Package 'NAP'

July 21, 2025

Type Package	
Title Non-Local Alternative Priors in Psychology	
Version 1.1	
Date 2022-1-6	
Author Sandipan Pramanik [aut, cre], Valen E. Johnson [aut]	
Maintainer Sandipan Pramanik <sandy@stat.tamu.edu></sandy@stat.tamu.edu>	
Conducts Bayesian Hypothesis tests of a point null hypothesis against a two-sided alternative using Non-local Alternative Prior (NAP) for one- and two-sample z- and t-tests (Pramanik and Johnson, 2022). Under the alternative, the NAP is assumed on the standardized effects size in one-sample tests and on their differences in two-sample tests. The package considers two types of NAP densities: (1) the normal moment prior, and (2) the composite alternative. In fixed design tests, the functions calculate the Bayes factors and the expected weight of evidence for varied effect size and sample size. The package also provides a sequential testing framework using the Sequential Bayes Factor (SBF) design. The functions calculate the operating characteristics (OC and the average sample number (ASN), and also conducts sequential tests for a sequentially observed data.	CE,
Imports foreach, stats, utils, parallel, doParallel, graphics	
License GPL (>= 2)	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2022-01-06 12:30:02 UTC	
Contents	
NAP-package	3 4 5

2 Contents

fixedHajnal.twot_n
$fixed Hajnal.twoz_es \ldots \ldots 1$
fixedHajnal.twoz_n
fixedNAP.onet_es
fixedNAP.onet_n
fixedNAP.onez_es
fixedNAP.onez_n
fixedNAP.twot_es
fixedNAP.twot_n
fixedNAP.twoz_es
fixedNAP.twoz_n
HajnalBF_onet
HajnalBF_onez
HajnalBF_twot
HajnalBF_twoz
implement.SBFHajnal_onet
implement.SBFHajnal_onez
implement.SBFHajnal_twot
implement.SBFHajnal_twoz
implement.SBFNAP_onet
implement.SBFNAP_onez
implement.SBFNAP_twot
implement.SBFNAP_twoz
mycombine.fixed
mycombine.seq.onesample
mycombine.seq.twosample
NAPBF_onet
NAPBF_onez
NAPBF_twot
NAPBF_twoz
SBFHajnal_onet
SBFHajnal_onez
SBFHajnal_twot
SBFHajnal_twoz
SBFNAP_onet
SBFNAP_onez
SBFNAP_twot
SBFNAP_twoz
6

Index

NAP-package 3

NAP-package

Non-Local Alternative Priors in Psychology

Description

Conducts Bayesian Hypothesis tests of a point null hypothesis against a two-sided alternative using Non-local Alternative Prior (NAP) for one- and two-sample z- and t-tests (Pramanik and Johnson, 2022). Under the alternative, the NAP is assumed on the standardized effects size in one-sample tests and on their differences in two-sample tests. The package considers two types of NAP densities: (1) the normal moment prior, and (2) the composite alternative. In fixed design tests, the functions calculate the Bayes factors and the expected weight of evidence for varied effect size and sample size. The package also provides a sequential testing framework using the Sequential Bayes Factor (SBF) design. The functions calculate the operating characteristics (OC) and the average sample number (ASN), and also conducts sequential tests for a sequentially observed data.

Details

Package: NAP
Type: Package
Version: 1.1
Date: 2022-1-6

License: GPL (>= 2)

Author(s)

Sandipan Pramanik [aut, cre], Valen E. Johnson [aut]

Maintainer: Sandipan Pramanik <sandy@stat.tamu.edu>

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

4 fixedHajnal.onet_es

fixedHajnal.onet_es	Fixed-design one-sample t-tests using Hajnal's ratio for varied sample sizes

Description

In two-sided fixed design one-sample t-tests with *composite alternative prior* assumed on the standardized effect size μ/σ under the alternative, this function calculates the expected log(Hajnal's ratio) at a prefixed standardized effect size for a varied range of sample sizes.

Usage

Arguments

_		
es	Numeric. Standardized effect size where the expected weights of evidence is desired. Default: \emptyset .	
es1	Positive numeric. Default: 0.3 . For this, the composite alternative prior on the standardized effect size μ/σ takes values 0.3 and -0.3 each with equal probability $1/2$.	
nmin	Positive integer. Minimum sample size to be considered. Default: 20.	
nmax	Positive integer. Maximum sample size to be considered. Default: 5000.	
batch.size.increment		
	Positive numeric. Increment in sample size. The sequence of sample size thus considered for the fixed design test is from nmin to nmax with an increment of batch.size.increment. Default: function(narg){20}. This means an increment of 20 samples at each step.	
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.	

Value

A list with two components named summary and BF.

\$summary is a data frame with columns n containing the values of sample sizes and avg.logBF containing the expected log(Hajnal's ratios) at those values.

\$BF is a matrix of dimension number of sample sizes considered by nReplicate. Each row contains the Hajnal's ratios at the corresponding sample size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

fixedHajnal.onet_n 5

References

Hajnal, J. (1961). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].

Schnuerch, M. and Erdfelder, E. (2020). *A two-sample sequential t-test.Biometrika*, 48:65-75, [Article].

Examples

```
out = fixedHajnal.onet_es(nmax = 100)
```

fixedHajnal.onet_n Fixed-design one-sample t-tests using Hajnal's ratio and a pre-fixed sample size

Description

In two-sided fixed design one-sample t-tests with *composite alternative prior* assumed on the standardized effect size μ/σ under the alternative and a prefixed sample size, this function calculates the expected log(Hajnal's ratio) at a varied range of standardized effect sizes.

Usage

```
fixedHajnal.onet_n(es1 = 0.3, es = c(0, 0.2, 0.3, 0.5),

n.fixed = 20,

nReplicate = 50000, nCore)
```

Arguments

es1	Positive numeric. Default: 0.3 . For this, the composite alternative prior on the standardized effect size μ/σ takes values 0.3 and -0.3 each with equal probability 1/2.
es	Numeric vector. Standardized effect sizes μ/σ where the expected weights of evidence is desired. Default: c(0, 0.2, 0.3, 0.5).
n.fixed	Positive integer. Prefixed sample size. Default: 20.
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.
nCore	Positive integer. Default: One less than the total number of available cores.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns effect.size containing the values in es and avg.logBF containing the expected log(Hajnal's ratios) at those values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Hajnal's ratios at the corresponding standardized effec size in nReplicate replicated studies.

6 fixedHajnal.onez_es

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

```
Hajnal, J. (1961). A two-sample sequential t-test.Biometrika, 48:65-75, [Article]. Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test.Biometrika, 48:65-75, [Article].
```

Examples

```
out = fixedHajnal.onet_n(n.fixed = 20, es = c(0, 0.3), nCore = 1)
```

 $\begin{tabular}{ll} fixed Hajnal.onez_es & \it Fixed-design \ one-sample \ z\mbox{-}\it tests \ using \ Hajnal's \ ratio \ for \ varied \ sample \ sizes \\ \end{tabular}$

Description

In two-sided fixed design one-sample z-tests with composite alternative prior assumed on the standardized effect size μ/σ_0 under the alternative, this function calculates the expected log(Hajnal's ratio) at a prefixed standardized effect size for a varied range of sample sizes.

Usage

Arguments

es	Numeric. Standardized effect size where the expected weights of evidence is desired. Default: 0.	
es1	Positive numeric. Default: 0.3. For this, the composite alternative prior on the standardized effect size μ/σ_0 takes values 0.3 and -0.3 each with equal probability 1/2.	
nmin	Positive integer. Minimum sample size to be considered. Default: 20.	
nmax	Positive integer. Maximum sample size to be considered. Default: 5000.	
sigma0	Positive numeric. Known standard deviation in the population. Default: 1.	
batch.size.increment		
	function. Increment in sample size. The sequence of sample size thus considered for the fixed design test is from nmin to nmax with an increment of batch.size.increment. Default: function(narg){20}. This means an increment of 20 samples at each step.	
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.	

fixedHajnal.onez_n 7

Value

A list with two components named summary and BF.

\$summary is a data frame with columns n containing the values of sample sizes and avg.logBF containing the expected log(Hajnal's ratios) at those values.

\$BF is a matrix of dimension number of sample sizes considered by nReplicate. Each row contains the Hajnal's ratios at the corresponding sample size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

```
Hajnal, J. (1961). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].
```

Schnuerch, M. and Erdfelder, E. (2020). *A two-sample sequential t-test.Biometrika*, 48:65-75, [Article].

Examples

```
out = fixedHajnal.onez_es(nmax = 100)
```

fixedHajnal.onez_n

Fixed-design one-sample z-tests using Hajnal's ratio and a pre-fixed sample size

Description

In two-sided fixed design one-sample z-tests with composite alternative prior assumed on the standardized effect size μ/σ_0 under the alternative and a prefixed sample size, this function calculates the expected log(Hajnal's ratio) at a varied range of standardized effect sizes.

Usage

```
fixedHajnal.onez_n(es1 = 0.3, es = c(0, 0.2, 0.3, 0.5),

n.fixed = 20, sigma0 = 1,

nReplicate = 50000, nCore)
```

Arguments

es1	Positive numeric. Default: 0.3. For this, the composite alternative prior on the standardized effect size μ/σ_0 takes values 0.3 and -0.3 each with equal probability 1/2.
es	Numeric vector. Standardized effect sizes μ/σ_0 where the expected weights of evidence is desired. Default: $c(0, 0.2, 0.3, 0.5)$.
n.fixed	Positive integer. Prefixed sample size. Default: 20.

8 fixedHajnal.twot_es

sigma0	Positive numeric. Known standard deviation in the population. Default: 1.
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.
nCore	Positive integer. Default: One less than the total number of available cores.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns effect.size containing the values in es and avg.logBF containing the expected log(Hajnal's ratios) at those values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Hajnal's ratios at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

```
Hajnal, J. (1961). A two-sample sequential t-test.Biometrika, 48:65-75, [Article]. Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test.Biometrika, 48:65-75, [Article].
```

Examples

```
out = fixedHajnal.onez_n(n.fixed = 20, es = c(0, 0.3), nCore = 1)
```

fixedHajnal.twot_es Fixed-design two-sample t-tests with NAP for varied sample sizes

Description

In two-sided fixed design two-sample t-tests with composite alternative prior assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma$ under the alternative, this function calculates the expected log(Hajnal's ratio) at a prefixed standardized effect size for a varied range of sample sizes.

Usage

fixedHajnal.twot_es 9

Arguments

es	Numeric. Difference between standardized effect sizes where the expected weights of evidence is desired. Default: 0.	
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on $(\mu_2 - \mu_1)/\sigma$ takes values 0.3 and -0.3 each with equal probability 1/2.	
n1min	Positive integer. Minimum sample size from Grpup-1 to be considered. Default: 20.	
n2min	Positive integer. Minimum sample size from Grpup-2 to be considered. Default: 20.	
n1max	Positive integer. Maximum sample size from Grpup-1 to be considered. Default: 5000.	
n2max	Positive integer. Maximum sample size from Grpup-2 to be considered. De-	
<pre>fault: 5000. batch1.size.increment</pre>		
	Positive numeric. Increment in sample size from Group-1. The sequence of	
	sample size thus considered from Group-1 for the fixed design test is from n1min to n1max with an increment of batch1.size.increment. Default: function(narg){20}.	
	This means an increment of 20 samples from Group-1 at each step.	
batch2.size.increment		
	Positive numeric. Increment in sample size from Group-2. The sequence of sample size thus considered from Group-2 for the fixed design test is from n2min to n2max with an increment of batch2.size.increment. Default: function(narg){20}. This means an increment of 20 samples from Group-2 at each step.	
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.	

Value

A list with two components named summary and BF.

\$summary is a data frame with columns n containing the values of sample sizes and avg.logBF containing the expected log(Hajnal's ratios) at those values.

\$BF is a matrix of dimension number of sample sizes considered by nReplicate. Each row contains the Hajnal's ratios at the corresponding sample size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Hajnal, J. (1961). *A two-sample sequential t-test.Biometrika*, 48:65-75, [Article]. Schnuerch, M. and Erdfelder, E. (2020). *A two-sample sequential t-test.Biometrika*, 48:65-75, [Article].

Examples

```
out = fixedHajnal.twot_es(n1max = 100, n2max = 100)
```

10 fixedHajnal.twot_n

fixedHajnal.twot_n	Fixed-design two-sample t-tests using Hajnal's ratio and a pre-fixed sample size
--------------------	--

Description

In two-sided fixed design two-sample t-tests with *composite alternative prior* assumed on the standardized effect size $(\mu_2 - \mu_1)/\sigma$ under the alternative and a prefixed sample size, this function calculates the expected log(Hajnal's ratio) at a varied range of differences between standardized effect sizes.

Usage

```
fixedHajnal.twot_n(es1 = 0.3, es = c(0, 0.2, 0.3, 0.5),

n1.fixed = 20, n2.fixed = 20,

nReplicate = 50000, nCore)
```

Arguments

es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on $(\mu_2 - \mu_1)/\sigma$ takes values 0.3 and -0.3 each with equal probability 1/2.
es	Numeric vector. Standardized effect size differences $(\mu_2 - \mu_1)/\sigma$ where the expected weights of evidence is desired. Default: $c(0, 0.2, 0.3, 0.5)$.
n1.fixed	Positive integer. Prefixed sample size from Group-1. Default: 20.
n2.fixed	Positive integer. Prefixed sample size from Group-2. Default: 20.
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.
nCore	Positive integer. Default: One less than the total number of available cores.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns effect.size containing the values in es and avg.logBF containing the expected log(Hajnal's ratios) at those values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Hajnal's ratios at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

```
Hajnal, J. (1961). A two-sample sequential t-test.Biometrika, 48:65-75, [Article]. Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test.Biometrika, 48:65-75, [Article].
```

fixedHajnal.twoz_es 11

Examples

```
out = fixedHajnal.twot_n(n1.fixed = 20, n2.fixed = 20, es = c(0, 0.3), nCore = 1)
```

fixedHajnal.twoz_es Fixed-design two-sample z-tests with NAP for varied sample sizes

Description

In two-sided fixed design two-sample z-tests with composite alternative prior assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma_0$ under the alternative, this function calculates the expected log(Hajnal's ratio) at a prefixed standardized effect size for a varied range of sample sizes.

Usage

Arguments

es	Numeric. Difference between standardized effect sizes where the expected weights of evidence is desired. Default: \emptyset .
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on $(\mu_2 - \mu_1)/\sigma_0$ takes values 0.3 and -0.3 each with equal probability 1/2.
n1min	Positive integer. Minimum sample size from Grpup-1 to be considered. Default: 20.
n2min	Positive integer. Minimum sample size from Grpup-2 to be considered. Default: 20.
n1max	Positive integer. Maximum sample size from Grpup-1 to be considered. Default: 5000.
n2max	Positive integer. Maximum sample size from Grpup-2 to be considered. Default: 5000.
sigma0	Positive numeric. Known common standard deviation of the populations. Default: 1.
batch1.size.increment	
	Positive numeric. Increment in sample size from Group-1. The sequence of sample size thus considered from Group-1 for the fixed design test is from n1min

This means an increment of 20 samples from Group-1 at each step.

to n1max with an increment of batch1. size.increment. **Default:** function(narg){20}.

12 fixedHajnal.twoz_n

batch2.size.increment

Positive numeric. Increment in sample size from Group-2. The sequence of sample size thus considered from Group-2 for the fixed design test is from n2min

to n2max with an increment of batch2. size.increment. **Default:** function(narg){20}.

This means an increment of 20 samples from Group-2 at each step.

nReplicate

Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. **Default:** 50,000.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns n containing the values of sample sizes and avg.logBF containing the expected log(Hajnal's ratios) at those values.

\$BF is a matrix of dimension number of sample sizes considered by nReplicate. Each row contains the Hajnal's ratios at the corresponding sample size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

```
Hajnal, J. (1961). A two-sample sequential t-test.Biometrika, 48:65-75, [Article]. Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test.Biometrika, 48:65-75, [Article].
```

Examples

```
out = fixedHajnal.twoz_es(n1max = 100, n2max = 100)
```

fixedHajnal.twoz_n Fixed-design two-sample z-tests using Hajnal's ratio and a pre-fixed sample size

Description

In two-sided fixed design two-sample z-tests with composite alternative prior assumed on the standardized effect size $(\mu_2 - \mu_1)/\sigma_0$ under the alternative and a prefixed sample size, this function calculates the expected log(Hajnal's ratio) at a varied range of differences between standardized effect sizes.

Usage

```
fixedHajnal.twoz_n(es1 = 0.3, es = c(0, 0.2, 0.3, 0.5),

n1.fixed = 20, n2.fixed = 20, sigma0 = 1,

nReplicate = 50000, nCore)
```

fixedNAP.onet_es 13

Arguments

es1	Positive numeric. Default: 0.3. For this, the prior on $(\mu_2 - \mu_1)/\sigma_0$ takes values 0.3 and -0.3 each with equal probability 1/2.
es	Numeric vector. Standardized effect size differences $(\mu_2 - \mu_1)/\sigma_0$ where the expected weights of evidence is desired. Default: $c(0, 0.2, 0.3, 0.5)$.
n1.fixed	Positive integer. Prefixed sample size from Group-1. Default: 20.
n2.fixed	Positive integer. Prefixed sample size from Group-2. Default: 20.
sigma0	Positive numeric. Known common standard deviation of the populations. Default: 1.
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.
nCore	Positive integer. Default: One less than the total number of available cores.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns effect.size containing the values in es and avg.logBF containing the expected log(Hajnal's ratios) at those values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Hajnal's ratios at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

```
Hajnal, J. (1961). A two-sample sequential t-test.Biometrika, 48:65-75, [Article]. Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test.Biometrika, 48:65-75, [Article].
```

Examples

```
out = fixedHajnal.twoz_n(n1.fixed = 20, n2.fixed = 20, es = c(0, 0.3), nCore = 1)
```

fixedNAP.onet_es

Fixed-design one-sample t-tests with NAP for varied sample sizes

Description

In two-sided fixed design one-sample t-tests with $normal\ moment\ prior$ assumed on the standardized effect size μ/σ under the alternative, this function calculates the expected weights of evidence (that is, expected log(Bayes Factor)) of the test at a prefixed standardized effect size for a varied range of sample sizes.

14 fixedNAP.onet_es

Usage

Arguments

es Numeric. Standardized effect size where the expected weights of evidence is

desired. Default: 0.

nmin Positive integer. Minimum sample size to be considered. **Default:** 20.

nmax Positive integer. Maximum sample size to be considered. **Default:** 5000.

tau. NAP Positive numeric. Parameter in the moment prior. **Default:** $0.3/\sqrt{2}$. This places

the prior modes of the standardized effect size μ/σ at 0.3 and -0.3.

batch.size.increment

Positive numeric. Increment in sample size. The sequence of sample size thus considered for the fixed design test is from nmin to nmax with an increment of batch.size.increment. **Default:** function(narg){20}. This means an

increment of 20 samples at each step.

nReplicate Positve integer. Number of replicated studies based on which the expected

weights of evidence is calculated. **Default:** 50,000.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns n containing the values of sample sizes and avg.logBF containing the expected weight of evidence values at those values.

\$BF is a matrix of dimension number of sample sizes considered by nReplicate. Each row contains the Bayes factor values at the corresponding sample size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = fixedNAP.onet_es(nmax = 100)
```

fixedNAP.onet_n 15

<pre>fixedNAP.onet_n</pre>	Fixed-design one-sample t-tests with NAP and a pre-fixed sample size
----------------------------	--

Description

In two-sided fixed design one-sample t-tests with normal moment prior assumed on the standardized effect size μ/σ under the alternative and a prefixed sample size, this function calculates the expected weights of evidence (that is, expected log(Bayes Factor)) of the test at a varied range of standardized effect sizes.

Usage

```
fixedNAP.onet_n(es = c(0, 0.2, 0.3, 0.5), n.fixed = 20,
tau.NAP = 0.3/sqrt(2),
nReplicate = 50000, nCore)
```

Arguments

es	Numeric vector. Standardized effect sizes μ/σ where the expected weights of evidence is desired. Default: c(0, 0.2, 0.3, 0.5).
n.fixed	Positive integer. Prefixed sample size. Default: 20.
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of the standardized effect size μ/σ at 0.3 and -0.3 .
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.
nCore	Positive integer. Default: One less than the total number of available cores.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns effect.size containing the values in es and avg.logBF containing the expected weight of evidence values at those values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

16 fixedNAP.onez_es

Examples

```
out = fixedNAP.onet_n(n.fixed = 20, es = c(0, 0.3), nCore = 1)
```

fixedNAP.onez_es

Fixed-design one-sample z-tests with NAP for varied sample sizes

Description

In two-sided fixed design one-sample z-tests with normal moment prior assumed on the standardized effect size μ/σ_0 under the alternative, this function calculates the expected weights of evidence (that is, expected log(Bayes Factor)) of the test at a prefixed standardized effect size for a varied range of sample sizes.

Usage

```
fixedNAP.onez_es(es = 0, nmin = 20, nmax = 5000,
                 tau.NAP = 0.3/sqrt(2), sigma0 = 1,
                 batch.size.increment, nReplicate = 50000)
```

Arguments

Numeric. Standardized effect size where the expected weights of evidence is desired. Default: 0.	
Positive integer. Minimum sample size to be considered. Default: 20.	
Positive integer. Maximum sample size to be considered. Default: 5000.	
Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of the standardized effect size μ/σ_0 at 0.3 and -0.3 .	
Positive numeric. Known standard deviation in the population. Default: 1.	
batch.size.increment	

function. Increment in sample size. The sequence of sample size thus considered for the fixed design test is from nmin to nmax with an increment of batch.size.increment. **Default:** function(narg){20}. This means an increment of 20 samples at each step.

nReplicate Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. **Default:** 50,000.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns n containing the values of sample sizes and avg.logBF containing the expected weight of evidence values at those values.

\$BF is a matrix of dimension number of sample sizes considered by nReplicate. Each row contains the Bayes factor values at the corresponding sample size in nReplicate replicated studies. fixedNAP.onez_n 17

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = fixedNAP.onez_es(nmax = 100)
```

fixedNAP.onez_n

Fixed-design one-sample z-tests with NAP and a pre-fixed sample size

Description

In two-sided fixed design one-sample z-tests with normal moment prior assumed on the standardized effect size μ/σ_0 under the alternative and a prefixed sample size, this function calculates the expected weights of evidence (that is, expected log(Bayes Factor)) of the test at a varied range of standardized effect sizes.

Usage

```
fixedNAP.onez_n(es = c(0, 0.2, 0.3, 0.5), n.fixed = 20,
tau.NAP = 0.3/sqrt(2), sigma0 = 1,
nReplicate = 50000, nCore)
```

Arguments

es	Numeric vector. Standardized effect sizes μ/σ_0 where the expected weights of evidence is desired. Default: c(0, 0.2, 0.3, 0.5).
n.fixed	Positive integer. Prefixed sample size. Default: 20.
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of the standardized effect size μ/σ_0 at 0.3 and -0.3 .
sigma0	Positive numeric. Known standard deviation in the population. Default: 1.
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.
nCore	Positive integer. Default: One less than the total number of available cores.

18 fixedNAP.twot_es

Value

A list with two components named summary and BF.

\$summary is a data frame with columns effect.size containing the values in es and avg.logBF containing the expected weight of evidence values at those values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = fixedNAP.onez_n(n.fixed = 20, es = c(0, 0.3), nCore = 1)
```

fixedNAP.twot_es

Fixed-design two-sample t-tests with NAP for varied sample sizes

Description

In two-sided fixed design two-sample t-tests with normal moment prior assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma$ under the alternative, this function calculates the expected weights of evidence (that is, expected log(Bayes Factor)) of the test at a prefixed differences between standardized effect size for a varied range of sample sizes.

Usage

fixedNAP.twot_es 19

Arguments

es	Numeric. Difference between standardized effect sizes where the expected weights of evidence is desired. Default: 0.
n1min	Positive integer. Minimum sample size from Grpup-1 to be considered. Default: 20.
n2min	Positive integer. Minimum sample size from Grpup-2 to be considered. Default: 20.
n1max	Positive integer. Maximum sample size from Grpup-1 to be considered. Default: 5000.
n2max	Positive integer. Maximum sample size from Grpup-2 to be considered. Default: 5000.
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of $(\mu_2 - \mu_1)/\sigma$ at 0.3 and -0.3 .
batch1.size.increment	
	Positive numeric. Increment in sample size from Group-1. The sequence of sample size thus considered from Group-1 for the fixed design test is from n1min

batch2.size.increment

Positive numeric. Increment in sample size from Group-2. The sequence of sample size thus considered from Group-2 for the fixed design test is from n2min to n2max with an increment of batch2.size.increment. **Default:** function(narg){20}.

to n1max with an increment of batch1. size.increment. **Default:** function(narg){20}.

This means an increment of 20 samples from Group-2 at each step.

This means an increment of 20 samples from Group-1 at each step.

nReplicate Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. **Default:** 50,000.

Details

n1min, n1max, batch1.size.increment, and n2min, n2max, batch2.size.increment should be chosen such that the length of sample sizes considered from Group 1 and 2 are equal.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns n1 containing the sample sizes from Group-1, n2 containing the sample sizes from Group-2, and avg.logBF containing the expected weight of evidence values at those values.

\$BF is a matrix of dimension number of sample sizes considered by nReplicate. Each row contains the Bayes factor values at the corresponding sample size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

20 fixedNAP.twot_n

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = fixedNAP.twot_es(n1max = 100, n2max = 100)
```

fixedNAP.twot_n

Fixed-design two-sample t-tests with NAP and a pre-fixed sample size

Description

In two-sided fixed design two-sample t-tests with normal moment prior assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma$ under the alternative and a prefixed sample size, this function calculates the expected weights of evidence (that is, expected log(Bayes Factor)) of the test at a varied range of differences between standardized effect sizes.

Usage

```
fixedNAP.twot_n(es = c(0, 0.2, 0.3, 0.5), n1.fixed = 20, n2.fixed = 20, tau.NAP = <math>0.3/sqrt(2), nReplicate = 50000, nCore)
```

Arguments

es	Numeric vector. Standardized effect size differences $(\mu_2 - \mu_1)/\sigma$ where the expected weights of evidence is desired. Default: $c(0, 0.2, 0.3, 0.5)$.
n1.fixed	Positive integer. Prefixed sample size from Group-1. Default: 20.
n2.fixed	Positive integer. Prefixed sample size from Group-2. Default: 20.
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of $(\mu_2 - \mu_1)/\sigma$ at 0.3 and -0.3 .
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.
nCore	Positive integer. Default: One less than the total number of available cores.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns effect.size containing the values in es and avg.logBF containing the expected weight of evidence values at those values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size differences in nReplicate replicated studies.

fixedNAP.twoz_es 21

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = fixedNAP.twot_n(n1.fixed = 20, n2.fixed = 20, es = c(0, 0.3), nCore = 1)
```

fixedNAP.twoz_es

Fixed-design two-sample z-tests with NAP for varied sample sizes

Description

In two-sided fixed design two-sample z-tests with normal moment prior assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma_0$ under the alternative, this function calculates the expected weights of evidence (that is, expected log(Bayes Factor)) of the test at a prefixed differences between standardized effect size for a varied range of sample sizes.

Usage

Arguments

es	Numeric. Difference between standardized effect sizes where the expected weights of evidence is desired. Default: 0.
n1min	Positive integer. Minimum sample size from Grpup-1 to be considered. Default: 20.
n2min	Positive integer. Minimum sample size from Grpup-2 to be considered. Default: 20.
n1max	Positive integer. Maximum sample size from Grpup-1 to be considered. Default: 5000.
n2max	Positive integer. Maximum sample size from Grpup-2 to be considered. Default: 5000.

22 fixedNAP.twoz_es

tau. NAP Positive numeric. Parameter in the moment prior. **Default:** $0.3/\sqrt{2}$. This places

the prior modes of $(\mu_2 - \mu_1)/\sigma_0$ at 0.3 and -0.3.

sigma0 Positive numeric. Known common standard deviation of the populations. **De-**

fault: 1.

batch1.size.increment

Positive numeric. Increment in sample size from Group-1. The sequence of sample size thus considered from Group-1 for the fixed design test is from n1min to n1max with an increment of batch1.size.increment. **Default:** function(narg){20}.

This means an increment of 20 samples from Group-1 at each step.

batch2.size.increment

Positive numeric. Increment in sample size from Group-2. The sequence of sample size thus considered from Group-2 for the fixed design test is from n2min to n2max with an increment of batch2.size.increment. **Default:** function(narg){20}.

This means an increment of 20 samples from Group-2 at each step.

nReplicate Positve integer. Number of replicated studies based on which the expected

weights of evidence is calculated. **Default:** 50,000.

Details

n1min, n1max, batch1.size.increment, and n2min, n2max, batch2.size.increment should be chosen such that the length of sample sizes considered from Group 1 and 2 are equal.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns n1 containing the sample sizes from Group-1, n2 containing the sample sizes from Group-2, and avg.logBF containing the expected weight of evidence values at those values.

\$BF is a matrix of dimension number of sample sizes considered by nReplicate. Each row contains the Bayes factor values at the corresponding sample size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = fixedNAP.twoz_es(n1max = 100, n2max = 100)
```

fixedNAP.twoz_n 23

fixedNAP.twoz_n Fixed-o	sign two-sample z-tests with NAP and a pre-fixed sample size
-------------------------	--

Description

In two-sided fixed design two-sample z-tests with normal moment prior assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma_0$ under the alternative and a prefixed sample size, this function calculates the expected weights of evidence (that is, expected log(Bayes Factor)) of the test at a varied range of differences between standardized effect sizes.

Usage

```
fixedNAP.twoz_n(es = c(0, 0.2, 0.3, 0.5), n1.fixed = 20, n2.fixed = 20, tau.NAP = <math>0.3/sqrt(2), sigma0 = 1, nReplicate = 50000, nCore
```

Arguments

es	Numeric vector. Standardized effect size differences $(\mu_2 - \mu_1)/\sigma_0$ where the expected weights of evidence is desired. Default: c(0, 0.2, 0.3, 0.5).
n1.fixed	Positive integer. Prefixed sample size from Group-1. Default: 20.
n2.fixed	Positive integer. Prefixed sample size from Group-2. Default: 20.
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of $(\mu_2 - \mu_1)/\sigma_0$ at 0.3 and -0.3 .
sigma0	Positive numeric. Known common standard deviation of the populations. Default: 1.
nReplicate	Positve integer. Number of replicated studies based on which the expected weights of evidence is calculated. Default: 50,000.
nCore	Positive integer. Default: One less than the total number of available cores.

Value

A list with two components named summary and BF.

\$summary is a data frame with columns effect.size containing the values in es and avg.logBF containing the expected weight of evidence values at those values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size differences in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

24 HajnalBF_onet

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = fixedNAP.twoz_n(n1.fixed = 20, n2.fixed = 20, es = c(0, 0.3), nCore = 1)
```

HajnalBF_onet

Hajnal's ratio in one-sample t tests

Description

In a $N(\mu,\sigma^2)$ population with unknown variance σ^2 , consider the two-sided one-sample z-test for testing the point null hypothesis $H_0:\mu=0$ against $H_1:\mu\neq 0$. Based on an observed data, this function calculates the Hajnal's ratio in favor of H_1 when the prior assumed on the standardized effect size μ/σ under the alternative places equal probability at $+\delta$ and $-\delta$ ($\delta>0$ prefixed).

Usage

```
HajnalBF_onet(obs, nObs, mean.obs, sd.obs, test.statistic, es1 = 0.3)
```

Arguments

obs	Numeric vector. Observed vector of data.
n0bs	Numeric or numeric vector. Sample $size(s)$. Same as length(obs) when numeric.
mean.obs	Numeric or numeric vector. Sample $mean(s)$. Same as $mean(obs)$ when numeric.
sd.obs	Positive numeric or numeric vector. Sample standard deviation(s). Same as sd(obs) when numeric.
test.statistic	Numeric or numeric vector. Test-statistic value(s).
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on the standardized effect size μ/σ takes values 0.3 and -0.3 each with equal probability 1/2.

Details

- Users can either specify obs, or nObs, mean.obs and sd.obs, or nObs and test.statistic.
- If obs is provided, it returns the corresponding Bayes factor value.
- If nObs, mean.obs and sd.obs are provided, the function is vectorized over the arguments. Bayes factor values corresponding to the values therein are returned.
- If nObs and test.statistic are provided, the function is vectorized over the arguments. Bayes factor values corresponding to the values therein are returned.

HajnalBF_onez 25

Value

Positive numeric or numeric vector. The Hajnal's ratio(s).

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Hajnal, J. (1961). A two-sample sequential t-test.Biometrika, 48:65-75, [Article].

Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test.Biometrika, 48:65-75, [Article].

Examples

```
HajnalBF_onet(obs = rnorm(100))
```

HajnalBF_onez

Hajnal's ratio in one-sample z tests

Description

In a $N(\mu,\sigma_0^2)$ population with known variance σ_0^2 , consider the two-sided one-sample z-test for testing the point null hypothesis $H_0:\mu=0$ against $H_1:\mu\neq 0$. Based on an observed data, this function calculates the Hajnal's ratio in favor of H_1 when the prior assumed on the standardized effect size μ/σ_0 under the alternative places equal probability at $+\delta$ and $-\delta$ ($\delta>0$ prefixed).

Usage

```
HajnalBF_onez(obs, nObs, mean.obs, test.statistic, es1 = 0.3, sigma0 = 1)
```

Arguments

obs	Numeric vector. Observed vector of data.
n0bs	Numeric or numeric vector. Sample $size(s)$. Same as length(obs) when numeric.
mean.obs	Numeric or numeric vector. Sample $mean(s)$. Same as $mean(obs)$ when numeric.
test.statistic	Numeric or numeric vector. Test-statistic value(s).
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on the standardized effect size μ/σ_0 takes values 0.3 and -0.3 each with equal probability 1/2.
sigma0	Positive numeric. Known standard deviation in the population. Default: 1.

Details

- Users can either specify obs, or nObs and mean.obs, or nObs and test.statistic.
- If obs is provided, it returns the corresponding Bayes factor value.
- If nobs and mean.obs are provided, the function is vectorized over both arguments. Bayes factor values corresponding to the values therein are returned.
- If nobs and test.statistic are provided, the function is vectorized over both arguments. Bayes factor values corresponding to the values therein are returned.

Value

Positive numeric or numeric vector. The Hajnal's ratio(s).

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

```
Hajnal, J. (1961). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].
```

Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].

Examples

```
HajnalBF_onez(obs = rnorm(100))
```

HajnalBF_twot

Hajnal's ratio in two-sample t tests

Description

In case of two independent populations $N(\mu_1,\sigma^2)$ and $N(\mu_2,\sigma^2)$ with unknown common variance σ^2 , consider the two-sample t-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. Based on an observed data, this function calculates the Hajnal's ratio in favor of H_1 when the prior assumed under the alternative on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma$ places equal probability at $+\delta$ and $-\delta$ ($\delta>0$ prefixed).

Usage

HajnalBF_twot 27

Arguments

obs1	Numeric vector. Observed vector of data from Group-1.
obs2	Numeric vector. Observed vector of data from Group-2.
n10bs	Numeric or numeric vector. Sample $size(s)$ from Group-1. Same as length(obs1) when numeric.
n20bs	Numeric or numeric vector. Sample size(s) from Group-2. Same as length(obs2) when numeric.
mean.obs1	Numeric or numeric vector. Sample mean(s) from Group-1. Same as mean(obs1) when numeric.
mean.obs2	Numeric or numeric vector. Sample mean(s) from Group-2. Same as mean(obs2) when numeric.
sd.obs1	Numeric or numeric vector. Sample standard deviations(s) from Group-1. Same as sd(obs1) when numeric.
sd.obs2	Numeric or numeric vector. Sample standard deviations(s) from Group-2. Same as sd(obs2) when numeric.
test.statistic	Numeric or numeric vector. Test-statistic value(s).
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on $(\mu_2 - \mu_1)/\sigma$ takes values 0.3 and -0.3 each with equal probability 1/2.

Details

- A user can either specify obs1 and obs2, or n10bs, n20bs, mean.obs1, mean.obs2, sd.obs1 and sd.obs2, or n10bs, n20bs, and test.statistic.
- If obs1 and obs2 are provided, it returns the corresponding Bayes factor value.
- If n10bs, n20bs, mean.obs1, mean.obs2, sd.obs1 and sd.obs2 are provided, the function is vectorized over the arguments. Bayes factor values corresponding to the values therein are returned.
- If n10bs, n20bs, and test.statistic are provided, the function is vectorized over each of the arguments. Bayes factor values corresponding to the values therein are returned.

Value

Positive numeric or numeric vector. The Hajnal's ratio(s).

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

```
Hajnal, J. (1961). A two-sample sequential t-test.Biometrika, 48:65-75, [Article]. Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test.Biometrika, 48:65-75, [Article].
```

Examples

```
HajnalBF_twot(obs1 = rnorm(100), obs2 = rnorm(100))
```

28 HajnalBF_twoz

HajnalBF_twoz	Hajnal's ratio in two-sample z tests	
Hajhaibi _cwoz	Trajuat 5 ratio in two sample 2 tests	

Description

In case of two independent populations $N(\mu_1,\sigma_0^2)$ and $N(\mu_2,\sigma_0^2)$ with known common variance σ_0^2 , consider the two-sample z-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. Based on an observed data, this function calculates the Hajnal's ratio in favor of H_1 when the prior assumed under the alternative on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma_0$ places equal probability at $+\delta$ and $-\delta$ ($\delta > 0$ prefixed).

Usage

Arguments

obs1	Numeric vector. Observed vector of data from Group-1.
obs2	Numeric vector. Observed vector of data from Group-2.
n10bs	Numeric or numeric vector. Sample $size(s)$ from Group-1. Same as length(obs1) when numeric.
n20bs	Numeric or numeric vector. Sample $size(s)$ from Group-2. Same as length(obs2) when numeric.
mean.obs1	Numeric or numeric vector. Sample mean(s) from Group-1. Same as mean(obs1) when numeric.
mean.obs2	Numeric or numeric vector. Sample mean(s) from Group-2. Same as mean(obs2) when numeric.
test.statistic	Numeric or numeric vector. Test-statistic value(s).
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on $(\mu_2 - \mu_1)/\sigma_0$ takes values 0.3 and -0.3 each with equal probability 1/2.
sigma0	Positive numeric. Known common standard deviation of the populations. Default: 1.

Details

- A user can either specify obs1 and obs2, or n10bs, n20bs, mean.obs1 and mean.obs2, or n10bs, n20bs, and test.statistic.
- If obs1 and obs2 are provided, it returns the corresponding Bayes factor value.
- If n10bs, n20bs, mean.obs1 and mean.obs2 are provided, the function is vectorized over the arguments. Bayes factor values corresponding to the values therein are returned.
- If n10bs, n20bs, and test.statistic are provided, the function is vectorized over each of the arguments. Bayes factor values corresponding to the values therein are returned.

Value

Positive numeric or numeric vector. The Hajnal's ratio(s).

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Hajnal, J. (1961). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].

Schnuerch, M. and Erdfelder, E. (2020). *A two-sample sequential t-test.Biometrika*, 48:65-75, [Article].

Examples

```
HajnalBF_twoz(obs1 = rnorm(100), obs2 = rnorm(100))
```

```
implement.SBFHajnal_onet
```

Implement Sequential Bayes Factor using the Hajnal's ratio for onesample t-tests

Description

In a $N(\mu,\sigma^2)$ population with unknown variance σ^2 , consider the two-sided one-sample t-test for testing the point null hypothesis $H_0: \mu=0$ against $H_1: \mu\neq 0$. For a sequentially observed data, this function implements the Sequential Bayes Factor design when the prior assumed on the standardized effect size μ/σ under the alternative places equal probability at $+\delta$ and $-\delta$ ($\delta>0$ prefixed).

Usage

Arguments

obs Numeric vector. The vector of sequentially observed data.

Positive numeric. δ as above. **Default:** 0.3. For this, the prior on the standardized effect size μ/σ takes values 0.3 and -0.3 each with equal probability

1/2.

RejectH1.threshold

Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold}$. **Default:** $\exp(-3)$.

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default:

exp(3).

batch.size Integer vector. The vector of batch sizes at each sequential comparison. **Default:**

c(2, rep(1, length(obs)-2)).

return.plot Logical. Whether a sequential comparison plot to be returned. **Default:** TRUE.

until.decision.reached

Logical. Whether the sequential comparison is performed until a decision is reached or until the data is observed. **Default:** TRUE. This means the comparison is performed until a decision is reached.

Value

A list with three components named N, BF, and decision.

\$N contains the number of sample size used.

\$BF contains the Bayes factor values at each sequential comparison.

\$decision contains the decision reached. 'A' indicates acceptance of H_0 , 'R' indicates rejection of H_0 , and 'I' indicates inconclusive.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Hajnal, J. (1961). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].

Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].

Examples

```
out = implement.SBFHajnal_onet(obs = rnorm(100))
```

 $implement.SBFHajnal_onez$

Implement Sequential Bayes Factor using the Hajnal's ratio for onesample z-tests

Description

In a $N(\mu, \sigma_0^2)$ population with known variance σ_0^2 , consider the two-sided one-sample z-test for testing the point null hypothesis $H_0: \mu=0$ against $H_1: \mu\neq 0$. For a sequentially observed data, this function implements the Sequential Bayes Factor design when the prior assumed on the standardized effect size μ/σ_0 under the alternative places equal probability at $+\delta$ and $-\delta$ ($\delta>0$ prefixed).

Usage

Arguments

obs Numeric vector. The vector of sequentially observed data.

es1 Positive numeric. δ as above. **Default:** 0.3. For this, the prior on the stan-

dardized effect size μ/σ_0 takes values 0.3 and -0.3 each with equal probability

1/2.

sigma0 Positive numeric. Known standard deviation in the population. **Default:** 1.

RejectH1.threshold

Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold}$. **Default:**

exp(-3).

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default:

exp(3).

batch.size Integer vector. The vector of batch sizes at each sequential comparison. **Default:**

rep(1, length(obs)).

return.plot Logical. Whether a sequential comparison plot to be returned. **Default:** TRUE.

until.decision.reached

Logical. Whether the sequential comparison is performed until a decision is reached or until the data is observed. **Default:** TRUE. This means the comparison

is performed until a decision is reached.

Value

A list with three components named N, BF, and decision.

\$N contains the number of sample size used.

\$BF contains the Bayes factor values at each sequential comparison.

\$decision contains the decision reached. 'A' indicates acceptance of H_0 , 'R' indicates rejection of H_0 , and 'I' indicates inconclusive.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Hajnal, J. (1961). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].

Schnuerch, M. and Erdfelder, E. (2020). *A two-sample sequential t-test.Biometrika*, 48:65-75, [Article].

Examples

```
out = implement.SBFHajnal_onez(obs = rnorm(100))
```

```
implement.SBFHajnal_twot
```

Implement Sequential Bayes Factor using the NAP for two-sample ttests

Description

In case of two independent populations $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ with unknown common variance σ^2 , consider the two-sample t-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. For a sequentially observed data, this function implements the Sequential Bayes Factor design when a *normal moment prior* is assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma$ under the alternative.

Usage

Arguments

obs1	Numeric vector. The vector of sequentially observed data from Group-1.	
obs2	Numeric vector. The vector of sequentially observed data from Group-2.	
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on $(\mu_2 - \mu_1)/\sigma$ takes values 0.3 and -0.3 each with equal probability 1/2.	
RejectH1.threshold		
	Device and the second of DE Control through the Defection	

Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold}$. Default: $\exp(-3)$.

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default: exp(3).

batch1.size Integer vector. The vector of batch sizes from Group-1 at each sequential comparison. The first element (the first batch size) needs to be at least 2. **Default:** c(2, rep(1, length(obs1)-2)).

batch2.size Integer vector. The vector of batch sizes from Group-2 at each sequential comparison. The first element (the first batch size) needs to be at least 2. **Default:** c(2, rep(1, length(obs2)-2)).

return.plot Logical. Whether a sequential comparison plot to be returned. **Default:** TRUE. until.decision.reached

Logical. Whether the sequential comparison is performed until a decision is reached or until the data is observed. **Default:** TRUE. This means the comparison is performed until a decision is reached.

Value

A list with three components named N1, N2, BF, and decision.

\$N1 and \$N2 contains the number of sample size used from Group-1 and 2.

\$BF contains the Bayes factor values at each sequential comparison.

\$decision contains the decision reached. 'A' indicates acceptance of H_0 , 'R' indicates rejection of H_0 , and 'I' indicates inconclusive.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

```
Hajnal, J. (1961). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].
```

Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].

Examples

```
out = implement.SBFHajnal_twot(obs1 = rnorm(100), obs2 = rnorm(100))
```

```
implement.SBFHajnal_twoz
```

Implement Sequential Bayes Factor using the NAP for two-sample z-tests

Description

In case of two independent populations $N(\mu_1,\sigma_0^2)$ and $N(\mu_2,\sigma_0^2)$ with known common variance σ_0^2 , consider the two-sample z-test for testing the point null hypothesis of difference in their means $H_0:\mu_2-\mu_1=0$ against $H_1:\mu_2-\mu_1\neq 0$. For a sequentially observed data, this function implements the Sequential Bayes Factor design when a *normal moment prior* is assumed on the difference between standardized effect sizes $(\mu_2-\mu_1)/\sigma_0$ under the alternative.

Usage

Arguments

obs1 Numeric vector. The vector of sequentially observed data from Group-1. obs2 Numeric vector. The vector of sequentially observed data from Group-2. es1 Positive numeric. δ as above. **Default:** 0.3. For this, the prior on $(\mu_2 - \mu_1)/\sigma_0$ takes values 0.3 and -0.3 each with equal probability 1/2. sigma0 Positive numeric. Known standard deviation in the population. **Default:** 1. RejectH1.threshold Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold}$. **Default:** exp(-3). RejectH0.threshold Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default: exp(3). batch1.size Integer vector. The vector of batch sizes from Group-1 at each sequential comparison. **Default:** rep(1, length(obs1)). batch2.size Integer vector. The vector of batch sizes from Group-2 at each sequential comparison. **Default:** rep(1, length(obs2)). return.plot Logical. Whether a sequential comparison plot to be returned. **Default:** TRUE.

Logical. Whether the sequential comparison is performed until a decision is reached or until the data is observed. **Default:** TRUE. This means the comparison is performed until a decision is reached.

Value

A list with three components named N1, N2, BF, and decision.

\$N1 and \$N2 contains the number of sample size used from Group-1 and 2.

\$BF contains the Bayes factor values at each sequential comparison.

\$decision contains the decision reached. 'A' indicates acceptance of H_0 , 'R' indicates rejection of H_0 , and 'I' indicates inconclusive.

Author(s)

Sandipan Pramanik and Valen E. Johnson

until.decision.reached

References

Hajnal, J. (1961). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].

Schnuerch, M. and Erdfelder, E. (2020). *A two-sample sequential t-test.Biometrika*, 48:65-75, [Article].

Examples

```
out = implement.SBFHajnal_twoz(obs1 = rnorm(100), obs2 = rnorm(100))
```

implement.SBFNAP_onet Implement Sequential Bayes Factor using the NAP for one-sample ttests

Description

In a $N(\mu, \sigma^2)$ population with unknown variance σ^2 , consider the two-sided one-sample t-test for testing the point null hypothesis $H_0: \mu=0$ against $H_1: \mu\neq 0$. For a sequentially observed data, this function implements the Sequential Bayes Factor design when a *normal moment prior* is assumed on the standardized effect size μ/σ under the alternative.

Usage

Arguments

obs Numeric vector. The vector of sequentially observed data.

tau. NAP Positive numeric. Parameter in the moment prior. **Default:** $0.3/\sqrt{2}$. This places the prior modes of the standardized effect size μ/σ at 0.3 and -0.3.

RejectH1.threshold

Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold.}$ Default: $\exp(-3)$.

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default: $\exp(3)$.

batch.size

Integer vector. The vector of batch sizes at each sequential comparison. The first element (the first batch size) needs to be at least 2. **Default:** c(2, rep(1, length(obs)-2)).

return.plot Logical. Whether a sequential comparison plot to be returned. **Default:** TRUE. until.decision.reached

Logical. Whether the sequential comparison is performed until a decision is reached or until the data is observed. **Default:** TRUE. This means the comparison is performed until a decision is reached.

Value

A list with three components named N, BF, and decision.

\$N contains the number of sample size used.

\$BF contains the Bayes factor values at each sequential comparison.

\$decision contains the decision reached. 'A' indicates acceptance of H_0 , 'R' indicates rejection of H_0 , and 'I' indicates inconclusive.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = implement.SBFNAP_onet(obs = rnorm(100))
```

implement.SBFNAP_onez Implement Sequential Bayes Factor using the NAP for one-sample ztests

Description

In a $N(\mu, \sigma_0^2)$ population with known variance σ_0^2 , consider the two-sided one-sample z-test for testing the point null hypothesis $H_0: \mu=0$ against $H_1: \mu\neq 0$. For a sequentially observed data, this function implements the Sequential Bayes Factor design when a *normal moment prior* is assumed on the standardized effect size μ/σ_0 under the alternative.

Usage

Arguments

obs Numeric vector. The vector of sequentially observed data.

tau. NAP Positive numeric. Parameter in the moment prior. **Default:** $0.3/\sqrt{2}$. This places

the prior modes of the standardized effect size μ/σ_0 at 0.3 and -0.3.

sigma0 Positive numeric. Known standard deviation in the population. **Default:** 1.

RejectH1.threshold

Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold.}$ Default: $\exp(-3)$.

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default:

exp(3)

batch.size Integer vector. The vector of batch sizes at each sequential comparison. **Default:**

rep(1, length(obs)).

return.plot Logical. Whether a sequential comparison plot to be returned. **Default:** TRUE. until.decision.reached

Logical. Whether the sequential comparison is performed until a decision is reached or until the data is observed. **Default:** TRUE. This means the comparison is performed until a decision is reached.

Value

A list with three components named N, BF, and decision.

\$N contains the number of sample size used.

\$BF contains the Bayes factor values at each sequential comparison.

\$decision contains the decision reached. 'A' indicates acceptance of H_0 , 'R' indicates rejection of H_0 , and 'I' indicates inconclusive.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = implement.SBFNAP_onez(obs = rnorm(100))
```

 ${\it implement. SBFNAP_twot} \ \ {\it Implement Sequential Bayes Factor using the NAP for two-sample \ t-tests}$

Description

In case of two independent populations $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ with unknown common variance σ^2 , consider the two-sample t-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. For a sequentially observed data, this function implements the Sequential Bayes Factor design when a *normal moment prior* is assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma$ under the alternative.

Usage

Arguments

obs1 Numeric vector. The vector of sequentially observed data from Group-1.

Numeric vector. The vector of sequentially observed data from Group-2.

tau. NAP Positive numeric. Parameter in the moment prior. **Default:** $0.3/\sqrt{2}$. This places

the prior modes of the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma$

at 0.3 and -0.3.

RejectH1.threshold

Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold.}$ Default:

exp(-3).

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default:

exp(3).

batch1.size Integer vector. The vector of batch sizes from Group-1 at each sequential com-

parison. The first element (the first batch size) needs to be at least 2. **Default:**

c(2, rep(1, length(obs1)-2)).

batch2.size Integer vector. The vector of batch sizes from Group-2 at each sequential com-

parison. The first element (the first batch size) needs to be at least 2. Default:

c(2, rep(1, length(obs2)-2)).

return.plot Logical. Whether a sequential comparison plot to be returned. **Default:** TRUE.

until.decision.reached

Logical. Whether the sequential comparison is performed until a decision is reached or until the data is observed. **Default:** TRUE. This means the comparison is performed until a decision is reached.

Value

A list with three components named N1, N2, BF, and decision.

\$N1 and \$N2 contains the number of sample size used from Group-1 and 2.

\$BF contains the Bayes factor values at each sequential comparison.

\$decision contains the decision reached. 'A' indicates acceptance of H_0 , 'R' indicates rejection of H_0 , and 'I' indicates inconclusive.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

```
out = implement.SBFNAP_twot(obs1 = rnorm(100), obs2 = rnorm(100))
```

implement.SBFNAP_twoz Implement Sequential Bayes Factor using the NAP for two-sample ztests

Description

In case of two independent populations $N(\mu_1, \sigma_0^2)$ and $N(\mu_2, \sigma_0^2)$ with known common variance σ_0^2 , consider the two-sample z-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. For a sequentially observed data, this function implements the Sequential Bayes Factor design when a *normal moment prior* is assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma_0$ under the alternative.

Usage

Arguments

obs1	Numeric vector. The vector of sequentially observed data from Group-1.
obs2	Numeric vector. The vector of sequentially observed data from Group-2.
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma_0$ at 0.3 and -0.3 .
sigma0	Positive numeric. Known standard deviation in the population. Default: 1.
RejectH1.thresh	nold
	Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold}$. Default: exp(-3).
RejectH0.thresh	nold
	Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default: exp(3).
batch1.size	Integer vector. The vector of batch sizes from Group-1 at each sequential comparison. Default: rep(1, length(obs1)).
batch2.size	Integer vector. The vector of batch sizes from Group-2 at each sequential comparison. Default: rep(1, length(obs2)).
return.plot	Logical. Whether a sequential comparison plot to be returned. Default: TRUE.
until.decision.	reached
	Logical. Whether the sequential comparison is performed until a decision is reached or until the data is observed. Default: TRUE. This means the comparison

is performed until a decision is reached.

40 mycombine.fixed

Value

A list with three components named N1, N2, BF, and decision.

\$N1 and \$N2 contains the number of sample size used from Group-1 and 2.

\$BF contains the Bayes factor values at each sequential comparison.

\$decision contains the decision reached. 'A' indicates acceptance of H_0 , 'R' indicates rejection of H_0 , and 'I' indicates inconclusive.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = implement.SBFNAP_twoz(obs1 = rnorm(100), obs2 = rnorm(100))
```

mycombine.fixed

Helper function

Description

Helper function for combining outputs from replicated studies in fixed design tests.

Usage

```
mycombine.fixed(...)
```

Arguments

Lists. Outputs from different replicated studies.

Value

A list with two components combining the outputs from replicated studies.

Author(s)

mycombine.seq.onesample

Helper function

Description

Helper function for combining outputs from replicated studies in one-sample tests using Sequential Bayes Factor.

Usage

```
mycombine.seq.onesample(...)
```

Arguments

... Lists. Outputs from different replicated studies.

Value

A list with three components combining the outputs from replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

```
mycombine.seq.twosample
```

Helper function

Description

Helper function for combining results in two-sample tests using Sequential Bayes Factor.

Usage

```
mycombine.seq.twosample(...)
```

Arguments

... Lists. Outputs from different replicated studies.

Value

A list with four components combining the outputs from replicated studies.

Author(s)

42 NAPBF_onet

NAPBF_onet

Bayes factor in favor of the NAP in one-sample t tests

Description

In a $N(\mu, \sigma^2)$ population with unknown variance σ^2 , consider the two-sided one-sample t-test for testing the point null hypothesis $H_0: \mu=0$ against $H_1: \mu\neq 0$. Based on an observed data, this function calculates the Bayes factor in favor of H_1 when a *normal moment prior* is assumed on the standardized effect size μ/σ under the alternative. Under both hypotheses, the Jeffrey's prior $\pi(\sigma^2)\propto 1/\sigma^2$ is assumed on σ^2 .

Usage

```
NAPBF_onet(obs, nObs, mean.obs, sd.obs,
test.statistic, tau.NAP = 0.3/sqrt(2))
```

Arguments

obs	Numeric vector. Observed vector of data.
n0bs	Numeric or numeric vector. Sample $size(s)$. Same as length(obs) when numeric.
mean.obs	Numeric or numeric vector. Sample mean(s). Same as mean(obs) when numeric.
sd.obs	Positive numeric or numeric vector. Sample standard deviation(s). Same as sd(obs) when numeric.
test.statistic	Numeric or numeric vector. Test-statistic value(s).
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of the standardized effect size μ/σ at 0.3 and -0.3 .

Details

- Users can either specify obs, or nObs, mean.obs and sd.obs, or nObs and test.statistic.
- If obs is provided, it returns the corresponding Bayes factor value.
- If n0bs, mean.obs and sd.obs are provided, the function is vectorized over the arguments. Bayes factor values corresponding to the values therein are returned.
- If nobs and test.statistic are provided, the function is vectorized over the arguments. Bayes factor values corresponding to the values therein are returned.

Value

Positive numeric or numeric vector. The Bayes factor value(s).

Author(s)

NAPBF_onez 43

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
NAPBF_onet(obs = rnorm(100))
```

NAPBF_onez

Bayes factor in favor of the NAP in one-sample z tests

Description

In a $N(\mu, \sigma_0^2)$ population with known variance σ_0^2 , consider the two-sided one-sample z-test for testing the point null hypothesis $H_0: \mu=0$ against $H_1: \mu\neq 0$. Based on an observed data, this function calculates the Bayes factor in favor of H_1 when a normal moment prior is assumed on the standardized effect size μ/σ_0 under the alternative.

Usage

```
NAPBF_onez(obs, nObs, mean.obs, test.statistic,
tau.NAP = 0.3/sqrt(2), sigma0 = 1)
```

Arguments

obs	Numeric vector. Observed vector of data.
n0bs	Numeric or numeric vector. Sample $\mbox{size}(s)$. Same as length(obs) when numeric.
mean.obs	Numeric or numeric vector. Sample $mean(s)$. Same as $mean(obs)$ when numeric.
test.statistic	Numeric or numeric vector. Test-statistic value(s).
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of the standardized effect size μ/σ_0 at 0.3 and -0.3 .
sigma0	Positive numeric. Known standard deviation in the population. Default: 1.

Details

- Users can either specify obs, or nObs and mean.obs, or nObs and test.statistic.
- If obs is provided, it returns the corresponding Bayes factor value.
- If nobs and mean.obs are provided, the function is vectorized over both arguments. Bayes factor values corresponding to the values therein are returned.
- If nobs and test.statistic are provided, the function is vectorized over both arguments. Bayes factor values corresponding to the values therein are returned.

44 NAPBF_twot

Value

Positive numeric or numeric vector. The Bayes factor value(s).

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
NAPBF_onez(obs = rnorm(100))
```

NAPBF_twot

Bayes factor in favor of the NAP in two-sample t tests

Description

In case of two independent populations $N(\mu_1,\sigma^2)$ and $N(\mu_2,\sigma^2)$ with unknown common variance σ^2 , consider the two-sample t-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. Based on an observed data, this function calculates the Bayes factor in favor of H_1 when a normal moment prior is assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma$ under the alternative. Under both hypotheses, the Jeffrey's prior $\pi(\sigma^2) \propto 1/\sigma^2$ is assumed on σ^2 .

Usage

Arguments

obs1	Numeric vector. Observed vector of data from Group-1.
obs2	Numeric vector. Observed vector of data from Group-2.
n10bs	Numeric or numeric vector. Sample size(s) from Group-1. Same as length(obs1) when numeric.
n20bs	Numeric or numeric vector. Sample size(s) from Group-2. Same as length(obs2) when numeric.
mean.obs1	Numeric or numeric vector. Sample mean(s) from Group-1. Same as mean(obs1) when numeric.

NAPBF_twot 45

mean.obs2	Numeric or numeric vector. Sample mean(s) from Group-2. Same as mean(obs2) when numeric.
sd.obs1	Numeric or numeric vector. Sample standard deviations(s) from Group-1. Same as $sd(obs1)$ when numeric.
sd.obs2	Numeric or numeric vector. Sample standard deviations(s) from Group-2. Same as $sd(obs2)$ when numeric.
test.statistic	Numeric or numeric vector. Test-statistic value(s).
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of $(\mu_2 - \mu_1)/\sigma$ at 0.3 and -0.3 .

Details

- A user can either specify obs1 and obs2, or n10bs, n20bs, mean.obs1, mean.obs2, sd.obs1 and sd.obs2, or n10bs, n20bs, and test.statistic.
- If obs1 and obs2 are provided, it returns the corresponding Bayes factor value.
- If n10bs, n20bs, mean.obs1, mean.obs2, sd.obs1 and sd.obs2 are provided, the function is vectorized over the arguments. Bayes factor values corresponding to the values therein are returned.
- If n10bs, n20bs, and test.statistic are provided, the function is vectorized over each of the arguments. Bayes factor values corresponding to the values therein are returned.

Value

Positive numeric or numeric vector. The Bayes factor value(s).

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

```
NAPBF_twot(obs1 = rnorm(100), obs2 = rnorm(100))
```

46 NAPBF_twoz

NAPBF_twoz

Bayes factor in favor of the NAP in two-sample z tests

Description

In case of two independent populations $N(\mu_1, \sigma_0^2)$ and $N(\mu_2, \sigma_0^2)$ with known common variance σ_0^2 , consider the two-sample z-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. Based on an observed data, this function calculates the Bayes factor in favor of H_1 when a normal moment prior is assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma_0$ under the alternative.

Usage

Arguments

obs1	Numeric vector. Observed vector of data from Group-1.
obs2	Numeric vector. Observed vector of data from Group-2.
n10bs	Numeric or numeric vector. Sample $size(s)$ from Group-1. Same as length(obs1) when numeric.
n20bs	Numeric or numeric vector. Sample $size(s)$ from Group-2. Same as length(obs2) when numeric.
mean.obs1	Numeric or numeric vector. Sample mean(s) from Group-1. Same as mean(obs1) when numeric.
mean.obs2	Numeric or numeric vector. Sample mean(s) from Group-2. Same as mean(obs2) when numeric.
test.statistic	Numeric or numeric vector. Test-statistic value(s).
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of $(\mu_2 - \mu_1)/\sigma_0$ at 0.3 and -0.3 .
sigma0	Positive numeric. Known common standard deviation of the populations. Default: 1.

Details

- A user can either specify obs1 and obs2, or n10bs, n20bs, mean.obs1 and mean.obs2, or n10bs, n20bs, and test.statistic.
- If obs1 and obs2 are provided, it returns the corresponding Bayes factor value.
- If n10bs, n20bs, mean.obs1 and mean.obs2 are provided, the function is vectorized over the arguments. Bayes factor values corresponding to the values therein are returned.
- If n10bs, n20bs, and test.statistic are provided, the function is vectorized over each of the arguments. Bayes factor values corresponding to the values therein are returned.

SBFHajnal_onet 47

Value

Positive numeric or numeric vector. The Bayes factor value(s).

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
NAPBF_twoz(obs1 = rnorm(100), obs2 = rnorm(100))
```

SBFHajnal_onet Sequential Bayes Factor using the Hajnal's ratio for one-sample ttests

Description

In a $N(\mu, \sigma^2)$ population with unknown variance σ^2 , consider the two-sided one-sample t-test for testing the point null hypothesis $H_0: \mu = 0$ against $H_1: \mu \neq 0$. This function calculates the operating characteristics (OC) and average sample number (ASN) of the Sequential Bayes Factor design when the prior assumed on the standardized effect size μ/σ under the alternative places equal probability at $+\delta$ and $-\delta$ ($\delta > 0$ prefixed).

Usage

Arguments

es	Numeric vector. Standardized effect sizes μ/σ where OC and ASN are desired. Default: c(0, 0.2, 0.3, 0.5).
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on the standardized effect size μ/σ takes values 0.3 and -0.3 each with equal probability 1/2.
nmin	Positive integer. Minimum sample size in the sequential comparison. Should be at least 2. Default: 1.

48 SBFHajnal_onet

nmax Positive integer. Maximum sample size in the sequential comparison. **Default:**

RejectH1.threshold

Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold.}$ Default: $\exp(-3)$.

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default: exp(3).

batch.size.increment

function. Increment in sample size at each sequential step. Default: function(narg){20}.

This means an increment of 20 samples at each step.

nReplicate Positve integer. Number of replicated studies based on which the OC and ASN

are calculated. **Default:** 50,000.

nCore Positive integer. **Default:** One less than the total number of available cores.

Value

A list with three components named summary, BF, and N.

\$summary is a data frame with columns effect.size containing the values in es. At those values, acceptH0 contains the proportion of times H_0 is accepted, rejectH0 contains the proportion of times H_0 is rejected, inconclusive contains the proportion of times the test is inconclusive, ASN contains the ASN, and avg.logBF contains the expected weight of evidence values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size in nReplicate replicated studies.

\$N is a matrix of the same dimension as \$BF. Each row contains the sample size required to reach a decision at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Hajnal, J. (1961). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].

Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test.Biometrika, 48:65-75, [Article].

```
out = SBFHajnal_onet(nmax = 50, es = c(0, 0.3), nCore = 1)
```

SBFHajnal_onez 49

SBFHajnal_onez	Sequential Bayes Factor using the Hajnal's ratio for one-sample z-tests

Description

In a $N(\mu,\sigma_0^2)$ population with known variance σ_0^2 , consider the two-sided one-sample z-test for testing the point null hypothesis $H_0:\mu=0$ against $H_1:\mu\neq 0$. This function calculates the operating characteristics (OC) and average sample number (ASN) of the Sequential Bayes Factor design when the prior assumed on the standardized effect size μ/σ_0 under the alternative places equal probability at $+\delta$ and $-\delta$ ($\delta>0$ prefixed).

Usage

```
SBFHajnal_onez(es = c(0, 0.2, 0.3, 0.5), es1 = 0.3,

nmin = 1, nmax = 5000, sigma0 = 1,

RejectH1.threshold = exp(-3), RejectH0.threshold = exp(3),

batch.size.increment, nReplicate = 50000, nCore)
```

Arguments es

	Default: $c(0, 0.2, 0.3, 0.5)$.	
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on the standardized effect size μ/σ_0 takes values 0.3 and -0.3 each with equal probability 1/2.	
nmin	Positive integer. Minimum sample size in the sequential comparison. Default: 1.	
nmax	Positive integer. Maximum sample size in the sequential comparison. Default: 1.	
sigma0	Positive numeric. Known standard deviation in the population. Default: 1.	
RejectH1.threshold		
	Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold.}$ Default: exp(-3).	
RejectH0.threshold		
	Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default: exp(3).	
batch.size.increment		
	function. Increment in sample size at each sequential step. Default: function(narg){20}. This means an increment of 20 samples at each step.	
nReplicate	Positve integer. Number of replicated studies based on which the OC and ASN are calculated. Default: 50,000.	
nCore	Positive integer. Default: One less than the total number of available cores.	

Numeric vector. Standardized effect sizes μ/σ_0 where OC and ASN are desired.

50 SBFHajnal_twot

Value

A list with three components named summary, BF, and N.

\$summary is a data frame with columns effect.size containing the values in es. At those values, acceptH0 contains the proportion of times H_0 is accepted, rejectH0 contains the proportion of times H_0 is rejected, inconclusive contains the proportion of times the test is inconclusive, ASN contains the ASN, and avg.logBF contains the expected weight of evidence values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size in nReplicate replicated studies.

\$N is a matrix of the same dimension as \$BF. Each row contains the sample size required to reach a decision at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

```
Hajnal, J. (1961). A two-sample sequential t-test.Biometrika, 48:65-75, [Article]. Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test.Biometrika, 48:65-75, [Ar-
```

Schnuerch, M. and Erdfelder, E. (2020). A two-sample sequential t-test.Biometrika, 48:65-75, [Article].

Examples

```
out = SBFHajnal_onez(nmax = 100, es = c(0, 0.3), nCore = 1)
```

```
SBFHajnal_twot Sequential Bayes Factor using the Hajnal's ratio for two-sample t-
tests
```

Description

In case of two independent populations $N(\mu_1,\sigma^2)$ and $N(\mu_2,\sigma^2)$ with unknown common variance σ^2 , consider the two-sample t-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. This function calculates the operating characteristics (OC) and average sample number (ASN) of the Sequential Bayes Factor design when the prior assumed under the alternative on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma$ places equal probability at $+\delta$ and $-\delta$ ($\delta>0$ prefixed).

Usage

SBFHajnal_twot 51

Numeric vector. Standardized effect size differences $(\mu_2 - \mu_1)/\sigma$ where OC

Arguments es

	and ASN are desired. Default: c(0, 0.2, 0.3, 0.5).
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on $(\mu_2 - \mu_1)/\sigma$ takes values 0.3 and -0.3 each with equal probability 1/2.
n1min	Positive integer. Minimum sample size from Group-1 in the sequential comparison. Should be at least 2. Default: 1.
n2min	Positive integer. Minimum sample size from Group-2 in the sequential comparison. Should be at least 2. Default: 1.
n1max	Positive integer. Maximum sample size from Group-1 in the sequential comparison. Default: 1.
n2max	Positive integer. Maximum sample size from Group-2 in the sequential compar-
ison. Default: 1. RejectH1.threshold	
	Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold}$. Default: $\exp(-3)$.
RejectH0.threshold	
	Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default: exp(3).
batch1.size.increment	
	function. Increment in sample size from Group-1 at each sequential step. Default: function(narg){20}. This means an increment of 20 samples at each step.

batch2.size.increment

function. Increment in sample size from Group-2 at each sequential step. **Default:** function(narg){20}. This means an increment of 20 samples at each step.

nReplicate

Positve integer. Number of replicated studies based on which the OC and ASN are calculated. **Default:** 50,000.

nCore Positive

Positive integer. **Default:** One less than the total number of available cores.

Value

A list with three components named summary, ${\sf BF}$, and ${\sf N}$.

\$summary is a data frame with columns effect.size containing the values in es. At those values, acceptH0 contains the proportion of times H_0 is accepted, rejectH0 contains the proportion of times H_0 is rejected, inconclusive contains the proportion of times the test is inconclusive, ASN contains the ASN, and avg.logBF contains the expected weight of evidence values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size in nReplicate replicated studies.

\$N is a matrix of the same dimension as \$BF. Each row contains the sample size required to reach a decision at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

52 SBFHajnal_twoz

References

Hajnal, J. (1961). *A two-sample sequential t-test.Biometrika*, 48:65-75, [Article]. Schnuerch, M. and Erdfelder, E. (2020). *A two-sample sequential t-test.Biometrika*, 48:65-75, [Article].

Examples

```
out = SBFHajnal_twot(n1max = 100, n2max = 100, es = c(0, 0.3), nCore = 1)
```

SBFHajnal_twoz

Sequential Bayes Factor using the Hajnal's ratio for two-sample z-tests

Description

In case of two independent populations $N(\mu_1,\sigma_0^2)$ and $N(\mu_2,\sigma_0^2)$ with known common variance σ_0^2 , consider the two-sample z-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. This function calculates the operating characteristics (OC) and average sample number (ASN) of the Sequential Bayes Factor design when the prior assumed under the alternative on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma_0$ places equal probability at $+\delta$ and $-\delta$ ($\delta>0$ prefixed).

Usage

```
SBFHajnal_twoz(es = c(0, 0.2, 0.3, 0.5), es1 = 0.3,

n1min = 1, n2min = 1, n1max = 5000, n2max = 5000, sigma0 = 1,

RejectH1.threshold = exp(-3), RejectH0.threshold = exp(3),

batch1.size.increment, batch2.size.increment,

nReplicate = 50000, nCore)
```

Arguments

es	Numeric vector. Standardized effect size differences $(\mu_2 - \mu_1)/\sigma_0$ where OC and ASN are desired. Default: c(0, 0.2, 0.3, 0.5).
es1	Positive numeric. δ as above. Default: 0.3. For this, the prior on $(\mu_2 - \mu_1)/\sigma_0$ takes values 0.3 and -0.3 each with equal probability 1/2.
n1min	Positive integer. Minimum sample size from Group-1 in the sequential comparison. Default: 1.
n2min	Positive integer. Minimum sample size from Group-2 in the sequential comparison. Default: 1.
n1max	Positive integer. Maximum sample size from Group-1 in the sequential comparison. Default: 1.
n2max	Positive integer. Maximum sample size from Group-2 in the sequential comparison. Default: 1.

SBFHajnal_twoz 53

Positive numeric. Known common standard deviation of the populations. **Default:** 1.

RejectH1.threshold

Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold}$. **Default:** $\exp(-3)$.

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default: $\exp(3)$.

batch1.size.increment

function. Increment in sample size from Group-1 at each sequential step. **Default:** function(narg){20}. This means an increment of 20 samples at each step.

batch2.size.increment

function. Increment in sample size from Group-2 at each sequential step. **Default:** function(narg){20}. This means an increment of 20 samples at each step.

nReplicate Positve integer. Number of replicated studies based on which the OC and ASN

are calculated. **Default:** 50,000.

nCore Positive integer. **Default:** One less than the total number of available cores.

Value

A list with three components named summary, BF, and N.

\$summary is a data frame with columns effect.size containing the values in es. At those values, acceptH0 contains the proportion of times H_0 is accepted, rejectH0 contains the proportion of times H_0 is rejected, inconclusive contains the proportion of times the test is inconclusive, ASN contains the ASN, and avg.logBF contains the expected weight of evidence values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size in nReplicate replicated studies.

\$N is a matrix of the same dimension as \$BF. Each row contains the sample size required to reach a decision at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Hajnal, J. (1961). A two-sample sequential t-test. Biometrika, 48:65-75, [Article].

Schnuerch, M. and Erdfelder, E. (2020). *A two-sample sequential t-test.Biometrika*, 48:65-75, [Article].

```
out = SBFHajnal_twoz(n1max = 100, n2max = 100, es = c(0, 0.3), nCore = 1)
```

54 SBFNAP_onet

SBFNAP_onet

Sequential Bayes Factor using the NAP for one-sample t-tests

Description

In a $N(\mu,\sigma^2)$ population with unknown variance σ^2 , consider the two-sided one-sample t-test for testing the point null hypothesis $H_0: \mu=0$ against $H_1: \mu\neq 0$. This function calculates the operating characteristics (OC) and average sample number (ASN) of the Sequential Bayes Factor design when a *normal moment prior* is assumed on the standardized effect size μ/σ under the alternative.

Usage

Arguments

es Numeric vector. Standardized effect sizes μ/σ where OC and ASN are desired.

Default: c(0, 0.2, 0.3, 0.5).

nmin Positive integer. Minimum sample size in the sequential comparison. Should be

at least 2. **Default:** 1.

nmax Positive integer. Maximum sample size in the sequential comparison. **Default:**

Ι.

tau. NAP Positive numeric. Parameter in the moment prior. **Default:** $0.3/\sqrt{2}$. This places

the prior modes of the standardized effect size μ/σ at 0.3 and -0.3.

RejectH1.threshold

Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold.}$ Default:

exp(-3).

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default:

exp(3).

batch.size.increment

function. Increment in sample size at each sequential step. Default: function(narg){20}.

This means an increment of 20 samples at each step.

nReplicate Positve integer. Number of replicated studies based on which the OC and ASN

are calculated. **Default:** 50,000.

nCore Positive integer. **Default:** One less than the total number of available cores.

SBFNAP_onez 55

Value

A list with three components named summary, BF, and N.

\$summary is a data frame with columns effect.size containing the values in es. At those values, acceptH0 contains the proportion of times H_0 is accepted, rejectH0 contains the proportion of times H_0 is rejected, inconclusive contains the proportion of times the test is inconclusive, ASN contains the ASN, and avg.logBF contains the expected weight of evidence values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size in nReplicate replicated studies.

\$N is a matrix of the same dimension as \$BF. Each row contains the sample size required to reach a decision at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

Examples

```
out = SBFNAP_onet(nmax = 100, es = c(0, 0.3), nCore = 1)
```

SBFNAP_onez

Sequential Bayes Factor using the NAP for one-sample z-tests

Description

In a $N(\mu, \sigma_0^2)$ population with known variance σ_0^2 , consider the two-sided one-sample z-test for testing the point null hypothesis $H_0: \mu=0$ against $H_1: \mu\neq 0$. This function calculates the operating characteristics (OC) and average sample number (ASN) of the Sequential Bayes Factor design when a *normal moment prior* is assumed on the standardized effect size μ/σ_0 under the alternative.

Usage

56 SBFNAP_onez

Arguments

es Numeric vector. Standardized effect sizes μ/σ_0 where OC and ASN are desired.

Default: c(0, 0.2, 0.3, 0.5).

nmin Positive integer. Minimum sample size in the sequential comparison. **Default:**

1.

nmax Positive integer. Maximum sample size in the sequential comparison. **Default:**

1.

tau. NAP Positive numeric. Parameter in the moment prior. **Default:** $0.3/\sqrt{2}$. This places

the prior modes of the standardized effect size μ/σ_0 at 0.3 and -0.3.

sigma0 Positive numeric. Known standard deviation in the population. **Default:** 1.

RejectH1.threshold

Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold.}$ Default:

exp(-3).

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default:

exp(3).

batch.size.increment

function. Increment in sample size at each sequential step. **Default:** function(narg){20}.

This means an increment of 20 samples at each step.

nReplicate Positve integer. Number of replicated studies based on which the OC and ASN

are calculated. **Default:** 50,000.

nCore Positive integer. **Default:** One less than the total number of available cores.

Value

A list with three components named summary, BF, and N.

\$summary is a data frame with columns effect.size containing the values in es. At those values, acceptH0 contains the proportion of times H_0 is accepted, rejectH0 contains the proportion of times H_0 is rejected, inconclusive contains the proportion of times the test is inconclusive, ASN contains the ASN, and avg.logBF contains the expected weight of evidence values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size in nReplicate replicated studies.

\$N is a matrix of the same dimension as \$BF. Each row contains the sample size required to reach a decision at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

SBFNAP_twot 57

Examples

```
out = SBFNAP_onez(nmax = 100, es = c(0, 0.3), nCore = 1)
```

SBFNAP_twot

Sequential Bayes Factor using the NAP for two-sample t-tests

Description

In case of two independent populations $N(\mu_1,\sigma^2)$ and $N(\mu_2,\sigma^2)$ with unknown common variance σ^2 , consider the two-sample z-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. This function calculates the operating characteristics (OC) and average sample number (ASN) of the Sequential Bayes Factor design when a normal moment prior is assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma$ under the alternative.

Usage

Arguments

	es	Numeric vector. Standardized effect size differences $(\mu_2 - \mu_1)/\sigma$ where OC and ASN are desired. Default: c(0, 0.2, 0.3, 0.5).
	n1min	Positive integer. Minimum sample size from Group-1 in the sequential comparison. Should be at least 2. Default: 1.
	n2min	Positive integer. Minimum sample size from Group-2 in the sequential comparison. Should be at least 2. Default: 1.
	n1max	Positive integer. Maximum sample size from Group-1 in the sequential comparison. Default: 1.
	n2max	Positive integer. Maximum sample size from Group-2 in the sequential comparison. Default: 1.
	tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of $(\mu_2 - \mu_1)/\sigma$ at 0.3 and -0.3 .
RejectH1.threshold		
		Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold}$. Default: exp(-3).
	Daisatlla thread	ام الم

RejectH0.threshold

Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default: $\exp(3)$.

58 SBFNAP_twot

batch1.size.increment

function. Increment in sample size from Group-1 at each sequential step. **Default:** function(narg){20}. This means an increment of 20 samples at each step.

batch2.size.increment

function. Increment in sample size from Group-2 at each sequential step. **Default:** function(narg){20}. This means an increment of 20 samples at each step.

nReplicate Positve integer. Number of replicated studies based on which the OC and ASN

are calculated. **Default:** 50,000.

nCore Positive integer. **Default:** One less than the total number of available cores.

Value

A list with three components named summary, BF, and N.

\$summary is a data frame with columns effect.size containing the values in es. At those values, acceptH0 contains the proportion of times H_0 is accepted, rejectH0 contains the proportion of times H_0 is rejected, inconclusive contains the proportion of times the test is inconclusive, ASN contains the ASN, and avg.logBF contains the expected weight of evidence values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size in nReplicate replicated studies.

\$N is a matrix of the same dimension as \$BF. Each row contains the sample size required to reach a decision at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

```
out = SBFNAP_twot(n1max = 100, n2max = 100, es = c(0, 0.3), nCore = 1)
```

SBFNAP_twoz 59

 ${\tt SBFNAP_twoz}$

Sequential Bayes Factor using the NAP for two-sample z-tests

Description

In case of two independent populations $N(\mu_1,\sigma_0^2)$ and $N(\mu_2,\sigma_0^2)$ with known common variance σ_0^2 , consider the two-sample z-test for testing the point null hypothesis of difference in their means $H_0: \mu_2 - \mu_1 = 0$ against $H_1: \mu_2 - \mu_1 \neq 0$. This function calculates the operating characteristics (OC) and average sample number (ASN) of the Sequential Bayes Factor design when a normal moment prior is assumed on the difference between standardized effect sizes $(\mu_2 - \mu_1)/\sigma_0$ under the alternative.

Usage

Arguments

es	Numeric vector. Standardized effect size differences $(\mu_2 - \mu_1)/\sigma_0$ where OC and ASN are desired. Default: c(0, 0.2, 0.3, 0.5).
n1min	Positive integer. Minimum sample size from Group-1 in the sequential comparison. Default: 1.
n2min	Positive integer. Minimum sample size from Group-2 in the sequential comparison. Default: 1.
n1max	Positive integer. Maximum sample size from Group-1 in the sequential comparison. Default: 1.
n2max	Positive integer. Maximum sample size from Group-2 in the sequential comparison. Default: 1.
tau.NAP	Positive numeric. Parameter in the moment prior. Default: $0.3/\sqrt{2}$. This places the prior modes of $(\mu_2 - \mu_1)/\sigma_0$ at 0.3 and -0.3 .
sigma0	Positive numeric. Known common standard deviation of the populations. Default: 1.
RejectH1.threshold	
	Positive numeric. H_0 is accepted if $BF \leq \text{RejectH1.threshold}$. Default: $\exp(-3)$.
RejectH0.threshold	
	Positive numeric. H_0 is rejected if $BF \ge \text{RejectH0.threshold.}$ Default:

exp(3).

60 SBFNAP_twoz

batch1.size.increment

function. Increment in sample size from Group-1 at each sequential step. **Default:** function(narg){20}. This means an increment of 20 samples at each step.

batch2.size.increment

function. Increment in sample size from Group-2 at each sequential step. **Default:** function(narg){20}. This means an increment of 20 samples at each step.

step.

nReplicate Positve integer. Number of replicated studies based on which the OC and ASN

are calculated. **Default:** 50,000.

nCore Positive integer. **Default:** One less than the total number of available cores.

Value

A list with three components named summary, BF, and N.

\$summary is a data frame with columns effect.size containing the values in es. At those values, acceptH0 contains the proportion of times H_0 is accepted, rejectH0 contains the proportion of times H_0 is rejected, inconclusive contains the proportion of times the test is inconclusive, ASN contains the ASN, and avg.logBF contains the expected weight of evidence values.

\$BF is a matrix of dimension length(es) by nReplicate. Each row contains the Bayes factor values at the corresponding standardized effec size in nReplicate replicated studies.

\$N is a matrix of the same dimension as \$BF. Each row contains the sample size required to reach a decision at the corresponding standardized effec size in nReplicate replicated studies.

Author(s)

Sandipan Pramanik and Valen E. Johnson

References

Pramanik, S. and Johnson, V. (2022). Efficient Alternatives for Bayesian Hypothesis Tests in Psychology. Psychological Methods. Just accepted.

Johnson, V. and Rossell, R. (2010). On the use of non-local prior densities in Bayesian hypothesis tests. Journal of the Royal Statistical Society: Series B, 72:143-170. [Article]

```
out = SBFNAP_twoz(n1max = 100, n2max = 100, es = c(0, 0.3), nCore = 1)
```

Index

```
fixedHajnal.onet_es, 4
                                                NAPBF_twoz, 46
fixedHajnal.onet_n, 5
                                                SBFHajnal_onet, 47
fixedHajnal.onez_es, 6
                                                SBFHajnal_onez, 49
fixedHajnal.onez_n, 7
                                                SBFHajnal_twot, 50
fixedHajnal.twot_es, 8
                                                SBFHajnal_twoz, 52
{\tt fixed Hajnal.twot\_n, 10}
                                                SBFNAP_onet, 54
fixedHajnal.twoz_es, 11
                                                SBFNAP_onez, 55
fixedHajnal.twoz_n, 12
                                                SBFNAP_twot, 57
fixedNAP.onet_es, 13
                                                SBFNAP_twoz, 59
fixedNAP.onet_n, 15
fixedNAP.onez_es, 16
fixedNAP.onez_n, 17
fixedNAP.twot_es, 18
fixedNAP.twot_n, 20
fixedNAP.twoz_es, 21
fixedNAP.twoz_n, 23
HajnalBF_onet, 24
HajnalBF_onez, 25
HajnalBF_twot, 26
HajnalBF_twoz, 28
implement.SBFHajnal_onet, 29
implement.SBFHajnal_onez, 30
implement.SBFHajnal_twot, 32
implement.SBFHajnal_twoz, 33
implement.SBFNAP_onet, 35
implement.SBFNAP_onez, 36
implement.SBFNAP_twot, 37
implement.SBFNAP_twoz, 39
mycombine.fixed, 40
mycombine.seq.onesample, 41
mycombine.seq.twosample, 41
NAP (NAP-package), 3
NAP-package, 3
NAPBF_onet, 42
NAPBF_onez, 43
NAPBF_twot, 44
```