GMMinit: Optimal Initial Value for Gaussian Mixture Model

Generating, evaluating, and selecting initialization strategies for Gaussian Mixture Models (GMMs), along with functions to run the Expectation-Maximization (EM) algorithm. Initialization methods are compared using log-likelihood, and the best-fitting model can be selected using BIC. Methods build on initialization strategies for finite mixture models described in Michael and Melnykov (2016) <doi:10.1007/s11634-016-0264-8> and Biernacki et al. (2003) <doi:10.1016/S0167-9473(02)00163-9>, and on the EM algorithm of Dempster et al. (1977) <doi:10.1111/j.2517-6161.1977.tb01600.x>. Background on model-based clustering includes Fraley and Raftery (2002) <doi:10.1198/016214502760047131> and McLachlan and Peel (2000, ISBN:9780471006268).

Version: 1.0.0
Imports: mvtnorm, mclust, mvnfast, stats
Published: 2026-01-24
DOI: 10.32614/CRAN.package.GMMinit (may not be active yet)
Author: Jing Li [aut, cre], Yana Melnykov [aut]
Maintainer: Jing Li <jli178 at crimson.ua.edu>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: GMMinit results

Documentation:

Reference manual: GMMinit.html , GMMinit.pdf

Downloads:

Package source: GMMinit_1.0.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): GMMinit_1.0.0.tgz, r-oldrel (arm64): GMMinit_1.0.0.tgz, r-release (x86_64): GMMinit_1.0.0.tgz, r-oldrel (x86_64): GMMinit_1.0.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=GMMinit to link to this page.