Type: | Package |
Title: | Fisher-Shannon Method |
Version: | 1.1 |
Author: | Fabian Guignard [aut], Mohamed Laib [aut, cre] |
Maintainer: | Mohamed Laib <laib.med@gmail.com> |
Description: | Proposes non-parametric estimates of the Fisher information measure and the Shannon entropy power. More theoretical and implementation details can be found in Guignard et al. <doi:10.3389/feart.2020.00255>. A 'python' version of this work is available on 'github' and 'PyPi' ('FiShPy'). |
Imports: | fda.usc, KernSmooth |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.1.1 |
Note: | The authors are grateful to Mikhail Kanevski, Federico Amato and Luciano Telesca for many fruitful discussions about the use and the application of Fisher-Shannon method. |
NeedsCompilation: | no |
Packaged: | 2021-05-03 16:37:28 UTC; Mohamed |
Repository: | CRAN |
Date/Publication: | 2021-05-03 17:20:06 UTC |
FiSh: Fisher-Shannon Method
Description
Proposes non-parametric estimates of the Fisher information measure and the Shannon entropy power. More theoretical and implementation details can be found in Guignard et al. <doi:10.3389/feart.2020.00255>. A 'python' version of this work is available on 'github' and 'PyPi' ('FiShPy').
Details
If this R code is used for academic research, please cite the following paper where it was developed:
F. Guignard, M. Laib, F. Amato, M. Kanevski, Advanced analysis of temporal data using Fisher-Shannon information: theoretical development and application in geosciences, 2020, doi: 10.3389/feart.2020.00255Frontiers in Earth Science, 8:255.
Author(s)
Fabian Guignard fabian.guignard@protonmail.ch and
Mohamed Laib laib.med@gmail.com
Maintainer: Mohamed Laib laib.med@gmail.com
References
S. J. Sheather and M. C. Jones (1991). A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society, Series B, 53, 683 - 690.
M. P. Wand and M. C. Jones (1995). Kernel Smoothing. Chapman and Hall, London.
C. Vignat, J.F Bercher (2003). Analysis of signals in the Fisher–Shannon information plane, Physics Letters A, 312, 190, 27 – 33.
F. Guignard, M. Laib, F. Amato, M. Kanevski, Advanced analysis of temporal data using Fisher-Shannon information: theoretical development and application in geosciences, 2020, doi: 10.3389/feart.2020.00255Frontiers in Earth Science, 8:255.
Fisher-Shannon method
Description
Non-parametric estimates of the Shannon Entropy Power (SEP), the Fisher Information Measure (FIM) and the Fisher-Shannon Complexity (FSC), using kernel density estimators with Gaussian kernel.
Usage
SEP_FIM(x, h, log_trsf=FALSE, resol=1000, tol = .Machine$double.eps)
Arguments
x |
Univariate data. |
h |
Value of the bandwidth for the density estimate |
log_trsf |
Logical flag: if |
resol |
Number of equally-spaced points, over which function approximations are computed and integrated. |
tol |
A tolerance to avoid dividing by zero values. |
Value
A table with one row containing:
-
SEP
Shannon Entropy Power. -
FIM
Fisher Information Measure. -
FSC
Fisher-Shannon Complexity
References
F. Guignard, M. Laib, F. Amato, M. Kanevski, Advanced analysis of temporal data using Fisher-Shannon information: theoretical development and application in geosciences, 2020, doi: 10.3389/feart.2020.00255Frontiers in Earth Science, 8:255.
Examples
library(KernSmooth)
x <- rnorm(1000)
h <- dpik(x)
SEP_FIM(x, h)
Normal scale rule for kernel density estimation
Description
Bandwidth selector for non-parametric estimation. Estimates the optimal AMISE bandwidth using the Normal Scale Rule with Gaussian kernel.
Usage
nsrk(x, log_trsf=FALSE)
Arguments
x |
Univariate data. |
log_trsf |
Logical flag: if |
Value
The bandwidth value.
References
M. P. Wand and M. C. Jones, (1995). Kernel Smoothing. Chapman and Hall, London.
Examples
x <- rnorm(1000)
h <- nsrk(x)