
Package ‘MoNAn’
July 21, 2025

Type Package

Title Mobility Network Analysis

Version 1.1.0

Date 2024-09-12

Description Implements the method to analyse weighted mobility networks or distribution net-
works as outlined in:
Block, P., Stadtfeld, C., & Robins, G. (2022) <doi:10.1016/j.socnet.2021.08.003>.
The purpose of the model is to analyse the structure of mobility,
incorporating exogenous predictors pertaining to individuals and locations
known from classical mobility analyses, as well as modelling emergent mobility
patterns akin to structural patterns known from the statistical analysis of social networks.

Depends R (>= 4.2)

License GPL (>= 3)

Encoding UTF-8

LazyData true

Imports snowfall (>= 1.84-6.2), methods

RoxygenNote 7.3.2

Suggests knitr, rmarkdown

NeedsCompilation no

Author Per Block [cre, aut, cph] (ORCID:
<https://orcid.org/0000-0002-7583-2392>),

Christoph Stadtfeld [aut] (ORCID:
<https://orcid.org/0000-0002-2704-2134>),

Nico Keiser [aut] (ORCID: <https://orcid.org/0009-0007-3403-278X>),
Marion Hoffman [aut] (ORCID: <https://orcid.org/0000-0002-0741-7760>)

Maintainer Per Block <block@soziologie.uzh.ch>

Repository CRAN

Date/Publication 2024-09-12 17:00:02 UTC

1

https://doi.org/10.1016/j.socnet.2021.08.003
https://orcid.org/0000-0002-7583-2392
https://orcid.org/0000-0002-2704-2134
https://orcid.org/0009-0007-3403-278X
https://orcid.org/0000-0002-0741-7760

2 addEffect

Contents
addEffect . 2
autoCorrelationTest . 3
createAlgorithm . 4
createEdgelist . 6
createEffects . 7
createEffectsObject . 8
createNetwork . 9
createNodeSet . 10
createNodeVariable . 11
createProcessState . 12
createWeightedCache . 13
estimateMobilityNetwork . 14
extractTraces . 17
getMultinomialStatistics . 18
gofMobilityNetwork . 18
mobilityData . 20
monanDataCreate . 20
myOutcomeObjects . 21
print.effectsList.monan . 22
print.processState.monan . 22
scoreTest . 23
simulateMobilityNetworks . 24

Index 26

addEffect addEffect

Description

A function to add addtional effects to a moman effects object

Usage

addEffect(effectsObject, effectName, ...)

Arguments

effectsObject The monan Effects object to which another effect should be added.

effectName The name of the effect that should be added (e.g. loops).

... Additional parameters of the effect, for example alpha, attribute.index, or re-
source.attribute.index

Value

An object of type effectsList.monan

autoCorrelationTest 3

Examples

Create effects object and add effects
myE1 <- createEffects(myState)
myE1 <- addEffect(myE1, loops)
myE1 <- addEffect(myE1, reciprocity_basic)
myE1 <- addEffect(myE1, effectName = same_covariate, attribute.index = "region")

Or simpler
myE1 <- createEffects(myState) |>

addEffect(loops) |>
addEffect(reciprocity_basic) |>
addEffect(same_covariate, attribute.index = "region")

autoCorrelationTest autoCorrelationTest

Description

The autoCorrelationTest indicates the degree to which the values of the dependent variable of con-
secutive draws from the chain in phase 3 are correlated. Here lower values are better. Values above
0.5 are very problematic and indicate that a higher thinning is needed.

Usage

autoCorrelationTest(ans)

Arguments

ans An object of class "result.monan" resulting from an estimation with the function
estimateMobilityNetwork().

Value

A number indicating the auto-correlation.

Examples

regression diagnostics
autoCorrelationTest(myResDN)

4 createAlgorithm

createAlgorithm createAlgorithm

Description

Specifies the algorithm used in the estimation based on characteristics of the state and the effects.

Usage

createAlgorithm(
state,
effects,
multinomialProposal = FALSE,
burnInN1 = NULL,
thinningN1 = NULL,
iterationsN1 = NULL,
gainN1 = 0.1,
burnInN2 = NULL,
thinningN2 = NULL,
initialIterationsN2 = 50,
nsubN2 = 4,
initGain = 0.6,
burnInN3 = NULL,
thinningN3 = NULL,
iterationsN3 = 500,
allowLoops = NULL

)

monanAlgorithmCreate(
state,
effects,
multinomialProposal = FALSE,
burnInN1 = NULL,
thinningN1 = NULL,
iterationsN1 = NULL,
gainN1 = 0.1,
burnInN2 = NULL,
thinningN2 = NULL,
initialIterationsN2 = 50,
nsubN2 = 4,
initGain = 0.6,
burnInN3 = NULL,
thinningN3 = NULL,
iterationsN3 = 500,
allowLoops = NULL

)

createAlgorithm 5

Arguments

state An object of class "processState.monan" that contains all relevant information
about the outcome in the form of an edgelist, the nodesets, and covariates.

effects An object of class "effectsList.monan" that specifies the model.

multinomialProposal

How should the next possible outcome in the simulation chains be sampled? If
TRUE, fewer simulation steps are needed, but each simulation step takes con-
siderably longer. Defaults to FALSE.

burnInN1 The number of simulation steps before the first draw in Phase 1. A recom-
mended value is at least n_Individuals * n_locations if multinomialProposal =
FALSE, and at least n_Individuals if multinomialProposal = TRUE which is set
as default.

thinningN1 The number of simulation steps between two draws in Phase 1. A recommended
value is at least 0.5 * n_Individuals * n_locations if multinomialProposal =
FALSE, and at least n_Individuals if multinomialProposal = TRUE which is
set as default.

iterationsN1 The number of draws taken in Phase 1. A recommended value is at least 4 *
n_effects which is set as default. If the value is too low, there will be an error in
Phase 1.

gainN1 The size of the updating step after Phase 1. A conservative value is 0, values
higher than 0.25 are courageous. Defaults to 0.1.

burnInN2 The number of simulation steps before the first draw in Phase 1. A recom-
mended value is at least n_Individuals * n_locations if multinomialProposal =
FALSE, and at least n_Individuals if multinomialProposal = TRUE which is set
as default.

thinningN2 The number of simulation steps between two draws in Phase 2. A recommended
value is at least 0.5 * n_Individuals * n_locations if multinomialProposal =
FALSE, and at least n_Individuals if multinomialProposal = TRUE which is
set as default.

initialIterationsN2

The number of draws taken in subphase 1 of Phase 2. For first estimations, a
recommended value is around 50 (default to 50). Note that in later subphases,
the number of iterations increases. If this is a further estimation to improve
convergence, higher values (100+) are recommended.

nsubN2 Number of subphases in Phase 2. In case this is the first estimation, 4 subphases
are recommended and set as default. If convergence in a previous estimation
was close, then 1-2 subphases should be enough.

initGain The magnitude of parameter updates in the first subphase of Phase 2. Values of
around 0.2 (default) are recommended.

burnInN3 The number of simulation steps before the first draw in Phase 3. A recom-
mended value is at least 3 * n_Individuals * n_locations if multinomialProposal
= FALSE, and at least 3 * n_Individuals if multinomialProposal = TRUE which
is set as default.

6 createEdgelist

thinningN3 The number of simulation steps between two draws in Phase 3. A recommended
value is at least n_Individuals * n_locations if multinomialProposal = FALSE,
and at least 2 * n_Individuals if multinomialProposal = TRUE which is set as
default. In case this value is too low, the outcome might erroneously indicate a
lack of convergence.

iterationsN3 Number of draws in Phase 3. Recommended are at the very least 500 (default).
In case this value is too low, the outcome might erroneously indicate a lack of
convergence.

allowLoops Logical: can individuals/resources stay in their origin?

Value

An object of class "algorithm.monan".

See Also

createProcessState(), createEffectsObject(), estimateMobilityNetwork()

Examples

define algorithm based on state and effects characteristics
myAlg <- createAlgorithm(myState, myEffects, multinomialProposal = FALSE)

createEdgelist createEdgelist

Description

Creates an edgelist object, which is the standard format of the outcome to be modelled by MoNAn.

Usage

createEdgelist(el, nodeSet = NULL, nodes = NULL, edges = NULL)

monanDependent(el, nodeSet = NULL, nodes = NULL, edges = NULL)

Arguments

el An edgelist in the form of a matrix with two columns and N rows. The first
column indicates the origin of a person/resource, the second row the destination.
Each row represents one observation.

nodeSet The nodesets of the edgelists. This is a vector with three entries referencing
the names of the nodesets of locations and individuals of the form c(location,
location, individuals).

nodes Alternative way to specify the nodeSet by naming nodes and edges: nodes de-
note the locations in the edgelist

edges Alternative way to specify the nodeSet by naming nodes and edges: edges de-
note the individuals in the edgelist

createEffects 7

Value

An object of class "edgelist.monan".

See Also

createProcessState()

Examples

create an object of class edgelist.monan
transfers <- createEdgelist(mobilityEdgelist, c("organisations", "organisations", "people"))

createEffects createEffects

Description

Generates an empty effects object to which new effects can be added consecutively

Usage

createEffects(state)

Arguments

state The state to which the model applies.

Value

An empty effects object of class effectsList.monan

Examples

#' myE1 <- createEffects(myState)

8 createEffectsObject

createEffectsObject createEffectsObject

Description

Specifies the model with endogenous and exogenous predictors. The predictors in the model are
called “effects”.

Usage

createEffectsObject(effectInit, checkProcessState = NULL)

Arguments

effectInit A list of "effects", where each effect to be included is specified as a further list
that contains the effect name and the additional parameters it needs. Effects
without further parameters only contain the effect name (e.g., loops).

checkProcessState

For internal use only.

Value

An object of class "effectsList.monan".

Examples

create an effects object
myEffects <- createEffectsObject(

list(
list("loops"),
list("reciprocity_min"),
list("dyadic_covariate", attribute.index = "sameRegion"),
list("alter_covariate", attribute.index = "size"),
list("resource_covar_to_node_covar",

attribute.index = "region",
resource.attribute.index = "sex"

),
list("loops_resource_covar", resource.attribute.index = "sex")

)
)

createNetwork 9

createNetwork createNetwork

Description

Defines a network between locations, generally to be used as a predictor in the model. NOTE: The
outcome variable of the model is not defined as a network, but as an edgelist!

Usage

createNetwork(
m,
isSymmetric = FALSE,
isBipartite = FALSE,
nodeSet = NULL,
nodes = NULL

)

dyadicCovar(
m,
isSymmetric = FALSE,
isBipartite = FALSE,
nodeSet = NULL,
nodes = NULL

)

Arguments

m A square matrix containing the network data.

isSymmetric Currently not in use.

isBipartite Currently not in use.

nodeSet Which nodeset are the nodes of the network. Usually this will be the locations
in the data.

nodes Alternative way to specify the nodeSet by naming nodes: nodes denote the lo-
cations in the edgelist

Value

An object of class "network.monan".

See Also

createProcessState(), createEdgelist()

10 createNodeSet

Examples

create an object of class network.monan
sameRegion <- outer(orgRegion, orgRegion, "==") * 1
sameRegion <- createNetwork(sameRegion, nodeSet = c("organisations", "organisations"))

createNodeSet createNodeSet

Description

Determines and names the nodesets of individuals and locations that make up the mobility network.

Usage

createNodeSet(x = NULL, isPresent = NULL, considerWhenSampling = NULL)

monanEdges(x = NULL, isPresent = NULL, considerWhenSampling = NULL)

monanNodes(x = NULL, isPresent = NULL, considerWhenSampling = NULL)

Arguments

x Either a single number indicating how many items are in this nodeset or a vector
from 1:n_items.

isPresent Currently not in use.
considerWhenSampling

A boolean/logical vector of the length of the nodeset. Only in use in special
cases. If the nodeset indicates a location, considerWhenSampling indicates
whether the location is a possible destination, or is only an origin (e.g. a train-
ing facility). Entries in the vector of locations that cannot be a destination are
FALSE. If the nodeset indicates mobile individuals, considerWhenSampling in-
dicates whether their mobility should be modelled or whether it is structurally
determined, that is, their mobility is exogenously defined and does not follow
the same logic as the mobility of everybody else.

Value

An object of class "nodeSet.monan".

See Also

createProcessState()

Examples

create an object of class nodeSet.monan
people <- createNodeSet(1:nrow(mobilityEdgelist))
organisations <- createNodeSet(length(orgRegion))

createNodeVariable 11

createNodeVariable createNodeVariable

Description

Assigns a covariate to one nodeset, i.e., an exogenous characteristic of mobile individuals/resources
or locations.

Usage

createNodeVariable(
values,
range = NULL,
nodeSet = NULL,
nodes = NULL,
edges = NULL,
addSame = NULL,
addSim = NULL

)

monadicCovar(
values,
range = NULL,
nodeSet = NULL,
nodes = NULL,
edges = NULL,
addSame = NULL,
addSim = NULL

)

Arguments

values A vector assigning the covariate value to each element of the nodeset.

range The range of possible values, currently not in use.

nodeSet The nodeset to which the covariate applies.

nodes Alternative way to specify the nodeSet by naming nodes or edges: nodes denote
the locations in the edgelist

edges Alternative way to specify the nodeSet by naming nodes or edges: edges denote
the individuals in the edgelist

addSame Will the variable be used to model categorical homophily (e.g., with the same_covariate
effect)? In this case, addSame needs to be set to TRUE.

addSim Will the variable be used to model continuous homophily (e.g., with the sim_covariate
effect)? In this case, addSim needs to be set to TRUE.

12 createProcessState

Value

An object of class "nodeVar.monan".

See Also

createProcessState()

Examples

create an object of class nodeVar.monan
region <- createNodeVariable(orgRegion, nodeSet = "organisations")
size <- createNodeVariable(orgSize, nodeSet = "organisations", addSim = TRUE)
sex <- createNodeVariable(indSex, nodeSet = "people")

createProcessState createProcessState

Description

Creates the "Process state", i.e., a MoNAn object that stores all information about the data that
will be used in the estimation. This includes the outcome variable (edgelist), the nodesets, and all
covariates.

Usage

createProcessState(elements, dependentVariable)

Arguments

elements A named list of the outcome variable (edgelist), the nodesets, and all covariates
that contain the information about the data that will be used in the estimation.

dependentVariable

The name of the outcome variable (edgelist) as specified under "elements". This
indicates what outcome the researcher is interested in.

Value

An object of class "processState.monan".

See Also

createEdgelist(), createNodeSet(), createNodeVariable(), createNetwork()

createWeightedCache 13

Examples

Create a process state out of the mobility data objects:
create objects (which are later combined to the process state)
transfers <- createEdgelist(mobilityEdgelist,

nodeSet = c("organisations", "organisations", "people")
)
people <- createNodeSet(1:nrow(mobilityEdgelist))
organisations <- createNodeSet(1:length(orgRegion))
sameRegion <- outer(orgRegion, orgRegion, "==") * 1
sameRegion <- createNetwork(sameRegion,

nodeSet = c("organisations", "organisations")
)
region <- createNodeVariable(orgRegion, nodeSet = "organisations")
size <- createNodeVariable(orgSize, nodeSet = "organisations", addSim = TRUE)
sex <- createNodeVariable(indSex, nodeSet = "people")

combine created objects to the process state
myState <- createProcessState(list(

transfers = transfers,
people = people,
organisations = organisations,
sameRegion = sameRegion,
region = region,
size = size,
sex = sex),

dependentVariable = "transfers")

createWeightedCache createWeightedCache

Description

Since MoNAn version 1.0.0, this function no longer exists.

Usage

createWeightedCache(processState, resourceCovariates = NULL)

Arguments

processState Outdated.
resourceCovariates

Outdated.

Value

Outdated.

14 estimateMobilityNetwork

estimateMobilityNetwork

estimateMobilityNetwork

Description

The core function of the package in which the model for the analysis of mobility tables is estimated.

Usage

estimateMobilityNetwork(
state,
effects,
algorithm,
initialParameters = NULL,
prevAns = NULL,
parallel = FALSE,
cpus = 1,
verbose = FALSE,
returnDeps = FALSE,
fish = FALSE,
saveAlg = TRUE,
cache = NULL

)

estimateDistributionNetwork(
state,
effects,
algorithm,
initialParameters = NULL,
prevAns = NULL,
parallel = FALSE,
cpus = 1,
verbose = FALSE,
returnDeps = FALSE,
fish = FALSE,
saveAlg = TRUE,
cache = NULL

)

monan07(
state,
effects,
algorithm,
initialParameters = NULL,
prevAns = NULL,
parallel = FALSE,

estimateMobilityNetwork 15

cpus = 1,
verbose = FALSE,
returnDeps = FALSE,
fish = FALSE,
saveAlg = TRUE,
cache = NULL

)

monanEstimate(
state,
effects,
algorithm,
initialParameters = NULL,
prevAns = NULL,
parallel = FALSE,
cpus = 1,
verbose = FALSE,
returnDeps = FALSE,
fish = FALSE,
saveAlg = TRUE,
cache = NULL

)

S3 method for class 'result.monan'
print(x, covMat = FALSE, ...)

Arguments

state An object of class "processState.monan" which contains all relevant information
about the outcome in the form of an edgelist, the nodesets, and covariates.

effects An object of class "effectsList.monan" that specifies the model.

algorithm An object of class "algorithm.monan" which specifies the algorithm used in the
estimation.

initialParameters

Starting values for the parameters. Using starting values, e.g., from a multino-
mial logit model (see getMultinomialStatistics()) increases the chances of
model convergence in the first run of the estimation considerably.

prevAns If a previous estimation did not yield satisfactory convergence, the outcome ob-
ject of that estimation should be specified here to provide new starting values
for the estimation.

parallel Logical: computation on multiple cores?

cpus Number of cores for computation in case parallel = TRUE.

verbose Logical: display information about estimation progress in the console?

returnDeps Logical: should the simulated values of Phase 3 be stored and returned? This is
necessary to run GoF tests. Note that this might result in very large objects.

fish Logical: display a fish?

16 estimateMobilityNetwork

saveAlg Specify whether the algorithm object should be saved in the results object. De-
faults to FALSE.

cache Outdated parameter, no need to specify.

x An object of class "result.monan".

covMat Logical: indicating whether the covariance matrix should be printed.

... For internal use only.

Value

The function estimateMobilityNetwork returns an object of class "result.monan" that contains
the estimates, standard errors, and convergence statistics. Furthermore, the covariance matrix used
to calculate the standard errors is included, which also shows collinearity between effects. In case
returnDeps = TRUE, the simulations of Phase 3 are included, too.

The function print.result.monan prints the results from a monan estimation with three columns
indicating the estimate, the standard error, and the convergence statistic.

See Also

createProcessState(), createEffectsObject(), createAlgorithm()

Examples

estimate mobility network model

myAlg_short <- createAlgorithm(myState, myEffects, multinomialProposal = FALSE,
nsubN2 = 1, iterationsN3 = 100)

myResDN <- estimateMobilityNetwork(myState, myEffects, myAlg_short,
initialParameters = NULL,

in case a pseudo-likelihood estimation was run, replace with
initialParameters = initEst,
parallel = TRUE, cpus = 4,
verbose = TRUE,
returnDeps = TRUE,
fish = FALSE

)

check convergence
max(abs(myResDN$convergenceStatistics))

view results
myResDN

myResDN

extractTraces 17

extractTraces extractTraces

Description

This function shows the values of simulated statistics in Phase 3 for subsequent draws from the
chain. Ideally, the plots show points randomly scattered around the red line, which indicates the
statistics in the data.

Usage

extractTraces(ans, effects)

S3 method for class 'traces.monan'
plot(x, ...)

Arguments

ans An object of class "result.monan" resulting from an estimation with the function
estimateMobilityNetwork().

effects An object of class "effectsList.monan" used in the estimation.

x An object of class "traces.monan".

... Additional plotting parameters, use not recommended.

Value

The function extractTraces returns a list that includes (1) the observed statistics for all effects,
(2) the distribution of statistics for all simulations and (3) effect names. It is recommended to use
the plotting function to inspect the traces.

The function plot.traces.monan shows a scatter plot of the statistics of simulated networks from
phase three of the esimtation.

See Also

createEffectsObject()

Examples

regression diagnostics
traces <- extractTraces(myResDN, myEffects)

plot(traces)

18 gofMobilityNetwork

getMultinomialStatistics

getMultinomialStatistics

Description

One updating step in simulating the mobility network model can be expressed as a multinomial
logit model. Extracting the statistics for such a model allows a straight-forward estimation of a
multinomial logit model to get initial estimates for the full mobility model, which increases the
chances of model convergence in the first run of the estimation considerably.

Usage

getMultinomialStatistics(state, effects, cache = NULL)

Arguments

state An object of class "processState.monan" that stores all information to be used
in the model.

effects An object of class "effectsList.monan" for which the statistics of a multinomial
model should be calculated.

cache Outdated parameter, no need to specify.

Value

A data frame with N * M rows (N = mobile individuals, M = number of locations) that specifies for
each observation the statistics associated with moving to this location.

See Also

createProcessState(), createEffectsObject()

Examples

myStatisticsFrame <- getMultinomialStatistics(myState, myEffects)

gofMobilityNetwork gofMobilityNetwork

Description

Akin to ERGMs, goodness of fit testing is available to see whether auxiliary statistics are well
captured by the model. The logic behind gof testing for network models is outlined in Hunter et al.
(2008) and Lospinoso and Snijders (2019).

gofMobilityNetwork 19

Usage

gofMobilityNetwork(ans, gofFunction, lvls = NULL, simulations = NULL)

gofDistributionNetwork(ans, gofFunction, lvls = NULL, simulations = NULL)

monanGOF(ans, gofFunction, lvls = NULL, simulations = NULL)

S3 method for class 'gof.stats.monan'
plot(x, lvls, ...)

Arguments

ans An object of class "result.monan" resulting from an estimation with the function
estimateMobilityNetwork() using the option deps = TRUE.

gofFunction A gof function that specifies which auxiliary outcome should be used, e.g.,
"getIndegree" or "getTieWeights".

lvls The values for which the gofFunction should be calculated/plotted.

simulations outdated parameter, no need to specify

x An object of class "gof.stats.monan".

... Additional plotting parameters, use discouraged.

Value

The function gofMobilityNetwork returns a list containing (1) the observed values of the auxiliary
statistics and (2) a list of the simulated values of the auxiliary statistics.

The function plot.gof.stats.monan returns violin plots of the gof tests with observed values
superimposed in red.

References

Hunter, D. R., Goodreau, S. M., & Handcock, M. S. (2008). Goodness of fit of social network
models. Journal of the american statistical association, 103(481), 248-258.

Lospinoso, J., & Snijders, T. A. (2019). Goodness of fit for stochastic actor-oriented models.
Methodological Innovations, 12(3).

See Also

getIndegree(), getTieWeights()

Examples

goodness of fit
myGofIndegree <- gofMobilityNetwork(ans = myResDN,

gofFunction = getIndegree,
lvls = 1:100)

myGofTieWeight <- gofMobilityNetwork(ans = myResDN,

20 monanDataCreate

gofFunction = getTieWeights,
lvls = 1:30)

plot(myGofIndegree, lvls = 20:70)
plot(myGofTieWeight, lvls = 1:15)

mobilityData Example Data for the MoNAn Package

Description

These are example data for the MoNAn package and can be used to estimate a mobility network.
The raw example data is synthetic (i.e., made up). This fictitious example contains 17 organisations
representing a labour market that are located in two regions (north and south). 742 workers are
employed in these organisations at two time-points. Some are mobile while others work in the same
organisation at both time-points. The following objects are provided for this purpose:

mobilityEdgelist The data frame indicates the origin at time 1 (first column) and the destination
at time 2 (second column) for each of the 742 individuals between the 17 organisations. Note
that some workers stay in their organisation, i.e. their origin equals their destination.

orgRegion Categorical characteristic describing whether the organisation is located on the northern
(1) or southern (0) region.

orgSize Continuous measure representing the size of each organisation based on assets and rev-
enue.

indSex Individual-level characteristics representing sex.

Format

mobilityEdgelist A data frame with 742 rows and 2 columns.

orgRegion An object with 17 values.

orgSize An object with 17 values.

indSex An object with 742 values.

monanDataCreate monanDataCreate

Description

A function to create a moman process state, i.e., a MoNAn object that stores all information about
the data that will be used in the estimation. This includes the outcome variable (edgelist), the
nodesets, and all covariates.

myOutcomeObjects 21

Usage

monanDataCreate(...)

Arguments

... The monan objects to be included in the process State. This must include exactly
one edgelist (dependent variable) and the two nodesets associated with the edge-
list. Further allowed elements are (monadic or dyadic) covariates of locations
and people

Value

An object of class "processState.monan".

Examples

#' # create objects (which are later combined to the process state)
transfers <- createEdgelist(mobilityEdgelist,

nodeSet = c("organisations", "organisations", "people")
)
people <- createNodeSet(1:nrow(mobilityEdgelist))
organisations <- createNodeSet(1:length(orgRegion))
sameRegion <- outer(orgRegion, orgRegion, "==") * 1
sameRegion <- createNetwork(sameRegion,

nodeSet = c("organisations", "organisations")
)
region <- createNodeVariable(orgRegion, nodeSet = "organisations")
size <- createNodeVariable(orgSize, nodeSet = "organisations", addSim = TRUE)
sex <- createNodeVariable(indSex, nodeSet = "people")

monanDataCreate(transfers, people, organisations,
sameRegion, region, size, sex)

myOutcomeObjects Exemplary Outcome Objects for the MoNAn Package

Description

These are exemplary outcome objects for the MoNAn package and can be used in order not to run
all precedent functions and thus save time. The following products are provided:

Format

myState An object of class "processState.monan" created by the function createProcessState().

myEffects An object of class "effectsList.monan" created by the function createEffectsObject()
or createEffects().

myAlg An object of class "algorithm.monan" created by the function createAlgorithm().

22 print.processState.monan

myResDN An object of class "result.monan" created by the function estimateMobilityNetwork().

mySimDN An object of class "sims.monan" created by the function simulateMobilityNetworks().

print.effectsList.monan

print.effectsList.monan

Description

print.effectsList.monan

Usage

S3 method for class 'effectsList.monan'
print(x, ...)

Arguments

x An object of class "effectsList.monan".

... For internal use only.

Value

The function print.effectsList.monan gives an overview of the specified effects.

Examples

myEffects

print.processState.monan

print.processState.monan

Description

print.processState.monan

Usage

S3 method for class 'processState.monan'
print(x, ...)

Arguments

x An object of class "processState.monan".

... For internal use only.

scoreTest 23

Value

The function print.processState.monan gives an overview of the information included in the
state object.

Examples

myState

scoreTest scoreTest

Description

Based on an estimated model, a score-type test is available that shows whether statistics representing
non-included effects are well represented. If this is not the case, it is likely that including them will
result in significant estimates.

Usage

scoreTest(ans, effects)

S3 method for class 'scoretest.monan'
print(x, ...)

Arguments

ans An object of class "result.monan" resulting from an estimation with the function
estimateMobilityNetwork().

effects An object of class "effectsList.monan" in which the non included effects that
should be tested are specified.

x An object of class "scoretest.monan".

... For internal use only.

Value

The function scoreTest returns basic values to calculate parametric and non-parametric p-values
for each tested effect.

The function print.scoretest.monan shows parametric and non-parametric p-values for each
tested effect.

See Also

createEffectsObject()

24 simulateMobilityNetworks

Examples

test whether other effects should be included
myEffects2 <- createEffects(myState) |>

addEffect(transitivity_min)

test_ME.2 <- scoreTest(myResDN, myEffects2)

test_ME.2

simulateMobilityNetworks

simulateMobilityNetworks

Description

Simulates mobility networks for given data, effects, and parameters. This function is mainly inter-
esting to explore the behavior of the model or to do counter-factual simulations.

Usage

simulateMobilityNetworks(
state,
effects,
parameters,
allowLoops,
burnin,
thinning,
nSimulations,
cache = NULL

)

simulateDistributionNetworks(
state,
effects,
parameters,
allowLoops,
burnin,
thinning,
nSimulations,
cache = NULL

)

monanSimulate(
state,
effects,

simulateMobilityNetworks 25

parameters,
allowLoops,
burnin,
thinning,
nSimulations,
cache = NULL

)

Arguments

state An object of class "processState.monan" that contains all relevant information
about nodesets, and covariates. Further, an edgelist of the dependent variable
needs to be specified with the initial mobility network as starting value for the
simulation. For a large enough burn-in, any initial mobility network is allowed.

effects An object of class "effectsList.monan" that specifies the model.

parameters The parameters associated with the effects that shall be used in the simulations.

allowLoops Logical: can individuals/resources stay in their origin?

burnin The number of simulation steps that are taken before the first draw of a network
is taken. A number too small will mean the first draw is influenced by the
initially specified network. A recommended value for the lower bound is 3 *
n_Individuals * n_locations.

thinning The number of simulation steps that are taken between two draws of a network.
A recommended value for the lower bound is n_Individuals * n_locations.

nSimulations The number of mobility networks to be simulated.

cache Outdated parameter, no need to specify.

Value

An object of class "sims.monan" with nSimulations entries, where each entry contains a further list
with the state and the cache of the current simulation stored.

Examples

simulate a mobility network
note that thinning and burn-in values are for this example only
in real cases, choose values aprrox. times 10
mySimDN <- simulateMobilityNetworks(

myState,
myEffects,
parameters = c(2, 1, 1.5, 0.1, -1, -0.5),
allowLoops = TRUE,
burnin = 450,
thinning = 150,
nSimulations = 10

)

mySimDN[[1]]

Index

∗ datasets
mobilityData, 20
myOutcomeObjects, 21

addEffect, 2
autoCorrelationTest, 3

createAlgorithm, 4
createAlgorithm(), 16, 21
createEdgelist, 6
createEdgelist(), 9, 12
createEffects, 7
createEffects(), 21
createEffectsObject, 8
createEffectsObject(), 6, 16–18, 21, 23
createNetwork, 9
createNetwork(), 12
createNodeSet, 10
createNodeSet(), 12
createNodeVariable, 11
createNodeVariable(), 12
createProcessState, 12
createProcessState(), 6, 7, 9, 10, 12, 16,

18, 21
createWeightedCache, 13

dyadicCovar (createNetwork), 9

estimateDistributionNetwork
(estimateMobilityNetwork), 14

estimateMobilityNetwork, 14
estimateMobilityNetwork(), 3, 6, 17, 19,

22, 23
extractTraces, 17

getIndegree(), 19
getMultinomialStatistics, 18
getMultinomialStatistics(), 15
getTieWeights(), 19
gofDistributionNetwork

(gofMobilityNetwork), 18

gofMobilityNetwork, 18

indSex (mobilityData), 20

mobilityData, 20
mobilityEdgelist (mobilityData), 20
monadicCovar (createNodeVariable), 11
monan07 (estimateMobilityNetwork), 14
monanAlgorithmCreate (createAlgorithm),

4
monanDataCreate, 20
monanDependent (createEdgelist), 6
monanEdges (createNodeSet), 10
monanEstimate

(estimateMobilityNetwork), 14
monanGOF (gofMobilityNetwork), 18
monanNodes (createNodeSet), 10
monanSimulate

(simulateMobilityNetworks), 24
myAlg (myOutcomeObjects), 21
myEffects (myOutcomeObjects), 21
myOutcomeObjects, 21
myResDN (myOutcomeObjects), 21
mySimDN (myOutcomeObjects), 21
myState (myOutcomeObjects), 21

orgRegion (mobilityData), 20
orgSize (mobilityData), 20

plot.gof.stats.monan
(gofMobilityNetwork), 18

plot.traces.monan (extractTraces), 17
print.effectsList.monan, 22
print.processState.monan, 22
print.result.monan

(estimateMobilityNetwork), 14
print.scoretest.monan (scoreTest), 23

scoreTest, 23
simulateDistributionNetworks

(simulateMobilityNetworks), 24

26

INDEX 27

simulateMobilityNetworks, 24
simulateMobilityNetworks(), 22

	addEffect
	autoCorrelationTest
	createAlgorithm
	createEdgelist
	createEffects
	createEffectsObject
	createNetwork
	createNodeSet
	createNodeVariable
	createProcessState
	createWeightedCache
	estimateMobilityNetwork
	extractTraces
	getMultinomialStatistics
	gofMobilityNetwork
	mobilityData
	monanDataCreate
	myOutcomeObjects
	print.effectsList.monan
	print.processState.monan
	scoreTest
	simulateMobilityNetworks
	Index

