Type: | Package |
Title: | Fatty Acid Metabolic Analysis |
Version: | 0.1.6 |
Description: | Fatty acid metabolic analysis aimed to the estimation of FA import (I), de novo synthesis (S), fractional contribution of the 13C-tracers (D0, D1, D2), elongation (E) and desaturation (Des) based on mass isotopologue data. |
Encoding: | UTF-8 |
Depends: | R (≥ 4.0), LipidMS (≥ 3.0.4), rmarkdown, knitr |
Imports: | accucor, scales, gtools, minpack.lm, tidyr, plyr, gplots, grDevices |
RoxygenNote: | 7.3.1 |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
LazyData: | TRUE |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2024-02-19 12:14:33 UTC; 73581298C |
Author: | Maribel Alcoriza-Balaguer [aut, cre], Juan Carlos Garcia-Cañaveras [ctb], Agustin Lahoz [ths] |
Maintainer: | Maribel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es> |
Repository: | CRAN |
Date/Publication: | 2024-02-20 08:40:02 UTC |
Add missing FA annotations
Description
Add missing FA annotations
Usage
addFA(msbatch, dmz = 5, faid, adducts = "M-H", mz, from, to)
Arguments
msbatch |
annotated msbatch. |
dmz |
mz tolerance in ppm. |
faid |
character vector specifying FA names (i.e. "FA(16:1)"). |
adducts |
character vector specifying adducts. |
mz |
numeric vector specifying FA mz. |
from |
numeric vector specifying the peak start. |
to |
numeric vector specifying the peak end. |
Value
annotated msbatch.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
FA annotation
Description
FA annotation
Usage
annotateFA(msbatch, dmz = 5, rt, adducts = c("M-H"), db)
Arguments
msbatch |
msbatch obtained from LipidMS package. |
dmz |
mz tolerance in ppm. |
rt |
Optional. Numeric vector of length two specifying the rt range to search for FA. |
adducts |
character vector specifying adducts. |
db |
FA database. Data frame with three columns: formula, total (number of carbons and double bounds, i.e. "18:1") and Mass. |
Value
annotated msbatch.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Examples
## Not run:
msbatch <- annotateFA(msbatch, dmz = 5)
## End(Not run)
substract blank samples.
Description
substract blank samples.
Usage
blankSubstraction(fadata, blankgroup = "blank", verbose = TRUE)
Arguments
fadata |
fadata. |
blankgroup |
name used to define blank samples group. |
verbose |
print information messages. |
Value
blank substracted fadata.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Modify rt peak limits of annotated FAs
Description
Modify rt peak limits of annotated FAs
Usage
changeFArt(msbatch, id, from, to)
Arguments
msbatch |
annotated msbatch. |
id |
integer vector specifying FA ids to be modified. |
from |
numeric vector specifying the peak start. |
to |
numeric vector specifying the peak end. |
Value
annotated msbatch.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
check S and E steps based on isotopologue distribution.
Description
check S and E steps based on isotopologue distribution.
Usage
checkparameters(resp, M, n, SE, imported, D2)
Arguments
resp |
isotopologue distribution |
M |
total number of carbons of the fatty acid. |
n |
maximum number of elongation steps. |
SE |
list with S and E parameters. NA indicates they must be estimated while 0 indicates it does not occur. |
imported |
logical. TRUE if S16 is predefined as 0 (n3 or n6 series). |
D2 |
numeric between 0 and 1. Only if D2 >= 0.4 parameters are checked based on distribution. |
Value
SE list corrected.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
acetate combinations for M+0, M+1 and M+2.
Description
acetate combinations for M+0, M+1 and M+2.
Usage
combAcetate(M)
Arguments
M |
total number of carbons for the FA. |
Value
acetate combination for M carbon atoms.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
correct data for natural abundance of 13C using accucor algorithm.
Description
correct data for natural abundance of 13C using accucor algorithm.
Usage
correctNatAb13C(fadata, resolution = 140000, purity = 0.99)
Arguments
fadata |
fadata. |
resolution |
resolution of the mass spectrometer. |
purity |
purity of the tracer employed. |
Value
corrected fadata.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
References
Su X, Lu W, Rabinowitz J (2017). “Metabolite Spectral Accuracy on Orbitraps.” Analytical Chemistry, 89(11), 5940-5948, PMID: 28471646, R package version 0.2.4 (2021), <https://doi.org/10.1021/acs.analchem.7b00396>.
Modify FA annotations
Description
after FA annotation using annotateFA, the resulting data frame can be modified to remove rows with unwanted annotation, iniRT and endRT can be changed to redefine peak limits and extra rows may be written to add new annotations. FAid should also be modified to contain unique names such as "FA(16:1)n7" and "FA(16:1)n10" instead of generic "FA(16:1)". For unknown fatty acids use FA(16:1)nx (nx, ny and nz are availables for all FA).
Internal standards can also be added to normalize data later. Leave ID and Adducts columns empty, write "IS" at the FAid column and add mz, RT, iniRT and endRT information.
Usage
curateFAannotations(msbatch, faid, dmz = 10)
Arguments
msbatch |
annotated msbatch. |
faid |
data frame with 7 columns (ID, FAid, Adducts, mz, RT, iniRT and endRT) containing curated FAs. |
dmz |
mz tolerance in ppm. |
Details
Modify FA annotations
Value
annotated msbatch.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Examples
## Not run:
msbatch <- annotateFA(msbatch, dmz = 5)
plots <- plotFA(msbatch, dmz = 10)
pdf("FAs.pdf")
for (p in 1:length(plots)){
print(plots[[p]])
}
dev.off()
write.csv(msbatch$fas, file="faid.csv", row.names=FALSE)
faid <- read.csv("faid_curated.csv", sep=",", dec=".")
msbatch <- curateFAannotations(msbatch, faid)
## End(Not run)
Data correction for natural abundance of 13C and data normalization using internal standards followed by blank substraction.
Description
Data correction for natural abundance of 13C and data normalization using internal standards followed by blank substraction.
Usage
dataCorrection(
fadata,
correct13C = TRUE,
blankgroup = "blank",
externalnormalization = c(),
resolution = 140000,
purity13C = 0.99,
verbose = TRUE
)
Arguments
fadata |
fadata list. |
correct13C |
logical. If TRUE, data is corrected for natural abundance of 13C. Set to FALSE if data has been already been corrected. |
blankgroup |
name used to define blank samples group. |
externalnormalization |
column name at the metadata data frame of any additional measure that must be used to normalize data (i.e. protein). |
resolution |
resolution of the mass spectrometer. |
purity13C |
purity of the tracer employed. |
verbose |
print information messages. |
Value
corrected fadata.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
References
Su X, Lu W, Rabinowitz J (2017). Metabolite Spectral Accuracy on Orbitraps. Analytical Chemistry, 89(11), 5940-5948, PMID: 28471646, R package version 0.2.4 (2021), <https://doi.org/10.1021/acs.analchem.7b00396>.
Examples
ssdata <- dataCorrection(ssexamplefadata, blankgroup="Blank")
data list for elongation analysis.
Description
data list for elongation analysis.
Usage
dataElong(S16, D1, D2, P, E1, E2, E3, E4, E5, M, vcomb16, mcombe)
Arguments
S16 |
fraction of newly synthesized C16 FA. If different to NULL it is included in the data list. |
D1 |
positive numeric between 0 and 1 specifying the contribution of acetate M+1. |
D2 |
positive numeric between 0 and 1 specifying the contribution of acetate M+2. |
P |
overdispersion parameter. |
E1 |
fraction of elongated C18 FA from C16. If different to NULL it is included in the data list. |
E2 |
fraction of elongated C20 FA from C18. If different to NULL it is included in the data list. |
E3 |
fraction of elongated C22 FA from C20. If different to NULL it is included in the data list. |
E4 |
fraction of elongated C24 FA from C22. If different to NULL it is included in the data list. |
E5 |
fraction of elongated C26 FA from C124. If different to NULL it is included in the data list. |
M |
total number of carbons for the FA. |
vcomb16 |
list of acetate combinations for C16 synthesis. |
mcombe |
list of acetate combinations for each elongation step. |
Value
data list for elongation analysis.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
data list for synthesis analysis.
Description
data list for synthesis analysis.
Usage
dataSynth(D1, D2, P, M, vcomb)
Arguments
D1 |
positive numeric between 0 and 1 specifying the contribution of acetate M+1. If different to NULL it is included in the data list. |
D2 |
positive numeric between 0 and 1 specifying the contribution of acetate M+2. If different to NULL it is included in the data list. |
P |
overdispersion parameter. If different to NULL it is included in the data list. |
M |
total number of carbons for the FA. |
vcomb |
list of acetate combinations for C16 synthesis. |
Value
Data list for synthesis analysis.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Desaturation analysis of fatty acids.
Description
Desaturation analysis of fatty acids.
Usage
desaturationAnalysis(
fadata,
desaturationsdb = FAMetA::desaturationsdb,
SEThr = 0.05
)
Arguments
fadata |
fadata containing synthesis and elongation results. |
desaturationsdb |
desaturation reactions considered. It can be modified to change them or to add new reactions. |
SEThr |
minimum S or E value allowed to perform estimate desaturations. |
Details
Once synthesis and elongation parameters have been estimated, these results can be used to calculate the FA fraction that comes from desaturation in unsaturated FA. For a given unsaturated FA (e.g. FA(18:1n9) we can conceptually consider a one-step elongation-desaturation reaction (in this example directly from FA(16:0) to FA(18:1n9) (E1') or a two-step elongation followed by desaturation process (in this example FA(16:0) is elongated to FA(18:0) (E1) and then desaturated to FA(18:1n9) (Des). Therefore, desaturation can be estimated based on the fraction of E1', which is E1 from FA(18:1)n9, and E1, which is E1 from FA(18:0). This same model can be used for all known desaturation steps (see FAMetA::desaturationsdb) as long as precursor and product FA isomers have been correctly and uniquely identified and stationary state has been reached.
Value
fadata list. Desaturation analysis results will be saved at the desaturation element of the fa list.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Examples
ssdata <- dataCorrection(ssexamplefadata, blankgroup="Blank")
ssdata <- synthesisAnalysis(ssdata, R2Thr = 0.95, maxiter = 1e3,
maxconvergence = 100, startpoints = 5)
ssdata <- elongationAnalysis(ssdata, R2Thr = 0.95, maxiter = 1e4,
maxconvergence=100, startpoints = 5, D2Thr = 0.1)
ssdata <- desaturationAnalysis(ssdata, SEThr = 0.05)
## Not run:
fadata <- dataCorrection(examplefadata, blankgroup = "Blank")
fadata <- synthesisAnalysis(fadata, R2Thr = 0.95, maxiter = 1e3,
maxconvergence = 100, startpoints = 5)
fadata <- elongationAnalysis(fadata, R2Thr = 0.95, maxiter = 1e4,
maxconvergence=100, startpoints = 5, D2Thr = 0.1)
fadata <- desaturationAnalysis(fadata, SEThr = 0.05)
## End(Not run)
Desaturation reactions database.
Description
Desaturation reactions database.
Usage
data("desaturationsdb")
Format
A data frame with 13 observations on the following 3 variables.
precursor
character vector.
product
character vector.
parameter
parameter required to estimate desaturation.
Examples
data(desaturationsdb)
Elongation analysis of fatty acids longer than 16 carbons.
Description
Elongation analysis of fatty acids longer than 16 carbons.
Usage
elongationAnalysis(
fadata,
R2Thr = 0.98,
maxiter = 10000,
maxconvergence = 100,
startpoints = 5,
D2Thr = 0.1,
parameters = FAMetA::parameters,
verbose = TRUE
)
Arguments
fadata |
fadata containing synthesis results. |
R2Thr |
positive numeric between 0 and 1 specifying the minimum R2 allowed for fits. |
maxiter |
parameter passed to nls.control. Positive integer specifying the maximum number of iterations allowed. |
maxconvergence |
positive integer specifying the maximum number of successes before choosing the winning model. |
startpoints |
positive integer specifying the number of starting points for each parameter to be estimated. |
D2Thr |
minimum D2 value allowed to perform the elongation analysis. |
parameters |
parameters to be estimated for each fatty acid. It can be modified to change them or to add new fatty acids (adding new rows). |
verbose |
print information messages. |
Details
Main route of de novo synthesis plus elongation starts at 16 carbons and then adds blocks of 2 carbons. Therefore, isotopologue distributions for FA longer than 16 carbons will be modeled taking into account de novo synthesis until FA(16:0), followed by single and independent elongation steps (E1, E2 …, En). Parameters D0, D1 and D2 are imported from FA(16:0) or FA(14:0) and thus, the only relevant parameters to be estimated in the elongation analysis are Ei and I. For n6 and n3 series, elongation is expected from FA(18:2)n6 and FA(18:3)n3 so that synthesis (S16:0) and first elongation step (E1) are set to 0.
Value
fadata list. Elongation analysis results will be saved at the elongation element of the fa list.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Examples
ssdata <- dataCorrection(ssexamplefadata, blankgroup="Blank")
ssdata <- synthesisAnalysis(ssdata, R2Thr = 0.95, maxiter = 1e3,
maxconvergence = 100, startpoints = 5)
ssdata <- elongationAnalysis(ssdata, R2Thr = 0.95, maxiter = 1e4,
maxconvergence=100, startpoints = 5, D2Thr = 0.1)
## Not run:
fadata <- dataCorrection(examplefadata, blankgroup = "Blank")
fadata <- synthesisAnalysis(fadata, R2Thr = 0.95, maxiter = 1e3,
maxconvergence = 100, startpoints = 5)
fadata <- elongationAnalysis(fadata, R2Thr = 0.95, maxiter = 1e4,
maxconvergence=100, startpoints = 5, D2Thr = 0.1)
## End(Not run)
calculate FA isotope distribution for elongated FAs using the quasi multinomial distribution.
Description
calculate FA isotope distribution for elongated FAs using the quasi multinomial distribution.
Usage
elongationqmult(S16, D1, D2, P, E1, E2, E3, E4, E5, M, vcomb16, mcombe)
Arguments
S16 |
fraction of newly synthesized palmitate. |
D1 |
tracer contribution to M+1 acetate pool. |
D2 |
tracer contribution to M+2 acetate pool. |
P |
overdispersion parameter. If different to 0, quasi-multinomial distribution is obtained, while if set to 0, it is simplified to a multinomial distribution. |
E1 |
fraction of elongated C18 FA from C16. |
E2 |
fraction of elongated C20 FA from C18. |
E3 |
fraction of elongated C22 FA from C20. |
E4 |
fraction of elongated C24 FA from C22. |
E5 |
fraction of elongated C26 FA from C24. |
M |
total number of carbons for the FA. |
vcomb16 |
list of acetate combinations for C16 synthesis obtained with combAcetate(16) function. |
mcombe |
list of acetate combinations for each elongation step obtained with combAcetate(2) function. |
Value
FA isotope distribution.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Fit FA isotope distribution with non-linear regression using multiple starting points to find the best fit.
Description
Fit FA isotope distribution with non-linear regression using multiple starting points to find the best fit.
Usage
estimatePars(
formula,
gridStart,
datanls,
maxiter,
maxconvergence,
limitPhi = 0.1
)
Arguments
formula |
formula. |
gridStart |
starting points grid. |
datanls |
data list. |
maxiter |
parameter passed to nls.control. Positive integer specifying the maximum number of iterations allowed. |
maxconvergence |
positive integer specifying the maximum number of successes before choosing the winning model. |
limitPhi |
upper bound for overdispersion parameter. |
Value
model.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
References
Daniel Padfield and Granville Matheson (2020). nls.multstart: Robust Non-Linear Regression using AIC Scores. R package version 1.2.0. <https://CRAN.R-project.org/package=nls.multstart>
estimate synthesis parameters.
Description
estimate synthesis parameters.
Usage
estimateSynthesis(
fa,
M,
R2Thr = 0.9,
maxiter = 1000,
maxconvergence = 100,
D1 = NA,
D2 = NA,
P = NA,
startpoints = 5
)
Arguments
fa |
data frame with isotope intensities for a FA. First two columns correspond to Compound and Label information. |
M |
total number of carbons for the FA. |
R2Thr |
positive numeric between 0 and 1 specifying the minimum R2 allowed for fits. |
maxiter |
parameter passed to nls.control. Positive integer specifying the maximum number of iterations allowed. |
maxconvergence |
positive integer specifying the maximum number of successes before choosing the winning model. |
D1 |
positive numeric vector with values between 0 and 1 specifying the contribution of acetate M+1. If NA it is estimated. |
D2 |
positive numeric vector with values between 0 and 1 specifying the contribution of acetate M+2. If NA it is estimated. |
P |
overdispersion parameter. If NA it is estimated (quasi-multinomial distribution). If set to 0, no overdispersion is assumed (multinomial distribution). |
startpoints |
positive integer specifying the number of starting points for each parameter to be estimated. |
Value
De novo-synthesis and elongation analysis results.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Example fadata list.
Description
Example fadata list.
Usage
data("examplefadata")
Format
A list with 4 elements.
metadata
data frame with metadata information for samples.
fattyacids
data frame with compound name and label for each isotopologue (intensities df).
IS
data frame with IS intensities for each sample.
intensities
data frame with isotopologue intensities for each sample.
Examples
data(examplefadata)
External normalization using additional measures (i.e. protein levels).
Description
External normalization using additional measures (i.e. protein levels).
Usage
externalNormalization(fadata, externalnormalization, verbose = TRUE)
Arguments
fadata |
fadata list. |
externalnormalization |
column names of metadata data frame used to define external measures. |
verbose |
print information messages. |
Value
normalised fadata by external measures.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Fatty Acids database.
Description
Fatty Acids database.
Usage
data("fattyacidsdb")
Format
A data frame with 35 observations on the following 3 variables.
formula
a character vector.
total
a character vector. Number of carbons and double bounds.
Mass
a numeric vector.
Examples
data(fattyacidsdb)
Fit FA isotope distribution with non-linear regression and calculate the sum of squared estimate of errors.
Description
Fit FA isotope distribution with non-linear regression and calculate the sum of squared estimate of errors.
Usage
fitSSE(formula, startpars, datanls, control, limitPhi = 0.1)
Arguments
formula |
formula. |
startpars |
starting points for parameters to estimate. |
datanls |
data list. |
control |
nls control. |
Value
sum of squared estimate errors.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
References
Daniel Padfield and Granville Matheson (2020). nls.multstart: Robust Non-Linear Regression using AIC Scores. R package version 1.2.0. <https://CRAN.R-project.org/package=nls.multstart>
Get formula and neutral mass for annotated compounds
Description
Get formula and neutral mass for annotated compounds.
Usage
getFormula(df, dbs)
Arguments
df |
data frame with the input results |
dbs |
list of data bases required for annotation. By default, dbs contains the required data frames based on the default fragmentation rules. If these rules are modified, dbs may need to be supplied. See createLipidDB and assignDB. |
Value
Data frame
Author(s)
M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>
References
M Isabel Alcoriza-Balaguer (2021). LipidMS: Lipid Annotation for LC-MS/MS DDA or DIA Data. R package version 3.0.1. <https://CRAN.R-project.org/package=LipidMS>
Obtain the final results table from synthesis, elongation and desaturation analysis.
Description
Obtain the final results table from synthesis, elongation and desaturation analysis.
Usage
getResultsTable(fadata, parameters = FAMetA::parameters)
Arguments
fadata |
fadata list. |
parameters |
parameters to be estimated for each fatty acid. It can be modified to change them or to add new fatty acids. |
Value
results data frame.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Obtain a summary results table.
Description
Obtain a summary results table containing means and standard deviation for each relevant parameter for each fatty acids by sample groups.
Usage
getSummaryTable(fadata, resultstable, parameters = FAMetA::parameters)
Arguments
fadata |
fadata list. |
resultstable |
results data frame obtained with getResultsTable. |
parameters |
parameters to be estimated for each fatty acid. It can be modified to change them or to add new fatty acids. |
Value
summary data frame.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
generate starting points grid for elongation analysis.
Description
generate starting points grid for elongation analysis.
Usage
gridElong(S16 = NA, E1 = NA, E2 = NA, E3 = NA, E4 = NA, E5 = NA, startpoints)
Arguments
S16 |
fraction of newly synthesized C16 FA. If NA it is included in the starting points grid. |
E1 |
fraction of elongated C18 FA from C16. If NA it is included in the starting points grid. |
E2 |
fraction of elongated C20 FA from C18. If NA it is included in the starting points grid. |
E3 |
fraction of elongated C22 FA from C20. If NA it is included in the starting points grid. |
E4 |
fraction of elongated C24 FA from C22. If NA it is included in the starting points grid. |
E5 |
fraction of elongated C26 FA from C124. If NA it is included in the starting points grid. |
startpoints |
positive integer specifying the number of starting points for each parameter to be estimated. |
Value
Starting points grid for elongation analysis.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
generate starting points grid for synthesis analysis.
Description
generate starting points grid for synthesis analysis.
Usage
gridSynth(D1 = NA, D2 = NA, P = NA, S = NA, M, startpoints)
Arguments
D1 |
positive numeric between 0 and 1 specifying the contribution of acetate M+1. If NA it is included in the starting points grid. |
D2 |
positive numeric between 0 and 1 specifying the contribution of acetate M+2. If NA it is included in the starting points grid. |
P |
overdispersion parameter. If NA, it is included in the starting points grid. |
S |
fraction of newly synthesized C16 FA. If NA it is included in the starting points grid. |
M |
total number of carbons for the FA. |
startpoints |
positive integer specifying the number of starting points for each parameter to be estimated. |
Value
Starting points grid for synthesis analysis.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Plot results on a heatmap.
Description
Plot results on a heatmap.
Usage
heatmapResults(toPlot, cols, scale = "none", breaks, nacolor = "grey")
Arguments
toPlot |
data frame with data to be plotted. |
cols |
colors for the side bar (by group). |
scale |
"none", "row" or "column". |
breaks |
numeric vector with breaks for colouring. Optional. |
nacolor |
color for NA values. Grey by default. |
Value
heatmap.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Extract FA data from an annotated msbatch.
Description
Extract FA data from an annotated msbatch.
Usage
msbatch2fadata(msbatch, faid)
Arguments
msbatch |
annotated msbatch. |
faid |
data frame with two columns (ID and Compound) specifying FA ids and FA names. FA names must be unique and omega series must be indicated (i.e. FA(20:4)n3, FA(24:1)n9, FA(16:0)). Unknown FA series can be named as nx, ny, nz to differentiate between isomers. |
Value
fadata.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
mz match withing a vector of mz values
Description
This function searches marches between a given mz and a vector of mz values with certain mass tolerance and returns the index of the matched values. It is used by identification functions to find candidates of each class of lipid based on full MS information.
Usage
mzMatch(mz, mzvector, ppm)
Arguments
mz |
mz value to be matched |
mzvector |
vector of mz values |
ppm |
mass error tolerance |
Value
Numeric vector indicating the index of matched mz values and ppms for each one of those matches (match1, ppm1, match2, ppm2, etc.)
Author(s)
M Isabel Alcoriza-Balaguer <maialba@alumni.uv.es>
References
M Isabel Alcoriza-Balaguer (2021). LipidMS: Lipid Annotation for LC-MS/MS DDA or DIA Data. R package version 3.0.1. <https://CRAN.R-project.org/package=LipidMS>
Data normalization using internal stardards.
Description
Data normalization using internal stardards.
Usage
normalizeIS(fadata, verbose = TRUE)
Arguments
fadata |
fadata list. |
verbose |
print information messages. |
Value
normalised fadata by IS.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Parameters for FA metabolic analysis.
Description
Parameters for FA metabolic analysis.
Usage
data("parameters")
Format
A data frame with 167 observations on the following 8 variables.
FattyAcid
a character vector.
M
integer vector. Number of carbons.
S16
De novo synthesis. If equal to 1 it is estimated.
E1
a numeric vector. If equal to 1 it is estimated.
E2
a numeric vector. If equal to 1 it is estimated.
E3
a numeric vector. If equal to 1 it is estimated.
E4
a numeric vector. If equal to 1 it is estimated.
E5
a numeric vector. If equal to 1 it is estimated.
Examples
data(paramters)
Plot observed and predicted isotope distributions.
Description
Plot observed and predicted isotope distributions.
Usage
plotDistributions(results, groups, title = "")
Arguments
results |
results. |
groups |
character vector specifying sample groups. |
title |
title. |
Value
plot.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Plot FA EICs
Description
Plot FA EICs
Usage
plotFA(msbatch, dmz, verbose = TRUE)
Arguments
msbatch |
annotated msbatch. |
dmz |
mz tolerance in ppm for EIC extraction. |
verbose |
print information messages. |
Value
annotated msbatch with saved plots.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Examples
## Not run:
msbatch <- annotateFA(msbatch, dmz = 5)
plots <- plotFA(msbatch, dmz = 10)
pdf("FAs.pdf")
for (p in 1:length(plots)){
print(plots[[p]])
}
dev.off()
## End(Not run)
Plot observed and predicted isotope distributions from the results obtained.
Description
Plot observed and predicted isotope distributions from the results obtained.
Usage
plotResults(results, groups, fas)
Arguments
results |
results. |
groups |
character vector specifying sample groups. |
fas |
character vector specifying the FAs to be plotted. |
Value
plot.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
read FA data from a csv file.
Description
First rows must contain metadata information such as sample groups (row named sampletype) and any other extra information like protein levels for external normalization. Then, the following row must contain a Compound and Label columns followed by all sample names. FA names must be unique and omega series must be indicated (i.e. FA(20:4)n3, FA(24:1)n9, FA(16:0)). Unknown FA series can be named as nx, ny, nz to differentiate between isomers. Labels must be specified with integer numbers for 0 to maximum number of carbons.
Usage
readfadatafile(file, sep = ",", dec = ".")
Arguments
file |
csv file name. |
sep |
column delimiter. |
dec |
character used for decimal points. |
Details
read FA data from a csv file.
Value
fadata.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Examples
## Not run:
fadata <- readfadatafile("externafadata.csv", sep=",", dec=".")
## End(Not run)
Remove incorrect FA annotations
Description
Remove incorrect FA annotations
Usage
removeFA(msbatch, ids)
Arguments
msbatch |
annotated msbatch. |
ids |
integer vector specifying FA ids to be removed. |
Value
annotated msbatch.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
run the elongation analysis.
Description
run the elongation analysis.
Usage
runElongationAnalysis(
fa,
M,
D1,
D2,
P,
S16,
E1,
E2,
E3,
E4,
E5,
R2Thr = 0.9,
maxiter = 10000,
maxconvergence = 100,
startpoints = 5,
D2Thr = D2Thr
)
Arguments
fa |
data frame with isotope intensities for a FA. First two columns correspond to Compound and Label information. |
M |
total number of carbons for the FA. |
D1 |
positive numeric between 0 and 1 specifying the contribution of acetate M+1. Estimated with synthesisAnalysis. |
D2 |
positive numeric between 0 and 1 specifying the contribution of acetate M+2. Estimated with synthesisAnalysis. |
P |
overdispersion parameter. Estimated with synthesisAnalysis. |
S16 |
fraction of newly synthesized C16 FA. If NA it is estimated. It is set to 0 for n3 and n6 FA series. |
E1 |
fraction of elongated C18 FA from C16. If NA it is estimated. It is set to 0 for n3 and n6 FA series. |
E2 |
fraction of elongated C20 FA from C18. If NA it is estimated. |
E3 |
fraction of elongated C22 FA from C20. If NA it is estimated. |
E4 |
fraction of elongated C24 FA from C22. If NA it is estimated. |
E5 |
fraction of elongated C26 FA from C24. If NA it is estimated. |
R2Thr |
positive numeric between 0 and 1 specifying the minimum R2 allowed for fits. |
maxiter |
parameter passed to nls.control. Positive integer specifying the maximum number of iterations allowed. |
maxconvergence |
positive integer specifying the maximum number of successes before choosing the winning model. |
startpoints |
positive integer specifying the number of starting points for each parameter to be estimated. |
D2Thr |
minimum D2 value allowed to perform the elongation analysis. |
Value
Elongation and importation analysis results.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
run synthesis analysis.
Description
run synthesis analysis.
Usage
runSynthesisAnalysis(
fadata,
toDo,
R2Thr = R2Thr,
maxiter = maxiter,
maxconvergence = maxconvergence,
D1 = D1,
D2 = D2,
P = P,
startpoints = startpoints,
parameters = FAMetA::parameters,
verbose = TRUE
)
Arguments
fadata |
fadata containing synthesis results. |
toDo |
fatty acids to analyse. |
R2Thr |
positive numeric between 0 and 1 specifying the minimum R2 allowed for fits. |
maxiter |
parameter passed to nls.control. Positive integer specifying the maximum number of iterations allowed. |
maxconvergence |
positive integer specifying the maximum number of successes before choosing the winning model. |
D1 |
positive numeric vector with values between 0 and 1 specifying the contribution of acetate M+1. If NA it is estimated. |
D2 |
positive numeric vector with values between 0 and 1 specifying the contribution of acetate M+2. If NA it is estimated. |
P |
overdispersion parameter. If NA it is estimated (quasi-multinomial distribution). If set to 0, no overdispersion is assumed (multinomial distribution). |
startpoints |
positive integer specifying the number of starting points for each parameter to be estimated. |
parameters |
parameters to be estimated for each fatty acid. It can be modified to change them or to add new fatty acids (adding new rows). |
verbose |
print information messages. |
Value
De novo-synthesis analysis results.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Search FA isotopes
Description
Search FA isotopes
Usage
searchFAisotopes(msbatch, dmz = 5, coelCutoff = 0.7)
Arguments
msbatch |
annotated msbatch. |
dmz |
mz tolerance in ppm. |
coelCutoff |
coelution score threshold between parent and isotope peaks. |
Value
fadata list.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Examples
## Not run:
fadata <- searchFAisotopes(msbatch, dmz = 10, coelCutoff = 0.4)
## End(Not run)
Search internal stardards.
Description
Search internal stardards.
Usage
searchIS(msbatch, mz, rt, minRT, maxRT, dmz = 10)
Arguments
msbatch |
annotated msbatch. |
mz |
numeric vector specifying IS mz. |
rt |
numeric vector specifying IS rt. |
minRT |
numeric vector specifying lower limits for IS rt. |
maxRT |
numeric vector specifying upper limits for IS rt. |
dmz |
mz tolerance in ppm. |
Value
annotated msbatch.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Toy example fadata list.
Description
Toy example fadata list.
Usage
data("ssexamplefadata")
Format
A list with 4 elements.
metadata
data frame with metadata information for samples.
fattyacids
data frame with compound name and label for each isotopologue (intensities df).
IS
data frame with IS intensities for each sample.
intensities
data frame with isotopologue intensities for each sample.
Examples
data(ssexamplefadata)
Obtain result tables and heatmaps that help interpreting your results.
Description
Obtain result tables and heatmaps that help interpreting your results.
Usage
summarizeResults(fadata, controlgroup = NA, parameters = FAMetA::parameters)
Arguments
fadata |
fadata containing synthesis, elongation and desaturation results. |
controlgroup |
name of the control group to compare the results. |
parameters |
parameters to be estimated for each fatty acid. It can be modified to change them or to add new fatty acids. |
Value
fadata list with a results element which contains: results data frame (results for the main parameters for each fatty acid and sample), summary data frame (mean and sd by sample groups for each parameter and fatty acids from the results table), different heatmaps representing pool size and results (values represented are also saved in data frames) and tables summarizing all parameters values for synthesis and elongation (S16, E1, E2, E3, E4 and E5).
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Examples
ssdata <- dataCorrection(ssexamplefadata, blankgroup="Blank")
ssdata <- synthesisAnalysis(ssdata, R2Thr = 0.95, maxiter = 1e3,
maxconvergence = 100, startpoints = 5)
ssdata <- elongationAnalysis(ssdata, R2Thr = 0.95, maxiter = 1e4,
maxconvergence=100, startpoints = 5, D2Thr = 0.1)
ssdata <- desaturationAnalysis(ssdata, SEThr = 0.05)
ssdata <- summarizeResults(ssdata)
## Not run:
fadata <- dataCorrection(examplefadata, blankgroup = "Blank")
fadata <- synthesisAnalysis(fadata, R2Thr = 0.95, maxiter = 1e3,
maxconvergence = 100, startpoints = 5)
fadata <- elongationAnalysis(fadata, R2Thr = 0.95, maxiter = 1e4,
maxconvergence=100, startpoints = 5, D2Thr = 0.1)
fadata <- desaturationAnalysis(fadata, SEThr = 0.05)
fadata <- summarizeResults(fadata, controlgroup = "Control13Cglc")
## End(Not run)
De novo synthesis analysis of fatty acids until 16 carbons.
Description
De novo synthesis analysis of fatty acids until 16 carbons.
Usage
synthesisAnalysis(
fadata,
R2Thr = 0.98,
maxiter = 1000,
maxconvergence = 100,
D1 = NA,
D2 = NA,
P = NA,
startpoints = 5,
parameters = FAMetA::parameters,
propagateD = TRUE,
verbose = TRUE
)
Arguments
fadata |
fadata obtained from the msbatch with searchFAisotopes function or read from csv file with readfadatafile function. |
R2Thr |
positive numeric between 0 and 1 specifying the minimum R2 allowed for fits. |
maxiter |
parameter passed to nls.control. Positive integer specifying the maximum number of iterations allowed. |
maxconvergence |
positive integer specifying the maximum number of successes before choosing the winning model. |
D1 |
positive numeric between 0 and 1 specifying the contribution of acetate M+1. If NA it is estimated. |
D2 |
positive numeric between 0 and 1 specifying the contribution of acetate M+2. If NA it is estimated. |
P |
overdispersion parameter. If NA it is estimated (quasi-multinomial distribution). If set to 0, no overdispersion is assumed (multinomial distribution). |
startpoints |
positive integer specifying the number of starting points for each parameter to be estimated. |
parameters |
parameters to be estimated for each fatty acid. It can be modified to change them or to add new fatty acids. |
propagateD |
logical. If TRUE, unsaturated fatty acids use estimated D0, D1,D2 and P values for saturated fatty acids (14:0 for FA shorter than 16C and 16:0 for FA with 16C.). |
verbose |
print information messages. |
Details
Synthesis analysis will model FA data for FA up to 16 carbons to estimate 13C-tracer contribution to the acetyl-CoA pool for FA synthesis (D) and the FA fraction that has been synthesized de novo. D0, D1 and D2 represent the contribution of M+0, M+1 and M+2 acetate, respectively, and P (phi) is the overdispersion parameter of the quasi-multinomial distribution. D0, D1, D2 can also be fixed if they are known. This is particularly useful in case inhibitors have been used as they could reduce S below the confidence interval and thus, S and D parameters could be misestimated.
Value
fadata list. Synthesis analysis results will be saved at the synthesis element of the fa list.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>
Examples
ssdata <- dataCorrection(ssexamplefadata, blankgroup="Blank")
ssdata <- synthesisAnalysis(ssdata, R2Thr = 0.95, maxiter = 1e3,
maxconvergence = 100, startpoints = 5)
## Not run:
fadata <- dataCorrection(examplefadata, blankgroup = "Blank")
fadata <- synthesisAnalysis(fadata, R2Thr = 0.95, maxiter = 1e3,
maxconvergence = 100, startpoints = 5)
# If inhibitors have been used, make sure D2 has not been underestimated. If so,
# D2 could be set as the one calculated for 13-Glc Control samples to improve
# the results:
# D2 <- fadata$synthesis$results$D2[fadata$synthesis$results$FA == "FA(16:0)"]
# fadata$synthesis$results$Group[fadata$synthesis$results$FA == "FA(16:0)"]
# D2[4:12] <- rep(mean(D2[1:3]))
# relaunch synthesis analysis fixing D2
# fadata <- synthesisAnalysis(fadata, R2Thr = 0.95, maxiter = 1e3,
# maxconvergence = 100, startpoints = 5, D2 = D2)
## End(Not run)
calculate FA isotope distribution for newly synthesized FAs using the quasi multinomial distribution.
Description
calculate FA isotope distribution for newly synthesized FAs using the quasi multinomial distribution.
Usage
synthesisqmult(D1, D2, P, S, M, vcomb)
Arguments
D1 |
tracer contribution to M+1 acetate pool. |
D2 |
tracer contribution to M+2 acetate pool. |
P |
overdispersion parameter. If different to 0, quasi-multinomial distribution is obtained, while if set to 0, it is simplified to a multinomial distribution. |
S |
fraction of newly synthesized FA. |
M |
total number of carbons for the FA. |
vcomb |
list of acetate combinations obtained with combAcetate function. |
Value
numeric vector with the FA isotope distribution.
Author(s)
M Isabel Alcoriza-Balaguer <maribel_alcoriza@iislafe.es>