Title: | Package for Generalized F-Statistics |
Version: | 1.0.1 |
Description: | Implementation of several generalized F-statistics. The current version includes a generalized F-statistic based on the flexible isotonic/monotonic regression or order restricted hypothesis testing. Based on: Y. Lai (2011) <doi:10.1371/journal.pone.0019754>. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Encoding: | UTF-8 |
RoxygenNote: | 7.0.0 |
NeedsCompilation: | no |
Packaged: | 2022-05-09 10:57:46 UTC; mengqiuzhu |
Author: | Yinglei Lai [aut, cre] |
Maintainer: | Yinglei Lai <ylai@gwu.edu> |
Repository: | CRAN |
Date/Publication: | 2022-05-09 11:40:02 UTC |
Package for Generalized F-Statistics
Description
Implementation of several generalized F
-statistics. The current version includes a generalized F
-statistic based on the flexible isotonic/monotonic regression or order restricted hypothesis testing. Based on: Y. Lai (2011) <doi:10.1371/journal.pone.0019754>.
Details
Package: | GeneF |
Type: | Package |
Version: | 1.0.1 |
Date: | 2022-05-06 |
License: | GPL version 2 or newer |
Author(s)
Yinglei Lai
Maintainer: ylai@gwu.edu
A Flexible Order Restricted Hypothesis Testing
Description
These functions test the hypothesis regarding population means from ordered sample groups. Restrictions like a weakly/general/strongly isotonic/monotonic order as well as a lower bound for the location can be imposed on the population means. A partition of sample groups and the corresponding estimates of population means are also provided.
Usage
flexisoreg(y, x, lambda = 0, alpha.location = 1, alpha.adjacency = 0.5)
flexisoreg.stat(y, x, lambda = 0, alpha.location = 1, alpha.adjacency = 0.5)
flexmonoreg(y, x, lambda = 0, alpha.location = 1, alpha.adjacency = 0.5)
flexmonoreg.stat(y, x, lambda = 0, alpha.location = 1, alpha.adjacency = 0.5)
Arguments
y |
a vector of observed data |
x |
a vector of ordinal group labels correponding to |
lambda |
a lower location bound for partitioned groups other than the first one |
alpha.location |
|
alpha.adjacency |
|
Details
flexisoreg
is used for flexible nondecreasing order restricted hypothesis testing.
flexmonoreg
is used for flexible nondecreasing or nonincreasing order restricted hypothesis testing.
flexisoreg.stat
and flexmonoreg.stat
only return an F
-statistic, which is convenient for multiple comparison.
Value
groups |
A partition of sample groups |
estimates |
estimated population means |
statistic |
an |
Note
Since the p
-value of test has to be evaluated by permutation method, these functions will not return any p
-value. For the permutation p
-value of an individual test, see flexisoreg.pvalue
and flexmonoreg.pvalue
. For the pooled permutation p
-values of multiple tests, see flexisoreg.poolpvalues
and flexmonoreg.poolpvalues
.
Author(s)
Yinglei Lai ylai@gwu.edu
References
Yinglei Lai (2007) A flexible order restricted hypothesis testing and its application to gene expression data. Technical Report
Examples
#generate ordinal group lables x
x <- runif(100)*6
x <- round(x,0)/3
#generate true values z
z <- round(x^2,0)
#generate observed values y
y <- z + rnorm(100)
#print default results
print(rbind(x,z,y))
print(flexisoreg(y,x))
print(flexisoreg.stat(y,x))
print(flexisoreg(y,0-x))
print(flexisoreg.stat(y,0-x))
print(flexmonoreg(y,x))
print(flexmonoreg.stat(y,x))
#plots for illustration
par(mfrow=c(2,3), mai=c(0.6, 0.6, 0.3, 0.1))
plot(x,y, main="True Model",cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, z, type="p", pch=15, col="black", cex=2.5)
results <- flexisoreg(y, x, lambda=1, alpha.location=0.05, alpha.adjacency=1)
plot(x,y, main="Location Restriction",cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, results$estimate, type="p", pch=15, col="black", cex=2.5)
results <- flexisoreg(y, x, lambda=1, alpha.location=0.05, alpha.adjacency=0.05)
plot(x,y, main="Location and Strong Order Restrictions",
cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, results$estimate, type="p", pch=15, col="black", cex=2.5)
results <- flexisoreg(y, x, lambda=0, alpha.location=1, alpha.adjacency=0.95)
plot(x,y, main="Weak Order Restriction",cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, results$estimate, type="p", pch=15, col="black", cex=2.5)
results <- flexisoreg(y, x, lambda=0, alpha.location=1, alpha.adjacency=0.5)
plot(x,y, main="General Order Restriction",cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, results$estimate, type="p", pch=15, col="black", cex=2.5)
results <- flexisoreg(y, x, lambda=0, alpha.location=1, alpha.adjacency=0.05)
plot(x,y, main="Strong Order Restriction",cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, results$estimate, type="p", pch=15, col="black", cex=2.5)
Significance Assessment for the Flexible Order Restricted Hypothesis Testing
Description
These functions evaluate the p
-values from an individual or multiple flexible order restricted hypothesis testing.
Usage
flexisoreg.pvalue(y, x, lambda=0, alpha.location=1, alpha.adjacency=0.5, B=100)
flexisoreg.poolpvalues(m, x, lambda=0, alpha.location=1, alpha.adjacency=0.5, B=100)
flexmonoreg.pvalue(y, x, lambda=0, alpha.location=1, alpha.adjacency=0.5, B=100)
flexmonoreg.poolpvalues(m, x, lambda=0, alpha.location=1, alpha.adjacency=0.5, B=100)
Arguments
m |
a matrix of observed data, where samples are in columns and variables are in rows |
y |
a vector of observed data |
x |
a vector of ordinal group labels correponding to |
lambda |
a lower location bound for partitioned groups other than the first one |
alpha.location |
|
alpha.adjacency |
|
B |
the number of permutations for |
Details
flexisoreg.pvalue
and flexmonoreg.pvalue
provide the permutation p
-value for an individual flexible order restricted hypothesis testing.
flexisoreg.poolpvalues
and flexmonoreg.poolpvalues
provide the pooled permutation p
-values for multiple flexible order restricted hypothesis testing.
Value
flexisoreg.pvalue
and flexmonoreg.pvalue
return a permutation p
-value.
flexisoreg.poolpvalues
and flexmonoreg.poolpvalues
return a vector of pooled permutation p
-values.
Note
These functions are used in conjunction with flexisoreg
, flexisoreg.stat
, flexmonoreg
and flexmonoreg.stat
.
Author(s)
Yinglei Lai ylai@gwu.edu
References
Yinglei Lai (2007) A flexible order restricted hypothesis testing and its application to gene expression data. Technical Report
Examples
#generate ordinal group lables x
x <- runif(100)*6
x <- round(x,0)/3
#generate true values z
z <- round(x^2,0)
#generate 6 vectors in a matrix for observed values, some noises and some not
m <- array(double(6*100), dim=c(6,100))
for(k in 1:3)
m[k,] <- rnorm(100)
for(k in 4:6)
m[k,] <- z + rnorm(100)
#print default results
par(mfrow=c(2,3))
for(k in 1:6){
print(paste("The ", k, "-th vector", sep=""))
y <- m[k,]
plot(x,y,main=k)
print(flexisoreg.stat(y,x))
print(flexisoreg.pvalue(y,x,B=20))
print(flexisoreg.stat(y,0-x))
print(flexisoreg.pvalue(y,0-x,B=20))
print(flexmonoreg.stat(y,x))
print(flexmonoreg.pvalue(y,x,B=20))
}
flexisoreg.poolpvalues(m, x, B=20)
flexmonoreg.poolpvalues(m, x, B=20)
Internal GeneF Functions
Description
Internal functions to support generalized F
-statistics.
Usage
get.numbers(x)
t1p1(v, n)
t1p2(v, n1, n2)
Arguments
x |
a vector of ordered groups of numbers |
v |
a vector of real numbers |
n |
the sample size of one-sample data |
n1 |
the first sample size of two-sample data |
n2 |
the second sample size of two-sample data |
Value
get.numbers |
a vector of culmulative sample sizes from ordered groups |
t1p1 |
a |
t1p2 |
a |
Author(s)
Yinglei Lai ylai@gwu.edu