Type: | Package |
Title: | Matrix Kendall's Tau and Matrix Elliptical Factor Model |
Version: | 1.5-4 |
Author: | Yong He [aut], Yalin Wang [aut, cre], Long Yu [aut], Wang Zhou [aut], Wenxin Zhou [aut] |
Maintainer: | Yalin Wang <wangyalin@mail.sdu.edu.cn> |
Description: | Large-scale matrix-variate data have been widely observed nowadays in various research areas such as finance, signal processing and medical imaging. Modelling matrix-valued data by matrix-elliptical family not only provides a flexible way to handle heavy-tail property and tail dependencies, but also maintains the intrinsic row and column structure of random matrices. We proposed a new tool named matrix Kendall's tau which is efficient for analyzing random elliptical matrices. By applying this new type of Kendell’s tau to the matrix elliptical factor model, we propose a Matrix-type Robust Two-Step (MRTS) method to estimate the loading and factor spaces. See the details in He at al. (2022) <doi:10.48550/arXiv.2207.09633>. In this package, we provide the algorithms for calculating sample matrix Kendall's tau, the MRTS method and the Matrix Kendall's tau Eigenvalue-Ratio (MKER) method which is used for determining the number of factors. |
License: | GPL-2 |
Encoding: | UTF-8 |
NeedsCompilation: | no |
Packaged: | 2024-03-11 08:53:10 UTC; lenovo |
Repository: | CRAN |
Date/Publication: | 2024-03-11 19:10:05 UTC |
Estimating Factor Numbers via Matrix Kendall's Tau Eigenvalue-Ratio Method
Description
This function is to estimate row and column factor numbers via Matrix Kendall's Tau Eigenvalue-Ratio Method.
Usage
MKER(X, kmax)
Arguments
X |
Input three-dimensional array, of dimension |
kmax |
The user-supplied maximum factor numbers. |
Details
See He at al. (2022) <arXiv:2207.09633> for details.
Value
khat |
The estimated row factor number. |
rhat |
The estimated column factor number. |
Author(s)
Yong He, Yalin Wang, Long Yu, Wang Zhou and Wenxin Zhou.
References
He, Y., Wang, Y., Yu, L., Zhou, W., & Zhou, W. X. (2022). A new non-parametric Kendall's tau for matrix-value elliptical observations <arXiv:2207.09633>.
Examples
set.seed(123456)
T=20;p=10;q=10;k=2;r=2
R=matrix(runif(p*k,min=-1,max=1),p,k)
C=matrix(runif(q*r,min=-1,max=1),q,r)
X=Y=E=array(0,c(T,p,q))
for(i in 1:T){
Y[i,,]=R%*%matrix(rnorm(k*r),k,r)%*%t(C)
E[i,,]=matrix(rnorm(p*q),p,q)
}
X=Y+E
fn=MKER(X,9)
fn$khat;
fn$rhat
Matrix Robust Two-Step Algorithm for Large-Dimensional Matrix Elliptical Factor Model
Description
This function is to fit the large-dimensional matrix elliptical factor model via the Matrix Robust Two-Step (RTS) algorithm.
Usage
MRTS(X, k, r)
Arguments
X |
Input three-dimensional array, of dimension |
k |
A positive integer indicating the row factor numbers. |
r |
A positive integer indicating the column factor numbers. |
Details
See He at al. (2022) <arXiv:2207.09633> for details.
Value
The return value is a list. In this list, it contains the following:
Rloading |
The estimated row loading matrix of dimension |
Cloading |
The estimated column loading matrix of dimension |
Fhat |
The estimated factor matrices, are output in the form of a three-dimensional array with dimensions of |
Author(s)
Yong He, Yalin Wang, Long Yu, Wang Zhou and Wenxin Zhou.
References
He, Y., Wang, Y., Yu, L., Zhou, W., & Zhou, W. X. (2022). A new non-parametric Kendall's tau for matrix-value elliptical observations <arXiv:2207.09633>.
Examples
set.seed(123456)
T=20;p=10;q=10;k=2;r=2
R=matrix(runif(p*k,min=-1,max=1),p,k)
C=matrix(runif(q*r,min=-1,max=1),q,r)
X=Y=E=array(0,c(T,p,q))
for(i in 1:T){
Y[i,,]=R%*%matrix(rnorm(k*r),k,r)%*%t(C)
E[i,,]=matrix(rnorm(p*q),p,q)
}
X=Y+E
fit=MRTS(X,k,r)
fit$Rloading;fit$Cloading;fit$Fhat
Estimating Row and Column Sample Matrix Kendall's Tau
Description
This function is to estimate row and column sample matrix Kendall's tau which are defined in He et al. (2022) <arXiv:2207.09633>
Usage
MSK(X, type = "1")
Arguments
X |
Input three-dimensional array, of dimension |
type |
If type=1, calculate the row sample matrix Kendall's tau; if type=2, calculate the column sample matrix Kendall's tau. The default is the row sample matrix Kendall's tau. |
Details
See He at al. (2022) <arXiv:2207.09633> for details.
Value
If type=1, the return value is a p \times p
matrix; if type=2, the return value is a q \times q
matrix.
Author(s)
Yong He, Yalin Wang, Long Yu, Wang Zhou and Wenxin Zhou.
References
He, Y., Wang, Y., Yu, L., Zhou, W., & Zhou, W. X. (2022). A new non-parametric Kendall's tau for matrix-value elliptical observations <arXiv:2207.09633>.
Examples
X=array(rnorm(400),c(20,5,4))
MSK(X,1)