Type: | Package |
Title: | Summary Table and Means Plots |
Version: | 0.1.0 |
Maintainer: | Oswald Omuron <oswaldomuron@gmail.com> |
Description: | Optimized for handling complex datasets in environmental and ecological research, this package offers functionality that is not fully met by general-purpose packages. It provides two key functions, 'summarize_data()', which summarizes datasets, and 'plot_means()', which creates plots with error bars. The 'plot_means()' function incorporates error bars by default, allowing quick visualization of uncertainties, crucial in ecological studies. It also streamlines workflows for grouped datasets (e.g., by species or treatment), making it particularly user-friendly and reducing the complexity and time required for data summarization and visualization. |
License: | GPL-3 |
Encoding: | UTF-8 |
NeedsCompilation: | no |
Packaged: | 2024-10-09 06:37:02 UTC; Oswald |
Author: | Oswald Omuron [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2024-10-11 08:40:06 UTC |
Kifidi package by Oswald Omuron
Description
Kifidi v.0.1.0
Details
Package: Kifidi
Type: Package
Title: Kifidi v.0.1.0
Version: 0.1.0
Author: Oswald Omuron
Maintainer: Oswald Omuron <oswaldomuron@gmail.com>
Description: An overview of how to use the package, including the most important functions under See Also below.
License: GPL-3
Author(s)
Oswald Omuron
Maintainer: Oswald Omuron <oswaldomuron@gmail.com>
References
https://github.com/OswaldOmuron/Kifidi
See Also
Optional links to other man pages, e.g. summarize_data
,
plot_means
Plot Means
Description
This function plots the means of a summary data frame with optional error bars.
Usage
plot_means(summary_df,
main_title = "Mean Values by Group",
ylab = NULL,
xlab = NULL,
bar_color = "skyblue",
error_bar_color = "red",
bar_width = 0.7,
error_bar_length = 0.1,
axes = TRUE,
space = NULL,
density = NULL,
angle = 45,
col = NULL,
names_arg = NULL,
xlab_custom = NULL,
ylab_custom = NULL,
ann = TRUE,
xlim = NULL,
ylim = NULL,
xaxt = "s",
las = NULL)
Arguments
summary_df |
A summary data frame containing the means and standard errors for each group. |
main_title |
Main title for the plot. Default is "Mean Values by Group". |
ylab |
Label for the y-axis. |
xlab |
Label for the x-axis. |
bar_color |
Color for the bars. Default is "skyblue". |
error_bar_color |
Color for the error bars. Default is "red". |
bar_width |
Width of the bars. Default is 0.7. |
error_bar_length |
Length of the error bars. Default is 0.1. |
axes |
Logical value indicating whether to draw axes on the plot. Default is TRUE. |
space |
Spacing between bars. |
density |
Density of shading lines. |
angle |
Angle of shading lines. |
col |
Color of shading lines. |
names_arg |
Vector of names for the x-axis. |
xlab_custom |
Custom label for the x-axis. Default is "Groups". |
ylab_custom |
Custom label for the y-axis. Default is "Mean". |
ann |
Logical value indicating whether to draw annotations on the plot. Default is TRUE. |
xlim |
Limits for the x-axis. |
ylim |
Limits for the y-axis. |
xaxt |
Type of x-axis labeling. |
las |
Style of axis labels. |
Details
If the summary data frame contains two grouping variables (Group1 and Group2), they will be combined to form the x-axis labels.
Value
This function produces a bar plot with optional error bars.
Note
Additional notes can be added here.
Author(s)
Oswald Omuron
References
Please refer to the documentation of the barplot
and arrows
functions in the base R package.
See Also
The summary
function for creating summary data frames.
Examples
# Example data
example_data <- c(
445, 372, 284, 247, 328, 98.8, 108.7, 100.8, 123.6, 129.9, 133.3,
130.1, 123.1, 186.6, 215, 19.4, 19.3, 27.8, 26, 22, 30.9, 19.8,
16.5, 20.2, 31, 21.1, 16.5, 19.7, 18.9, 27, 161.8, 117, 94.6, 97.5,
142.7, 109.9, 118.3, 111.4, 96.5, 109, 114.1, 114.9, 101.2, 112.7,
111.1, 194.8, 169.9, 159.1, 100.8, 130.8, 93.6, 105.7, 178.4, 203,
172.2, 127.3, 128.3, 110.9, 124.1, 179.1, 293, 197.5, 139.1, 98.1,
84.6, 81.4, 87.2, 71.1, 70.3, 120.4, 194.5, 167.5, 121, 86.5, 81.7
)
example_group1 <- c(
rep("Palm", 15), rep("Papyrus", 10), rep("Typha", 15),
rep("Eucalyptus", 15), rep("Rice farm", 20)
)
example_group2 <- rep(c(50, 40, 30, 20, 10), 15)
# Create dataframe
example_df <- data.frame(
Vegetation_types = example_group1,
Depth_revised = example_group2,
EC_uS_cm = example_data
)
# Summarize by one grouping variable
summary_one_group <- summarize_data(
example_df$EC_uS_cm,
example_df$Vegetation_types
)
print(summary_one_group)
# Summarize by two grouping variables
summary_two_groups <- summarize_data(
example_df$EC_uS_cm,
example_df$Vegetation_types,
example_df$Depth_revised
)
print(summary_two_groups)
# Plotting the summarized data
plot_means(summary_two_groups, ylim=c(0,350), las=2,
space = c(0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0)
)
Summarize Data by Groups
Description
This function summarizes the provided data column by one or two grouping variables. It calculates the mean, standard deviation, sample size, minimum, maximum, median, and standard error.
Usage
summarize_data(column_data, group_var1, group_var2 = NULL)
Arguments
column_data |
A numeric vector containing the data to be summarized. |
group_var1 |
A factor or vector to group the data by. |
group_var2 |
An optional second factor or vector to group the data by. |
Details
If only one grouping variable is provided, the function will summarize the data by that variable. If two grouping variables are provided, it will summarize the data by both variables.
Value
A data frame with the following columns:
- Group1
The first grouping variable (from
group_var1
).- Group2
The second grouping variable (from
group_var2
), if provided.- Mean
The mean of the
column_data
for each group.- SD
The standard deviation of the
column_data
for each group.- N
The sample size for each group.
- Min
The minimum value of the
column_data
for each group.- Max
The maximum value of the
column_data
for each group.- Median
The median value of the
column_data
for each group.- SE
The standard error of the mean for each group.
Output
A data frame with the above columns.
Note
The grouping variables and the data column can be of different lengths.
Author(s)
Oswald Omuron
References
No references available.
See Also
Examples
# Example data
example_data <- c(
445, 372, 284, 247, 328, 98.8, 108.7, 100.8, 123.6, 129.9, 133.3,
130.1, 123.1, 186.6, 215, 19.4, 19.3, 27.8, 26, 22, 30.9, 19.8,
16.5, 20.2, 31, 21.1, 16.5, 19.7, 18.9, 27, 161.8, 117, 94.6, 97.5,
142.7, 109.9, 118.3, 111.4, 96.5, 109, 114.1, 114.9, 101.2, 112.7,
111.1, 194.8, 169.9, 159.1, 100.8, 130.8, 93.6, 105.7, 178.4, 203,
172.2, 127.3, 128.3, 110.9, 124.1, 179.1, 293, 197.5, 139.1, 98.1,
84.6, 81.4, 87.2, 71.1, 70.3, 120.4, 194.5, 167.5, 121, 86.5, 81.7
)
example_group1 <- c(
rep("Palm", 15), rep("Papyrus", 10), rep("Typha", 15),
rep("Eucalyptus", 15), rep("Rice farm", 20)
)
example_group2 <- rep(c(50, 40, 30, 20, 10), 15)
# Create dataframe
example_df <- data.frame(
Vegetation_types = example_group1,
Depth_revised = example_group2,
EC_uS_cm = example_data
)
# Summarize by one grouping variable
summary_one_group <- summarize_data(
example_df$EC_uS_cm,
example_df$Vegetation_types
)
print(summary_one_group)
# Summarize by two grouping variables
summary_two_groups <- summarize_data(
example_df$EC_uS_cm,
example_df$Vegetation_types,
example_df$Depth_revised
)
print(summary_two_groups)