results from
fit_power_law (see also fit_power_law).

Author(s)

Jens Lange, <lange.jens@outlook.com>

Examples

Example with fictitious data

create qgraph object; 150 nodes; 1/7 of all edges are different from zero
W <- matrix(c(0), nrow = 150, ncol = 150, byrow = TRUE)
set.seed(4186)
W[upper.tri(W)] <- sample(c(rep(0,6),1), length(W[upper.tri(W)]), replace = TRUE)
rand_w <- stats::rnorm(length(which(W == 1)), mean = 0.3, sd = 0.1)
W[which(W == 1)] <- rand_w
W <- Matrix::forceSymmetric(W)
W <- qgraph::qgraph(W, DoNotPlot = TRUE)

run clique percolation for weighted networks
cp.results <- cpAlgorithm(W, k = 3, method = "weighted", I = 0.38)

plot community size distribution with blue line
cp.size.dist <- cpCommunitySizeDistribution(cp.results$list.of.communities.numbers,

color.line = "#0000ff")
test for power-law distribution
cp.size.dist <- cpCommunitySizeDistribution(cp.results$list.of.communities.numbers,

color.line = "#0000ff",
test.power.law = TRUE)

cp.size.dist$fit.power.law

Example with Obama data set (see ?Obama)

14 cpPermuteEntropy

get data
data(Obama)

estimate network
net <- qgraph::EBICglasso(qgraph::cor_auto(Obama), n = nrow(Obama))

run clique percolation algorithm with specific k and I
cpk3I.16 <- cpAlgorithm(net, k = 3, I = 0.16, method = "weighted")

plot community size distribution
#the distribution is not very informative with four equally-sized communities
Obama.size.dist <- cpCommunitySizeDistribution(cpk3I.16$list.of.communities.numbers)

cpPermuteEntropy Confidence Intervals Of Entropy Based On Random Permutations Of
Network

Description

Function for determining confidence intervals of entropy values calculated for community partition
from clique percolation based on randomly permuted networks of original network.

Usage

cpPermuteEntropy(
W,
cpThreshold.object,
n = 100,
interval = 0.95,
CFinder = FALSE,
ncores,
seed = NULL

)

Arguments

W A qgraph object or a symmetric matrix; see also qgraph
cpThreshold.object

A cpThreshold object; see also cpThreshold
n number of permutations (default is 100)
interval requested confidence interval (larger than zero and smaller 1; default is 0.95)
CFinder logical indicating whether clique percolation for weighted networks should be

performed as in CFinder ; see also cpAlgorithm
ncores Numeric. Number of cores to use in computing results. Defaults to parallel::detectCores()

/ 2 or half of your computer’s processing power. Set to 1 to not use parallel
computing

seed Numeric. Set seed for reproducible results. Defaults to NULL

cpPermuteEntropy 15

Details

The function generates n random permutations of the network specified in W. For each randomly
permuted network, it runs cpThreshold (see cpThreshold for more information) with k and I values
extracted from the cpThreshold object specified in cpThreshold.object. Across permutations, the
confidence intervals of the entropy values are determined for each k separately.

The confidence interval of the entropy values is determined separately for each k. This is because
larger k have to produce less communities on average, which will decrease entropy. Comparing
confidence intervals of smaller k to those of larger k would therefore be disadvantageous for larger
k.

In the output, one can check the confidence intervals of each k. Moreover, a data frame is produced
that takes the cpThreshold object that was specified in cpThreshold.object and removes all rows
that do not exceed the upper bound of the confidence interval of the respective k.

Value

A list object with the following elements:

Confidence.Interval a data frame with lower and upper bound of confidence interval for each k

Extracted.Rows rows extracted from cpThreshold.object that are larger than the upper bound
of the specified confidence interval for each k

Settings user-specified settings

Author(s)

Jens Lange, <lange.jens@outlook.com>

Examples

Example with fictitious data

create qgraph object
W <- matrix(c(0,1,1,1,0,0,0,0,

0,0,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,0,
0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0), nrow = 8, ncol = 8, byrow = TRUE)

W <- Matrix::forceSymmetric(W)
W <- qgraph::qgraph(W)

create cpThreshold object
cpThreshold.object <- cpThreshold(W = W, method = "unweighted", k.range = c(3,4),

threshold = "entropy")

run cpPermuteEntropy with 100 permutations and 95% confidence interval

results <- cpPermuteEntropy(W = W, cpThreshold.object = cpThreshold.object,

16 cpThreshold

n = 100, interval = 0.95, ncores = 1, seed = 4186)

check results
results

Example with Obama data set (see ?Obama)

get data
data(Obama)

estimate network
net <- qgraph::EBICglasso(qgraph::cor_auto(Obama), n = nrow(Obama))

create cpThreshold object

threshold <- cpThreshold(net, method = "weighted",
k.range = 3:4,
I.range = seq(0.1, 0.5, 0.01),
threshold = "entropy")

run cpPermuteEntropy with 50 permutations and 99% confidence interval

permute <- cpPermuteEntropy(net, cpThreshold.object = threshold,
interval = 0.99, n = 50, ncores = 1, seed = 4186)

check results
permute

cpThreshold Optimizing k And I For Clique Percolation Community Detection

Description

Function for determining threshold value(s) (ratio of largest to second largest community sizes, chi,
entropy, fuzzy modularity, signed fuzzy modularity) of ranges of k and I values to help deciding
for optimal k and I values.

Usage

cpThreshold(
W,
method = c("unweighted", "weighted", "weighted.CFinder"),
k.range,
I.range,
threshold = c("largest.components.ratio", "chi", "entropy", "fuzzymod",
"signedfuzzymod")

)

cpThreshold 17

Arguments

W A qgraph object or a symmetric matrix; see also qgraph

method A string indicating the method to use ("unweighted", "weighted", or "weighted.CFinder").
See cpAlgorithm for more information

k.range integer or vector of k value(s) for which threshold(s) are determined See cpAl-
gorithm for more information

I.range integer or vector of I value(s) for which threshold(s) are determined See cpAl-
gorithm for more information

threshold A string or vector indicating which threshold(s) to determine ("largest.components.ratio",
"chi", "entropy", "fuzzymod", "signedfuzzymod"); see Details

Details

Optimizing k (clique size) and I (Intensity threshold) in clique percolation community detection
is a difficult task. Farkas et al. (2007) recommend to look at the ratio of the largest to second
largest community sizes (threshold = "largest.components.ratio") for very large networks or
the variance of the community sizes when removing the community size of the largest community
(threshold = "chi") for somewhat smaller networks. These thresholds were derived from perco-
lation theory. If I for a certain k is too high, no community will be identified. If I is too low, a giant
community with all nodes emerges. Just above this I, the distribution of community sizes often
follows a power law, which constitutes a broad community sizes distribution. Farkas et al. (2007)
point out, that for such I, the ratio of the largest to second largest community sizes is approximately
2, constituting one way to optimize I for each possible k. For somewhat smaller networks, the
ratio can be rather unstable. Instead, Farkas et al. (2007, p.8) propose to look at the variance of
the community sizes after removing the largest community. The idea is that when I is rather low,
one giant community and multiple equally small ones occur. Then, the variance of the community
sizes of the small communities (removing the giant community) is low. When I is high, only a few
equally small communities will occur. Then, the variance of the community sizes (after removing
the largest community) will also be low. In between, the variance will at some point be maximal,
namely when the community size distribution is maximally broad (power law-distributed). Thus,
the maximal variance could be used to optimize I for various k.

For very small networks, optimizing k and I based on the distribution of the community sizes will
be impossible, as too few communities will occur. Another possible threshold for such networks is
based on the entropy of the community sizes (threshold = "entropy"). Entropy can be interpreted
as an indicator of how surprising the respective solution is. The formula used here is based on
Shannon Information, namely

−
N∑
i=1

pi ∗ log2 pi

with pi being the probability that a node is part of community i. For instance, if there are two
communities, one of size 5 and one of size 3, the result would be

−((5/8 ∗ log2 5/8) + (3/8 ∗ log2 3/8)) = 1.46

When calculating entropy, the isolated nodes identified by clique percolation are treated as a sepa-
rate community. If there is only one community or only isolated nodes, entropy is zero, indicating
that the surprisingness is low. As compared to the ratio and chi thresholds, entropy favors commu-
nities that are equal in size. Thus, it should not be used for larger networks for which a broader

18 cpThreshold

community size distribution is preferred. Note that the entropy threshold has not been validated for
clique percolation as of now. Initial simulation studies indicate that it consistently detects surprising
community partitions in smaller networks especially if there are cliques of larger k.

Santiago et al. (2022) recently proposed in a simulation study that two alternative metrics, fuzzy
modularity and signed fuzzy modularity, showed good performance in recovering the true commu-
nity assignment in psychological networks with overlapping nodes and can also be used to optimize
k (clique size) and I (Intensity threshold). See FuzzyMod and SignedFuzzyMod for more informa-
tion.

Ratio thresholds can be determined only if there are at least two communities. Chi threshold can be
determined only if there are at least three communities. If there are not enough communities for the
respective threshold, their values are NA in the data frame. Entropy, fuzzy modularity, and signed
fuzzy modularity can always be determined.

Value

A data frame with columns for k, I (if method = "weighted" or method = "weighted.CFinder"),
number of communities, number of isolated nodes, and results of the specified threshold(s).

Author(s)

Jens Lange, <lange.jens@outlook.com>

References

Farkas, I., Abel, D., Palla, G., & Vicsek, T. (2007). Weighted network modules. New Journal of
Physics, 9, 180-180. http://doi.org/10.1088/1367-2630/9/6/180

Santiago, P. H. R., Soares, G. H., Quintero, A., & Jamieson, L. (2022). The performance of
the Clique Percolation to identify overlapping symptoms in psychological networks. PsyArXiv.
https://psyarxiv.com/fk963/

Examples

Not run: ## Example for unweighted networks

create qgraph object
W <- matrix(c(0,1,1,1,0,0,0,0,

0,0,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,0,
0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0), nrow = 8, ncol = 8, byrow = TRUE)

W <- Matrix::forceSymmetric(W)
W <- qgraph::qgraph(W)

determine entropy and fuzzy modularity thresholds for k = 3 and k = 4
results <- cpThreshold(W = W, method = "unweighted", k.range = c(3,4), threshold = c("entropy",
"fuzzymod"))

cpThreshold 19

Example for weighted networks; three large communities with I = 0.3, 0.2, and 0.1, respectively

create qgraph object
W <- matrix(c(0,0.10,0,0,0,0,0.10,0.10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0.10,0,0,0,0,0.10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0.10,0,0,0,0.10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0.10,0,0,0.10,0.20,0,0,0,0,0.20,0.20,0,0,0,0,0,0,0,
0,0,0,0,0,0.10,0,0.10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0.10,0.10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0.10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,
0,0,0,0,0,0,0,0,0,0.20,0,0,0,0,0.20,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0.20,0,0,0,0.20,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0.20,0,0,0.20,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0.20,0,0.20,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0.20,0.20,0.30,0,0,0,0,0.30,0.30,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.20,0,0,0,0,0,0,0,
0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.30,0,0,0,0,0.30,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.30,0,0,0,0.30,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.30,0,0,0.30,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.30,0,0.30,
0,0.30,0.30,
0,0.30,

0,0), nrow = 22, ncol = 22, byrow = TRUE)
W <- Matrix::forceSymmetric(W)
W <- qgraph::qgraph(W, layout = "spring", edge.labels = TRUE)

determine ratio, chi, entropy, fuzzy modularity, and signed fuzzy modularity
thresholds for k = 3 and I from 0.3 to 0.09
results <- cpThreshold(W = W, method = "weighted", k.range = 3,

I.range = c(seq(0.3, 0.09, by = -0.01)),
threshold = c("largest.components.ratio","chi","entropy",
"fuzzymod","signedfuzzymod"))

Example with Obama data set (see ?Obama)

get data
data(Obama)

estimate network
net <- qgraph::EBICglasso(qgraph::cor_auto(Obama), n = nrow(Obama))

determine entropy, fuzzy modularity, and signed fuzzy modularity thresholds
for k from 3 to 4 and I from 0.1 to 0.5
threshold <- cpThreshold(net, method = "weighted",

k.range = 3:4,
I.range = seq(0.1, 0.5, 0.01),
threshold = c("entropy", "fuzzymod", "signedfuzzymod"))

End(Not run)

20 FuzzyMod

FuzzyMod Fuzzy Modularity of a community structure of a graph

Description

Function calculates the fuzzy modularity of a (disjoint or non-disjoint division) of a graph into
subgraphs.

Usage

FuzzyMod(graph, membership, abs = TRUE)

Arguments

graph The input graph.

membership Numeric vector or list indicating the membership structure.

abs Should fuzzy modularity be calculated based on absolute values of network
edges? Default is TRUE.

Details

The modularity of a graph with respect to some division is a measure of how good the division is.
The traditional modularity Q was proposed by Newman and Girvan (2004):

Q =
1

2m

∑
cϵC

∑
u,vϵV

(Auv −
kukv
2m

)δcuδcv

where m is the total number of edges, C is the set of communities corresponding to a partition, V is
the set of vertices (i.e. nodes) in the network, Auv is the element of the A adjacency matrix in row
i and column j, and ku and kv are the node degrees of nodes u and v, respectively. δcu indicates
whether node u belongs to community c, which equals 1 if u and v belongs to community c and 0
otherwise. The product δcu ∗ δcv is a Kronecker delta function which equals 1 if u and v belongs to
community c and 0 otherwise.

In the case of weighted networks, Fan, Li, Zhang, Wu, and Di (2007) proposed that to calculate
modularity Q, m should be the total edge weights, and ku and kv should be the node strengths of
nodes u and v, respectively.

One limitation of modularity Q proposed by Newman and Girvan (2004) was that modularity could
not be calculated for non-disjoint community partitions (i.e. networks in which a node is assigned
to more than one community). As such, Chen, Shang, Lv, and Fu (2010) proposed a generalisation
in terms of fuzzy modularity:

Q =
1

2m

∑
cϵC

∑
u,vϵV

αcuαcv(Auv −
kukv
2m

)

where αcu is the belonging coefficient. The belonging coefficient reflects how much the node u
belongs to community c. The belonging coefficient is calculated as:

immuno 21

αcu =
kcu∑
cϵC

kcu

In case of a disjoint solution, the fuzzy modularity Q proposed by Chen, Shang, Lv, and Fu (2010)
reduces to the modularity Q proposed by Newman and Girvan (2004).

Value

A numeric scalar, the fuzzy modularity score of the given configuration.

Author(s)

Pedro Henrique Ribeiro Santiago, <phrs16@gmail.edu.au> [ctb]

Gustavo Hermes Soares, [rev]

Adrian Quintero, [rev]

Lisa Jamieson, [rev]

References

Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks.
Physical review E, 69(2), 026113.

Fan, Y., Li, M., Zhang, P., Wu, J., & Di, Z. (2007). Accuracy and precision of methods for com-
munity identification in weighted networks. Physica A: Statistical Mechanics and its Applications,
377(1), 363-372.

Chen, D., Shang, M., Lv, Z., & Fu, Y. (2010). Detecting overlapping communities of weighted
networks via a local algorithm. Physica A: Statistical Mechanics and its Applications, 389(19),
4177-4187.

Examples

g <- igraph::disjoint_union(igraph::make_full_graph(5),igraph::make_full_graph(4))
g <- igraph::add_edges(g, c(2,6, 2,7, 2,8, 2,9))
wc <- list(c(1,2,3,4,5),c(2,6,7,8,9))
FuzzyMod(graph=g, membership=wc, abs=TRUE)

immuno Data: Immunoglobulin interaction network

Description

Unweighted, undirected network of interactions in the immunoglobulin network. The 1,316 nodes
represent amino-acids and two nodes are connected by an edge if the shortest distance of their
C_alpha atoms is smaller than Θ = 8 Angstrom.

22 Obama

Usage

data(immuno)

Format

An object of class "qgraph" with 1,316 nodes and 6,300 edges.

Source

https://CRAN.R-project.org/package=igraphdata

References

Gfeller, D. (2007). Simplifying complex networks: From a clustering to a coarse graining strategy.
EPFL. http://library.epfl.ch/theses/?nr=3888

Examples

data(immuno)

Obama Data: Evaluative Reactions Toward Barack Obama (2012)

Description

A data set containing evaluative reactions toward Barack Obama from the American National Elec-
tion Studies in 2012. The study included 5,914 participants, representative of the adult U.S. Amer-
ican population (note missing values). The participants rated Obama on 10 evaluative reactions.

Usage

data(Obama)

Format

An object of class "data.frame" with 5,914 observations and 10 variables.

Mor "Is moral"
Led "Would provide strong leadership"
Car "Really cares about people like you"
Kno "Is knowledgeable"
Int "Is intelligent"
Hns "Is honest"
Ang "Angry"
Hop "Hopeful"
Afr "Afraid of him"
Prd "Proud"

https://CRAN.R-project.org/package=igraphdata

print.cpAlgorithm 23

Source

https://electionstudies.org/

References

Dalege, J., Borsboom, D., Van Harreveld, F., Van der Maas, H. L. J. (2017). Network anal-
ysis on attitudes: A brief tutorial. Social Psychological and Personality Science, 8, 528-537.
https://doi.org/10.1177/1948550617709827

Examples

data(Obama)

print.cpAlgorithm print.cpAlgorithm

Description

Print method for objects of class cpAlgorithm.

Usage

S3 method for class 'cpAlgorithm'
print(x, ...)

Arguments

x An object of class cpAlgorithm; see also cpAlgorithm

... currently ignored

Author(s)

Jens Lange, <lange.jens@outlook.com>

https://electionstudies.org/

24 SignedFuzzyMod

print.cpPermuteEntropy

print.cpPermuteEntropy

Description

Print method for objects of class cpPermuteEntropy.

Usage

S3 method for class 'cpPermuteEntropy'
print(x, ...)

Arguments

x An object of class cpPermuteEntropy; see also cpPermuteEntropy

... currently ignored

Author(s)

Jens Lange, <lange.jens@outlook.com>

SignedFuzzyMod Signed Fuzzy Modularity of a community structure of a graph

Description

Function calculates the fuzzy modularity of a (disjoint or non-disjoint division) of a graph into
subgraphs for signed weighted networks.

Usage

SignedFuzzyMod(netinput, membassigned)

Arguments

netinput The input graph.

membassigned Numeric vector or list indicating the membership structure.

SignedFuzzyMod 25

Details

For signed weighted networks (i.e. networks with positive and negative edges), the calculation of
the modularity Q is problematic. Gomez, Jensen, and Arenas (2009) explain that, when calculating
modularity Q for unweighted (Newman & Girvan, 2004) or weighted networks (Fan, Li, Zhang, Wu,
& Di, 2007), the term ku

2m indicates the probability of node u making connections with other nodes
in the network, if connections between nodes were random. Gomez, Jensen, and Arenas (2009)
discuss how, when networks are signed, the positive and negative edges cancel each other out and
the term ku

2m loses its probabilistic meaning. To deal with this limitation, Gomez, Jensen, and Arenas
(2009) proposed modularity Q for signed weighted networks, generalised to fuzzy modularity Q for
signed weighted networks:

Q = (
2w+

2w+ + 2w−)(
1

2m+
)
∑
cϵC

∑
u,vϵV

α+
cuα

+
cv(A

+
uv−

k+u k
+
v

2m
)−(

2w−

2w+ + 2w−)(
1

2m−)
∑
cϵC

∑
u,vϵV

α−
cuα

−
cv(A

−
uv−

k−u k
−
v

2m
)

where the sign + indicates positive edge weights and the sign - indicates negative edge weights,
respectively.

Value

A numeric scalar, the fuzzy modularity score for signed weighted networks of the given configura-
tion.

Author(s)

Pedro Henrique Ribeiro Santiago, <phrs16@gmail.com> [ctb]

Gustavo Hermes Soares, [rev]

Adrian Quintero, [rev]

Lisa Jamieson, [rev]

References

Gomez, S., Jensen, P., & Arenas, A. (2009). Analysis of community structure in networks of
correlated data. Physical review E, 80(1), 016114.

See Also

FuzzyMod

Examples

`%du%` <- igraph::`%du%`
g <- igraph::make_full_graph(6) %du% igraph::make_full_graph(6)
g <- igraph::add_edges(g, c(1,7, 2,8))
edges <- rep(1,32)
edges[31] <- -1
igraph::E(g)$weight <- edges
plot(g, edge.label=round(igraph::E(g)$weight, 3))

26 summary.cpAlgorithm

wc <- list(c(1,2,3,4,5,6),c(7,8,9,10,11,12))
SignedFuzzyMod(netinput=g, membassigned=wc)

summary.cpAlgorithm summary.cpAlgorithm

Description

Summary method for objects of class cpAlgorithm.

Usage

S3 method for class 'cpAlgorithm'
summary(
object,
details = c("communities.labels", "shared.nodes.labels", "isolated.nodes.labels"),
...

)

Arguments

object An object of class cpAlgorithm; see also cpAlgorithm

details A string or vector indicating about which part of the results more information is
requested; default is c("communities.labels","shared.nodes.labels","isolated.nodes.labels");
see Details

... currently ignored

Details

The function extracts information from an object produced by cpAlgorithm. To do so, the user has
to specify in details which information is requested. It is possible to extract information about
the communities with either numbers (communities.numbers) or labels (communities.labels)
as identifiers of the nodes. Moreover, it is possible to extract information about shared nodes
with either numbers (shared.nodes.numbers) or labels (shared.nodes.labels) as identifiers of
the nodes. Finally, it is possible to extract information about isolated nodes with either numbers
(isolated.nodes.numbers) or labels (isolated.nodes.labels) as identifiers of the nodes. Any
combination of these options can be specified in details.

Value

Prints information depending on details.

Author(s)

Jens Lange, <lange.jens@outlook.com>

summary.cpAlgorithm 27

Examples

Example for unweighted networks

create qgraph object
W <- matrix(c(0,1,1,1,0,0,0,0,

0,0,1,1,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,1,1,1,0,
0,0,0,0,0,1,1,0,
0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,1,
0,0,0,0,0,0,0,0), nrow = 8, ncol = 8, byrow = TRUE)

colnames(W) <- letters[1:8]
rownames(W) <- letters[1:8]
W <- Matrix::forceSymmetric(W)
W <- qgraph::qgraph(W)

run clique percolation for unweighted networks
results <- cpAlgorithm(W = W, k = 3, method = "unweighted")

print results overview
results

extract details about the communities
summary(results, details = "communities.labels")

extract information about shared and isolated nodes
summary(results, details = c("shared.nodes.numbers", "isolated.nodes.labels"))

Index

∗ datasets
immuno, 21
Obama, 22

colorspace::qualitative_hcl(), 5, 6
colorspace::sequential_hcl(), 6
cpAlgorithm, 2, 5, 6, 10–14, 17, 23, 26
cpColoredGraph, 5
cpCommunityGraph, 7, 10
cpCommunitySizeDistribution, 12
cpPermuteEntropy, 14, 24
cpThreshold, 14, 15, 16
createPalette, 7

fit_power_law, 13
FuzzyMod, 18, 20, 25

immuno, 21

Obama, 22

par, 12
print.cpAlgorithm, 23
print.cpPermuteEntropy, 24

qgraph, 2, 5, 6, 11, 14, 17

SignedFuzzyMod, 18, 24
summary.cpAlgorithm, 26

28

	cpAlgorithm
	cpColoredGraph
	cpCommunityGraph
	cpCommunitySizeDistribution
	cpPermuteEntropy
	cpThreshold
	FuzzyMod
	immuno
	Obama
	print.cpAlgorithm
	print.cpPermuteEntropy
	SignedFuzzyMod
	summary.cpAlgorithm
	Index

