Package 'EnviroPRA2'

July 21, 2025

Type Package

Title Environmental Probabilistic Risk Assessment Tools

Version 1.0.1

Date 2024-01-23

Description It contains functions for dose calculation for different routes, fitting data to probability distributions, random number generation (Monte Carlo simulation) and calculation of systemic and carcinogenic risks. For more information see the publication: Barrio-Parra et al. (2019) ``Human-health probabilistic risk assessment: the role of exposure factors in an urban garden scenario'' <doi:10.1016/j.landurbplan.2019.02.005>.

License GPL

Imports MASS, kSamples, stats, fitdistrplus, truncdist

NeedsCompilation no

Repository CRAN

Date/Publication 2024-01-30 19:40:02 UTC

RoxygenNote 7.3.0

Encoding UTF-8

Author Fernando Barrio-Parra [aut, cre, cph] (ORCID: https://orcid.org/0000-0001-5475-3567>)

Maintainer Fernando Barrio-Parra <fernando.barrio@upm.es>

Contents

roPRA2-package	2
	4
oot	5
	6
boot	7
lition	8
R	8
Rboot	9
_par	10

Fit_dist_parameter	11
fit_dist_test	12
HI	13
HIdermal	14
HIinhal	15
INH	16
plot_fit_dist	17
random_number_generator	18
RISK	19
RISKdermal	19
RISKInhal	20
sampler	21
sig	22
SIR	22
SIRboot	23
VI	24
VIboot	25
	- 26

Index

EnviroPRA2-package Environmental Probabilistic Risk Assessment Tools

Description

A collection of functions employed in environmental risk assessment to model exposure to a toxicant and predicting health effects, allowing to characterize variability and uncertainty in risk estimations

Details

A set of tools to perform a deterministic and probabilistic risk assessment.

Author(s)

F.Barrio-Parra

Maintainer: fernando.barrio@upm.es

Examples

Performs Deterministic Environmental Risk Assessment

Example of dermal contact with a chemical in swiming water

Estimate the dermal absorbed dose during swiming in waters with a carcinogenic chemical # (water concentration of 250 mg/m^3)

DWIR (CW = 250)

For a systemic effect: DWIR (CW= 250, AT=24*365) # Specifying all the parameters for the carcinogenic case I = DWIR (CW=250, IR=1.5, EF = 300, ED = 24, BW = 85) # Chemical Slope factor SFAs = 1.5# Dermal Absorption Factor ABSAs = 3e-02# Gastrointestinal Absorption Factor GIAs = 1# Risk Estimation RISKdermal (AD = I, SF = SFAs, GI = GIAs) #### Perform a test to assess the fitness of a theorical distribution to empirical data #### set.seed(123) a <- rnorm(n=100, mean =1.5, sd = 0.25) b <- rnorm(n = 15, mean = 300, sd = 15) fit_dist_test(a) fit_dist_test(b) # Graphical representation of data fitting to a distribution plot_fit_dist(a, "norm") plot_fit_dist(b, "norm") #### Perform a Probabilistic Environmental Risk Assessment #### Fita <- Fit_dist_parameter(a)</pre> Fitb <- Fit_dist_parameter(b)</pre> IRr <-random_number_generator(n = 10000, Fited = Fita,</pre> dist = "norm", a =0.8, b = 2.1) EFr <-random_number_generator(n = 10000, Fited = Fitb,</pre> dist = "norm", a =250, b = 330)

I = DWIR (CW=250, IR=IRr, EF = EFr, ED = 24, BW = 85)
Risk Estimation
Risk <- RISKdermal (AD = I, SF = SFAs, GI = GIAs)
hist (Risk)
quantile (Risk, c (0.05, 0.25, 0.5, 0.75, 0.95))</pre>

AD

4

Dermal conctact with chemicals in soil

Description

Estimates the Absorbed dose [mg/Kg*day] of chemicals through dermal contact with a soil

Usage

AD(CS = 1, SA = 2800, AF = 0.2, ABS = 0.001, EF = 350, ED = 24, BW = 70, AT = 365 * 70)

Arguments

CS	Chemical concentration in soil [mg/Kg]
SA	Skin surface area available for contact [cm ²]
AF	Skin adherence factor [mg/cm ²]
ABS	Absorption factor (Chemical specific) [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical Absorbed dose [mg/Kg*day] - Object class "numeric"

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

ADboot

Examples

```
## Estimated absorbed dose for the estimation of carcinogenic effects using
# the default variables (EPA 2011) for a chemical soil concentration of
# 0.2 mg/Kg
AD( CS=0.2)
# For a systemic effect:
AD( CS=0.2, AT=24*365)
# Specifying all the parameters for the carcinogenic case
AD( CS=0.2, SA=2300, AF=0.25, ABS=0.01, EF=150, ED=10, BW=80)
```

ADboot

Dermal conctact with chemicals in soil by bootstrap

Description

Dermal conctact with chemicals in soil by bootstrap

Usage

ADboot(n, CS, SA, AF, ABS, EF, ED, BW, AT)

Arguments

n	Output vector length
CS	Chemical concentrtion in soil [mg/Kg]
SA	Skin surface area available for contact [cm^2]
AF	Skin adherence factor [mg/cm ²]
ABS	Absorption factor (Chemical specific) [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical Absorbed dose [mg/Kg*day] - Object class "numeric"

Author(s)

F. Barrio-Parra

Examples

Carcinogenic effects
c <- rnorm(n= 10, mean = 0.2, sd = 0.05)
b <- rnorm(n= 100, mean = 20, sd = 5)
ADboot (n = 1000, SA=2300, AF=0.25, ABS=0.01,CS = c, BW = b, ED = 10, EF = 250)</pre>

AIR

Inhalation of airborne chemicals

Description

Estimates the Intake rate by inhalation of airborne chemicals (vapor phase) [mg/Kg*day]

Usage

AIR(CA = 1, IR = 20, ET = 24, EF = 350, ED = 24, BW = 70, AT = 365 * 70)

Arguments

CA	Chemical concentration in air [mg/m ³]
IR	Inhalation Rate [m ³ /hour]
ET	Exposure time [hours/day]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Intake rate by inhalation of airborne chemicals (vapor phase) I [mg/Kg*day] - Object class "numeric"

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

6

AIRboot

Examples

```
## Estimated absorbed dose for the estimation of carcinogenic effects using
# the default variables (EPA 2011) for a chemical air concentration
# of 0.2 mg/m^3
AIR ( CA=0.2)
# For a systemic effect:
AIR ( CA=0.2, AT=24*365)
# Specifying all the parameters for the carcinogenic case
AIR ( CA=0.2, IR=25, ET = 24, EF = 300, ED = 24, BW = 85)
```

AIRboot

Inhalation of airborne chemicals by bootstrap

Description

Estimates the Intake rate by inhalation of airborne chemicals (vapor phase) [mg/Kg*day]

Usage

AIRboot(n, CA, IR, ET, EF, ED, BW, AT)

Arguments

n	Output vector length
CA	Chemical concentration in air [mg/m^3]
IR	Inhalation Rate [m ³ /hour]
ET	Exposure time [hours/day]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Intake rate by inhalation of airborne chemicals (vapor phase) I [mg/Kg*day] - Object class "numeric"

Author(s)

F. Barrio-Parra

Examples

Carcinogenic effects
c <- rnorm(n= 10, mean = 0.2, sd = 0.05)
b <- rnorm(n= 100, mean = 20, sd = 5)
AIRboot (n = 1000, CA=c, IR=25, ET = 24, EF = 300, ED = 24, BW = b)</pre>

condition

p-value significance checking function

Description

Auxiliar function to check p-value significance (Function created for internal use of the model).

Usage

condition(n)

Arguments n

p-value

Value

Return "Significant" or "Not-significant" - Object class "character"

Examples

```
condition ( 0.001)
```

condition (0.1)

DWIR

Chemical intake by Drinking Water

Description

Estimates the chemical Intake rate by Drinking Water [mg/Kg*day]

Usage

DWIR(CW = 1, IRW = 2, EF = 350, ED = 24, BW = 80, AT = 365 * 70)

8

DWIRboot

Arguments

CW	Chemical concentration in water [mg/L]	
IRW	Water Ingestion Rate [L/Day]	
EF	Exposure frequency [day/yr]	
ED	Exposure duration [yr]	
BW	Body weight [Kg]	
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)	

Value

Chemical intake rate by drinking water I [mg/Kg*day] - Object class "numeric"

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

Examples

Estimate the dermal absorbed dose during swiming in waters with a carcinogenic chemical # (water concentration of 250 mg/m^3)

DWIR (CW = 250)
For a systemic effect:
DWIR (CW= 250, AT=24*365)
Specifying all the parameters for the carcinogenic case
DWIR (CW=250, IR=1.5, EF = 300, ED = 24, BW = 85)

DWIRboot

Chemical intake by Drinking Water by bootstrap

Description

Estimates the chemical Intake rate by Drinking Water [mg/Kg*day]

Usage

DWIRboot(n, CW, IRW, EF, BW, ED, AT)

Arguments

n	Output vector length
CW	Chemical concentration in water [mg/L]
IRW	Water Ingestion Rate [L/Day]
EF	Exposure frequency [day/yr]
BW	Body weight [Kg]
ED	Exposure duration [yr]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical intake rate by drinking water I [mg/Kg*day] - Object class "numeric"

Author(s)

F. Barrio-Parra

Examples

Carcinogenic effects
c <- rnorm(n= 10, mean = 250, sd = 15)
b <- rnorm(n= 100, mean = 20, sd = 5)
DWIRboot (n = 1000, CW=c, IR=1.5, EF = 300, ED = 24, BW = b)</pre>

extr_par

Extracts the fitted distribution parameters to be introduced in other function

Description

Auxiliar function for internal use only

Usage

extr_par(x, dist)

Arguments

x	List of parameters obtained by the aplication of the Fit_dist_parameter function
dist	Name of the distribution we would like to stract the parameters ("norm", "lnorm", "geom", "exp", "pois", "gamma", "cauchy", "logis", "weibull", "nbinom", "beta",
	"chisq", "t", "f")

Fit_dist_parameter

Value

A list of fitted parameters.

Author(s)

F. Barrio-Parra

Examples

a <- rnorm(n=100, mean =10, sd = 1)
b <- Fit_dist_parameter(a)
extr_par(x = b, dist ="norm")</pre>

Fit_dist_parameter Returns adjusted distribution parameters

Description

Returns the distribution parameters adjusted for by maximum likelihood (mle) for the following distributions: "normal","log-normal","geometric","exponential","Poisson", "cauchy", "logistic" and "weibull"

Usage

Fit_dist_parameter(x)

Arguments

Х

A numeric vector of length at least one containing only finite values (non-censored data)

Value

normal	Fitted Mean and sd for a normal distribution
ʻlog-normalʻ	Fitted Meanlog and sdlog for a log-normal distribution
geometric	Fitted prob for a geometric distribution
exponential	Fitted rate for a exponential distribution
Poisson	Fitted lambda for a exponential distribution
cauchy	Fitted location and scale for a Cauchy distribution
logistic	Fitted location and scale for a Logistic distribution
weibull	Fitted shape and scale for a weibull distribution

Author(s)

F. Barrio-Parra

See Also

Function fitdistr in Library (MASS)

Examples

a <- rnorm(n=100, mean =10, sd = 1) b <- Fit_dist_parameter(a)</pre> # Examples of result extraction b\$normal b\$weibull

fit_dist_test Summary of Godness-of-fit tests

Description

Returns a data frame with the summary of Fiting distribution tests for the following distributions: "normal", "log-normal", "geometric", "exponential", "Poisson", "cauchy", "logistic" and "weibull".

The considered Godness-of-fit tests are: Bayesian Information Criterium (BIC), Akaike Information Criterium (AIC), Kolmogorov-Smirnov test and Anderson-Darling test.

Usage

fit_dist_test(x)

Arguments

х

A numeric vector of length at least one containing only finite values

Value

Distribution	Name of the tested distribution	
BayesianIC	Bayesian Information Criterium (BIC)	
AkaikeIC	Akaike Information Criterium (AIC)	
Kol-SmirD	The value of the Kolmogorov-Smirnov test statistic	
Kol-SmirPvalue	The value of the Kolmogorov-Smirnov test p-value	
Signigicance KS		
	A column to check the significance of the Kolmogorov-Smirnov te	

A column to check the significance of the Kolmogorov-Smirnov test

And-DarlThe value of the nderson-Darling test statisticAnd-DarlPvalueThe value of the Anderson-Darling test p-valueSignigicance ADA column to check the significance of the Anderson-Darling test

Author(s)

F. Barrio-Parra

See Also

ad.test library(kSamples), AIC library(stats), BIC library(stats), ks.test library(stats),

Examples

```
set.seed(123)
a <- rnorm(n=100, mean =10, sd = 1)
fit_dist_test(a)
b<- rexp(n = 100,rate = 1)
fit_dist_test(b)</pre>
```

ΗI

Hazard Index

Description

Returns the Hazard Index (non carcinogenic effects)

Usage

HI(I, RFD)

Arguments

I	Intake Rate [mg/Kg*day]
RFD	Reference dose [mg/Kg*day]

Value

Hazard Index [-] - Object class "numeric"

Author(s)

F. Barrio-Parra

Examples

```
# Assessing if there is systemic risk for an adult receptor that drinks water with 1000 ug/L
# of hexaclorobence (Reference Dose (IRIS data base) = 8e-04 [mg/Kg*day]) in a residencial
# scenario (default EPA Maximum Reasonable Exposure parameters)
```

HI (I = DWIR(CW=1, AT=24*365), RFD = 8e-04)

HIdermal

Hazard Index for dermal contact

Description

Returns the Hazard Index for dermal exposure with chemicals (non carcinogenic effects)

Usage

HIdermal(AD, RFD, GI)

Arguments

AD	Absorbed dose [mg/Kg*day]
RFD	Reference dose [mg/Kg*day]
GI	Gastrointestinal Absorption factor (chemical specific) [-]

Value

Hazard Index [-] - Object class "numeric"

Author(s)

F. Barrio-Parra

Examples

```
# Assess if there is non-carcinogenic risk for an dadult thorug dermal
# contact exposed to a soil that contains 45 mg/Kg of As in a residencial
# scenario (default EPA Maximum Reasonable Exposure parameters)
RfDAs = 3e-04
# Dermal Absorption Factor
ABSAs = 3e-02
# Gastrointestinal Absorption Factor
GIAs = 1
```

HIinhal

I = AD (CS = 45,ABS = ABSAs, AT= 24*365) HIdermal (AD = I, RFD = RfDAs, GI = GIAs)

HIinhal

Hazard Index for inhalation of vapors

Description

Returns the Hazard Index (systemic effects) for inhalation of vapors

Usage

HIinhal(INH, RFC)

Arguments

INH	Inhalated dose (mg/m ³)
RFC	Reference concentration (mg/m^3)

Value

Hazard Index (non carcinogenic effects) [-] - Object class "numeric"

Author(s)

F. Barrio-Parra

Examples

Assess if there is systemic risk for the exposure of an adult # (Reasonable Maximum Exposure) to a Toluene air concentration of 2 mg/ m^3

HIinhal (INH = AIR (CA = 2, AT = 365*24), RFC = 5)

Description

Estimates the Intake rate of chemicals by inhalation of resuspended soil particles [mg/Kg*day]

Usage

INH(C = 10, EF = 350, ED = 24, PEF = 1.36^9, AT = 365 * ED)

Arguments

С	Concentration of chemicals in soil(mg/kg)
EF	Exposure frequency (day/year)
ED	Exposure duration (years)
PEF	Particle emision factor meaning resuspended particles(m^3/kg)
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical intake rate by inhalation of soil particles I [mg/Kg*day] - Object class "numeric"

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

Examples

Estimated dose for the estimation of carcinogenic effects due to the # inhalation of soil particles that contains 45 mg/Kg of As in a residencial # scenario (default EPA Maximum Reasonable Exposure parameters) INH(C= 45, AT = 365*70) # For non-carcinogenic effects: INH(C= 45)

INH

plot_fit_dist

Description

A function to help assessing the distribution that best fit a data vector

Usage

plot_fit_dist(x, dist)

Arguments

x	A numeric vector of length at least one containing only finite values (values must be ≥ 0)
dist	Character vector indicating the distribution to be ploted:"norm", "lnorm", "geom", "exp", "pois", "cauchy", "logis", "weibull"

Value

Returns: Empirical and theoretical density plots, Empirical and theoretical CDFs, Q-Q plot, P-P plot

Author(s)

F. Barrio-Parra

See Also

plotdist from Library (fitdstrplus)

Examples

```
set.seed(123)
a <- rnorm(n = 100, mean = 10, sd = 1)
plot_fit_dist(a, "norm")</pre>
```

random_number_generator

Random number generator

Description

Return a vector of n random numbers following a truncated distribution (dist) in agreement with a fitted parameters "Fited"

Usage

```
random_number_generator(n, Fited, dist, a, b)
```

Arguments

n	The number of desired generated numbers
Fited	A list contaning the parameters obtained by application of Fit_dist_parameter
dist	Character vector indicating the distribution to be applied:"norm", "lnorm", "geom", "exp", "pois", "cauchy", "logis", "weibull"
а	Truncation Lower limit
b	Truncation Upper limit

Value

A vector of n random numbers - Object class "numeric"

Author(s)

F. Barrio-Parra

See Also

Fit_dist_parameter

Examples

RISK

Description

Returns the Risk estimation (carcinogenic effects)

Usage

RISK(I, SF)

Arguments

I	Intake Rate [mg/Kg*day]
SF	Slope Factor [(mg/Kg*day)^-1] (chemical specific)

Value

Risk [-] - Object class "numeric"

Author(s)

F. Barrio-Parra

Examples

```
# Assessing if there is carcinogenic risk for an adult receptor that drinks water with 1000 ug/L
# of hexaclorobence (Oral Slope Factor (IRIS data base) = 1.6 [mg/Kg*day]^-1) in a residencial
# scenario (default EPA Maximum Reasonable Exposure parameters)
```

RISK (I = DWIR(CW=1), SF = 1.6)

RISKdermal Risk for dermal con	act
--------------------------------	-----

Description

Returns the Risk for dermal exposure with chemicals (carcinogenic effects)

Usage

RISKdermal(AD, SF, GI)

Arguments

AD	Absorbed dose [mg/Kg*day]
SF	Slope Factor [(mg/Kg*day)^-1] (chemical specific)
GI	Gastrointestinal Absorption factor (chemical specific) [-]

Value

Risk [-] - Object class "numeric"

Author(s)

F. Barrio-Parra

See Also

AD

Examples

```
# Assess if there is carcinogenic risk for an dadult thorug dermal
# contact exposed to a soil that contains 45 mg/Kg of As in a residencial
# scenario (default EPA Maximum Reasonable Exposure parameters)
SFAs = 1.5
# Dermal Absorption Factor
ABSAs = 3e-02
# Gastrointestinal Absorption Factor
GIAs = 1
I = AD (CS = 45,ABS = ABSAs)
RISKdermal (AD = I, SF = SFAs, GI = GIAs)
```

RISKInhal Risk for inhalation of vapors

Description

Returns the risk (carcinogenic effects) for inhalation of vapors

Usage

RISKInhal(URi, I)

sampler

Arguments

URi	Inhalation Unit risk [(ug/m^3)^-1]
I	Inhalated dose (mg/m ³)

Value

Risk [-] - Object class "numeric"

Examples

```
# Assess if there is cancer risk for the exposure of an adult
# (Reasonable Maximum Exposure) to a benzene air concentration of 2 mg/ m^3
```

RISKInhal (I = AIR (CA = 2), URi = 7.8e-06)

sam	nl	ρ	r
Sam	чч	- C	

Execute sampling with replacement

Description

Auxiliar function (employed only for internal use)

Usage

sampler(n, a)

Arguments

n	Number of sampling iterations
а	data vector

Value

Resampled vector of length n - Object class "numeric"

Author(s)

F. Barrio-Parra

Examples

a <- rnorm (n = 20, mean = 0, sd = 1)

b <- sampler (n = 100, a = a)</pre>

sig

Description

Function that return if the p-value allows to accept H0 in a Kolmogorov Smirnov or Anderson Darling test

Usage

sig(n)

Arguments

n p-value

Value

Text string ("Significant"" / "Not Significant"") - Object class "character"

Examples

sig (0.001)

sig (0.1)

S	т	R
J	Ŧ	1

Chemical intake by accidental soil ingestion

Description

Estimates the chemical Intake rate by accidental soil ingestion [mg/Kg*day]

Usage

SIR(CS = 1, IR = 100, FI = 1, EF = 350, ED = 24, BW = 80, AT = 365 * 70)

Arguments

CS	Chemical concentration in soil [mg/Kg]
IR	Soil Ingestion Rate [mg/Day]
FI	Fraction ingested from contaminated source [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

SIRboot

Value

Chemical intake rate by soil ingestion I [mg/Kg*day] - Object class "numeric"

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

Examples

```
# Ingestion rate for a children weighing 20 Kg who ingest 200 mg
# of soil every day, 250 days per year during 10 years. 95-UCL of
# Arsenic in soil is 25 mg/Kg
# Carcinogenic effects
SIR ( CS = 25, BW = 20, IR = 200, ED = 10, EF = 250)
# Systemic effects
SIR ( CS = 25, BW = 20, IR = 200, ED = 10, EF = 250, AT = 365*10)
```

SIRboot

Chemical intake by accidental soil ingestion by bootstrap

Description

Estimates the chemical Intake rate by accidental soil ingestion [mg/Kg*day]

Usage

SIRboot(n, CS, IR, FI, EF, ED, BW, AT)

Arguments

n	Output vector length
CS	Chemical concentration in soil [mg/Kg]
IR	Soil Ingestion Rate [mg/Day]
FI	Fraction ingested from contaminated source [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight [Kg]
AT	Averaging time [day] (Note that for No carcinogenic effects AT should be equal to 365*ED)

Value

Chemical intake rate by soil ingestion I [mg/Kg*day] - Object class "numeric"

Examples

```
# Carcinogenic effects
c <- rnorm( n= 10, mean = 22, sd = 2 )
b <- rnorm( n= 100, mean = 20, sd = 5 )
SIRboot (n = 1000, CS = c, BW = b, IR = 200, ED = 10, EF = 250)</pre>
```

VI

Chemical intake by ingestion of vegetables

Description

Estimates the chemical Intake rate by ingestion of contaminated fruits and vegetables [mg/Kg*day]

Usage

VI(CF = 1, IR = 210, FI = 1, EF = 350, ED = 24, BW = 80, AT = 365 * 70)

Arguments

CF	Chemical concentration in food [mg/Kg]
IR	Vegetables Ingestion Rate [g / Kg * Day]
FI	Fraction ingested from contaminated source [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body weight (kg)
AT	Averaging time [day] (For No carcinogenic effects $AT = 365 * ED$)

Value

Chemical intake rate by vegetable ingestion I [mg/Kg*day] - Object class "numeric"

Author(s)

F. Barrio-Parra

References

US Environmental Protection Agency, 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-(September), pp 1466.

VIboot

Examples

Assess the chemical intake by an adult that eats lettuce with a concentration of 2 mg/ Kg # in a maximum reasonable exposure scenario for non- carcinogenic effects

VI (CF = 2, AT = 365×24)

VIboot

Chemical intake by ingestion of vegetables by bootstrap

Description

Estimates the chemical Intake rate by ingestion of contaminated fruits and vegetables [mg/Kg*day]

Usage

VIboot(n, CF, IR, FI, EF, ED, BW, AT)

Arguments

n	Output vector length
CF	Chemical concentrtion in food [mg/Kg]
IR	Vegetables Ingestion Rate [g / Kg * Day]
FI	Fraction ingested from contaminated source [-]
EF	Exposure frequency [day/yr]
ED	Exposure duration [yr]
BW	Body Weight [Kg]
AT	Averaging time [day] (For No carcinogenic effects $AT = 365 * ED$)

Value

A vector of Chemical intake rate by vegetable ingestion I [mg/Kg*day] - Object class "numeric"

Examples

Assess the chemical intake by an adult that eats lettuce with a concentration of 2 mg/ Kg of a # chemical with non- carcinogenic effects in a maximum reasonable exposure scenario # Figure out 10 data of Chemical concentration following a normal distribution (mean = 2, sd= 2) # and 100 Body weight data that follow a normal distribution (mean = 70, sd = 15) c <- rnorm(n= 10, mean = 2, sd = 2)</pre>

b <- rnorm(n= 100, mean = 70, sd = 5)

VIboot (n = 1000, CF = c, BW = b, AT = 365*24)

Index

* graphs plot_fit_dist, 17 * mehtods AD, 4 * methods AIR. 6 AIRboot, 7 condition, 8 DWIR, 8 DWIRboot, 9 extr_par, 10 Fit_dist_parameter, 11 fit_dist_test, 12 HI, 13 HIdermal, 14 HIinhal, 15 INH, 16 $random_number_generator, 18$ **RISK**, 19 RISKdermal, 19 RISKInhal, 20 sampler, 21sig, 22 SIR, 22 SIRboot, 23 VI, 24 VIboot, 25 * package EnviroPRA2-package, 2 AD, 4 ADboot, 5 AIR, 6 AIRboot, 7 condition, 8DWIR, 8 DWIRboot, 9

EnviroPRA2 (EnviroPRA2-package), 2

extr_par, 10 Fit_dist_parameter, 11 fit_dist_test, 12 HI, 13 HIdermal, 14 HIinhal, 15 INH, 16 plot_fit_dist, 17 random_number_generator, 18 RISK, 19 RISKdermal, 19 RISKInhal, 20 sampler, 21 sig, 22 SIR, 22 SIRboot, 23 VI, 24 VIboot, 25

EnviroPRA2-package, 2