
Package ‘NMdata’
July 21, 2025

Type Package

Title Preparation, Checking and Post-Processing Data for PK/PD
Modeling

Version 0.2.1

Maintainer Philip Delff <philip@delff.dk>

Description Efficient tools for preparation, checking and post-processing of data in PK/PD (pharma-
cokinetics/pharmacodynamics) modeling, with focus on use of Nonmem, including consis-
tency, traceability, and Nonmem compatibility of Data. Rigorously checks final Non-
mem datasets. Implemented in 'data.table', but easily integrated with 'base' and 'tidyverse'.

License MIT + file LICENSE

RoxygenNote 7.3.2

Depends R (>= 3.1.0)

Imports data.table, fst

Suggests testthat, knitr, NMsim, NMcalc, formatR, mime, rmarkdown,
ggplot2, tibble, covr, htmltools, spelling

Encoding UTF-8

BugReports https://github.com/nmautoverse/NMdata/issues

Language en-US

URL https://nmautoverse.github.io/NMdata/

NeedsCompilation no

Author Philip Delff [aut, cre],
Brian Reilly [ctb],
Eric Anderson [ctb]

Repository CRAN

Date/Publication 2025-07-07 18:30:09 UTC

1

https://github.com/nmautoverse/NMdata/issues
https://nmautoverse.github.io/NMdata/

2 Contents

Contents
addCor . 3
addOmegaCorr . 4
addTAPD . 4
cc . 6
cl . 7
colLabels . 8
compareCols . 8
dims . 10
dt2mat . 11
editCharCols . 12
egdt . 13
findCovs . 14
findVars . 15
flagsAssign . 16
flagsCount . 18
fnAppend . 20
fnExtension . 21
is.NMdata . 22
listMissings . 22
mat2dt . 23
mergeCheck . 24
NMcheckColnames . 27
NMcheckData . 27
NMdataConf . 31
NMdataOperations . 34
NMexpandDoses . 35
NMextractDataFile . 36
NMextractText . 36
NMgenText . 38
NMinfo . 40
NMisNumeric . 41
NMorderColumns . 41
NMreadCov . 44
NMreadCsv . 44
NMreadExt . 45
NMreadFilters . 47
NMreadInits . 48
NMreadParsText . 48
NMreadPhi . 51
NMreadSection . 52
NMreadShk . 54
NMreadSizes . 54
NMreadTab . 55
NMrelate . 56
NMreplaceDataFile . 57
NMscanData . 58

addCor 3

NMscanInput . 61
NMscanMultiple . 64
NMscanTables . 65
NMstamp . 67
NMwriteData . 68
NMwriteSection . 70
print.summary_NMdata . 72
renameByContents . 73
summary.NMdata . 74
triagSize . 74
uniquePresent . 75
unNMdata . 76

Index 77

addCor add correlations of off-diagonal OMEGA and SIGMA elements to a
parameter table

Description

add correlations of off-diagonal OMEGA and SIGMA elements to a parameter table

Usage

addCor(pars, by = NULL, as.fun, col.value = "value")

Arguments

pars A parameter table, like returned by ‘NMreadExt()‘.

by The name of a column, as a string. Calculate the correlations within a grouping
variable? This will often be a column containing the model name.

as.fun See ‘?NMdataConf‘

col.value The name of the column from which to take the ‘OMEGA‘ values. Default is
"value" in alignment with the output from ‘NMreadExt()‘.

Value

The parameter table with a ‘corr‘ column added.

4 addTAPD

addOmegaCorr Deprecated: use addCor. Add correlations to parameter table

Description

Anything arguments are passed to ‘addCor()‘. See ‘?addCor()‘.

Usage

addOmegaCorr(...)

Arguments

... Passed to addCor

Value

The parameter table with a ‘corr‘ column added.

addTAPD Add time since previous dose to data, time of previous dose, most re-
cent dose amount, cumulative number of doses, and cumulative dose
amount.

Description

For now, doses have to be in data as EVID=1 and/or EVID=4 records. They can be in the format of
one row per dose or repeated dosing notation using ADDL and II.

Usage

addTAPD(
data,
col.id,
col.time,
col.evid = "EVID",
col.amt = "AMT",
col.tpdos = "TPDOS",
col.tapd = "TAPD",
col.pdosamt = "PDOSAMT",
col.doscuma = "DOSCUMA",
col.doscumn = "DOSCUMN",
prefix.cols,
suffix.cols,
subset.dos,
subset.is.complete,

addTAPD 5

order.evid = c(3, 0, 2, 4, 1),
by,
SDOS = 1,
quiet,
as.fun,
col.ndoses

)

Arguments

data The data set to add the variables to.
col.id The name of the column with the subject identifier. All calculations are by

default done by subject, so this column name must be provided. Default is
controlled by ‘?NMdataConf()‘.

col.time Name of time column on which calculations of relative times will be based.
Default it "TIME". Default is controlled by ‘?NMdataConf()‘.

col.evid The name of the event ID column. This must exist in data. Default is EVID.
col.amt col.evid The name of the dose amount column. This must exist in data. Default

is AMT.
col.tpdos Name of the time of previous dose column (created by addTAPD()). Default is

"TPDOS". Set to NULL to not create this column.
col.tapd Name of the time of previous dose column (created by addTAPD()). Default is

"TAPD". Set to NULL to not create this column.
col.pdosamt The name of the column to be created holding the previous dose amount. Set to

NULL to not create this column.
col.doscuma The name of the column to be created holding the cumulative dose amount. Set

to NULL to not create this column.
col.doscumn The name of the column (created by addTAPD) that holds the cumulative num-

ber of doses administered to the subject. Set to NULL to not create this column.
prefix.cols String to be prepended to all generated column names, that is each of col.tpdos,

col.tapd, col.ndoses, col.pdosamt, col.doscuma that are not NULL.
suffix.cols String to be appended to all generated column names, that is each of col.tpdos,

col.tapd, col.ndoses, col.pdosamt, col.doscuma that are not NULL.
subset.dos A string that will be evaluated as a custom expression to identify relevant events.

See subset.is.complete as well.
subset.is.complete

Only used in combination with non-missing subset.dos. By default, subset.dos
is used in addition to the impact of col.evid (must be 1 or 4) and col.amt (greater
than zero). If subset.is.complete=TRUE, subset.dos is used alone, and col.evid
and col.amt are completely ignored. This is typically useful if the events are not
doses but other events that are not expressed as a typical dose combination of
EVID and AMT columns.

order.evid Order of events. This will only matter if there are simultaneous events of dif-
ferent event types within subjects. Typically if using nominal time, it may be
important to specify whether samples at dosing times are pre-dose samples. The
default is ‘c(3,0,4,1,2)‘ - i.e. samples and simulations are pre-dose. See details.

6 cc

by Columns to do calculations within. Default is ID.

SDOS Scaling value for columns related to dose amount, relative to AMT values.
col.pdosamt and col.doscuma are affected and will be derived as AMT/SDOSE.

quiet Suppress messages? Default can be set using ‘NMdataConf()‘.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If data.tables are wanted, use ‘as.fun="data.table"‘.
The default can be configured using NMdataConf.

col.ndoses Deprecated. Use col.doscumn instead.

Details

addTAPD does not require the data to be ordered, and it will not order it. This means you can run
addTAPD before ordering data (which may be one of the final steps) in data set preparation. The
argument called order.evid is important because of this. If a dosing event and a sample occur at the
same time, when which dose was the previous for that sample? Default is to assume the sample is a
pre-dose sample, and hence output will be calculated in relation to the dose before. If no dose event
is found before, NA’s will be assigned.

Value

A data.frame with additional columns

See Also

Other DataCreate: NMorderColumns(), NMstamp(), NMwriteData(), findCovs(), findVars(),
flagsAssign(), flagsCount(), mergeCheck(), tmpcol()

cc Create character vectors without quotation marks

Description

When creating character vectors with several elements, it becomes a lot of quotes to type. cc
provides a simple way to skip the quotes - but only for simple strings.

Usage

cc(...)

Arguments

... The unquoted names that will become character values in the returned vector.

Details

Don’t use cc with any special characters - only alphanumerics and no spaces supported. Also,
remember that numerics are converted using as.character. Eg, this means that leading zeros are
dropped.

cl 7

Value

A character vector

See Also

cl

Examples

cc(a,b,`a b`)
cc(a,b,"a b")
be careful with spaces and special characters
cc(d)
cc(" d")
cc()
Numerics are converted using as.character
cc(001,1,13e3)

cl Define a vector with factor levels in the same order as occurring in the
vector.

Description

This is a shortcut for creating factors with levels as the order of appearance of the specified levels.

Usage

cl(...)

Arguments

... unique elements or vectors with unique elements

Value

A factor (vector)

See Also

cc

Examples

factor("b","a")
cl("b","a")
x <- c("b","a")
factor(x)
cl(x)

8 compareCols

colLabels Extract column labels as defined in SAS

Description

Extract column labels as defined in SAS

Usage

colLabels(...)

Arguments

... See ‘?compareCols‘

Value

A data.frame with variable and their labels

See Also

compareCols NMinfo

compareCols Compare elements in lists with aim of combining

Description

Useful interactive tool when merging or binding objects together. It lists the names of elements that
differ in presence or class across multiple datasets. Before running rbind, you may want to check
the compatibility of the data.

Usage

compareCols(
...,
list.data,
keep.names = TRUE,
test.equal = FALSE,
diff.only = TRUE,
cols.wanted,
fun.class = base::class,
quiet,
as.fun,
keepNames,
testEqual

)

compareCols 9

Arguments

... objects which element names to compare

list.data As alternative to ..., you can supply the data sets in a list here.

keep.names If TRUE, the original dataset names are used in reported table. If not, generic
x1, x2,... are used. The latter may be preferred for readability.

test.equal Do you just want a TRUE/FALSE to whether the names of the two objects are
the same? Default is FALSE which means to return an overview for interac-
tive use. You might want to use TRUE in programming. However, notice that
this check may be overly rigorous. Many classes are compatible enough (say
numeric and integer), and compareCols doesn’t take this into account.

diff.only If TRUE, don’t report columns where no difference found. Default is TRUE if
number of data sets supplied is greater than one. If only one data set is supplied,
the full list of columns is shown by default.

cols.wanted Columns of special interest. These will always be included in overview and
indicated by a prepended * to the column names. This argument is often useful
when you start by defining a set of columns that you want to end up with by
combining a number of data sets.

fun.class the function that will be run on each column to check for differences. base::class
is default. Notice that the alternative ‘base::typeof‘ is different in certain ways.
For instance, ‘typeof‘ will not report a difference on numeric vs difftime. You
could basically submit any function that takes a vector and returns a single value.

quiet The default is to give some information along the way on what data is found. But
consider setting this to TRUE for non-interactive use. Default can be configured
using NMdataConf.

as.fun A function that will be run on the result before returning. If first input data set
is a data.table, the default is to return a data.table, if not the default is to return a
data.frame. Use whatever to get what fits in with your workflow. Default can be
configured with NMdataConf.

keepNames Deprecated. Use keep.names instead.

testEqual Deprecated. Use test.equal instead.

Details

technically, this function compares classes of elements in lists. However, in relation to NMdata, this
will most of the time be columns in data.frames.

Despite the name of the argument fun.class, it can be any function to be evaluated on each element
in ‘...‘. See examples for how to extract SAS labels on an object read with ‘read_sas‘ from the
‘haven‘ package.

Value

A data.frame with an overview of elements and their classes of objects in ... Class as defined by
as.fun.

10 dims

See Also

Other DataWrangling: dims(), listMissings()

Examples

get SAS labels from objects read with haven::read_sas
Not run:
compareCols(...,fun.class=function(x)attributes(x)$label)

End(Not run)

dims Get dimensions of multiple objects

Description

Get dimensions of multiple objects

Usage

dims(..., list.data, keep.names = TRUE, as.fun = NULL, keepNames)

Arguments

... data sets

list.data As alternative to ..., you can supply the data sets in a list here.

keep.names If TRUE, the original dataset names are used in reported table. If not, generic
x1, x2,... are used. The latter may be preferred for readability in some cases.

as.fun A function that will be run on the result before returning. If first input data set
is a data.table, the default is to return a data.table, if not the default is to return a
data.frame. Use whatever to get what fits in with your workflow. Default can be
configured with NMdataConf.

keepNames Deprecated. Use keep.names instead.

Value

A data.frame with dimensions of objects in ... Actual class defined by as.fun.

See Also

Other DataWrangling: compareCols(), listMissings()

dt2mat 11

dt2mat Convert a data.table of parameter estimates to a matrix

Description

Often needed when using estimates of Omega or Sigma matrices in further calculations.

Usage

dt2mat(pars, dt.subset = "unique", max.i, fill = 0, col.value)

Arguments

pars A data.table with parameters. Must contain columns ‘i‘ and ‘j‘ with row and
column indexes and ‘est‘ with parameter (matrix) values.

dt.subset Specifies whether pars contains only a lower or upper triangle of an assumed
symmetric matrix (most often the case for variance-covariance matrices), or it
contains the full matrix. ‘dt.subset="unique"‘ (default) means that ‘pars‘ only
contains either upper or lower diagonal matrix (including diagonal), ‘dt.subset="all"‘
means ‘pars‘ contains both upper and lower triangles. See details.

max.i By default, the maximum row number is derived as he maximum value in the
‘i‘ column. If more (empty ones) are needed, specify the maximum row number
with ‘max.i‘. This can be necessary in cases where only estimated elements
are available but a full matrix including elements related to fixed parameters is
needed.

fill Value to insert for missing elements

col.value The name of the column from which to take the ‘OMEGA‘ values. Default is
"value" in alignment with the output from ‘NMreadExt()‘.

Details

If pars does not contain all ‘i‘ values, they will be imputed with zeros. The desired matrix dimension
is inferred from ‘min(i)‘ and ‘max(i)‘. In case ‘dt.subset=="unique"‘ missing ‘j‘ elements will also
give imputations of missing elements.

Value

a matrix

12 editCharCols

editCharCols Replace strings in character character columns of a data set

Description

Replace strings in character character columns of a data set

Usage

editCharCols(data, pattern, replacement, as.fun, ...)

Arguments

data The data set to edit.

pattern Pattern to search for in character columns. Passed to ‘gsub()‘. By default,
‘gsub()‘ works with regular expressions. See ... for how to disable this if you
want to replace a specific string.

replacement pattern or string to replace with. Passed to ‘gsub()‘.

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

... Additional arguments passed to ‘gsub()‘. Especially, notice fixed=TRUE will
disable interpretation of ‘pattern‘ and ‘replace‘ as regular expressions.

Value

a data.frame

Examples

remove commas from character columns
dat <- data.frame(A=1:3,text=cc(a,"a,d","g"))
editCharCols(dat,pattern=",","")
factors are not edited but result in an error
Not run:
dat <- data.frame(A=1:3,text=cc(a,"a,d",g),fac=cl("a","a,d","g"))
editCharCols(dat,pattern=",","")

End(Not run)

egdt 13

egdt Expand grid of data.tables

Description

Expand grid of data.tables

Usage

egdt(dt1, dt2, quiet)

Arguments

dt1 a data.table.

dt2 another data.table.

quiet The default is to give some information along the way on what data is found. But
consider setting this to TRUE for non-interactive use. Default can be configured
using NMdataConf.

Details

Merging works mostly similarly for data.table and data.table. However, for data.table the merge
must be done by one or more columns. This means that the convenient way to expand all combi-
nations of all rows in two data.frames is not available for data.tables. This functions provides that
functionality. It always returns data.tables.

Value

a data.table that expands combinations of rows in dt1 and dt2.

Examples

df1 <- data.frame(a=1:2,b=3:4)
df2 <- data.frame(c=5:6,d=7:8)
merge(df1,df2)
library(data.table)
This is not possible
Not run:
merge(as.data.table(df1),as.data.table(df2),allow.cartesian=TRUE)

End(Not run)
Use egdt instead
egdt(as.data.table(df1),as.data.table(df2),quiet=TRUE)
Dimensions are conveniently listed for interactive use
res <- egdt(as.data.table(df1),as.data.table(df2))

14 findCovs

findCovs Extract columns that vary within values of other columns

Description

This function provides an automated method to extract covariate-like columns. The user decides
which columns these variables cannot vary within. So if you have repeated measures for each ID,
this function can find the columns that are constant within ID and their unique values for each ID.
Or, you can provide a combination of id.cols, say ID and STUDY, and get variables that do not vary
within unique combinations of these.

Usage

findCovs(data, by = NULL, cols.id, as.fun = NULL)

Arguments

data data.frame in which to look for covariates

by covariates will be searched for in combinations of values in these columns. Of-
ten by will be either empty or ID. But it can also be both say c("ID","DRUG")
or c("ID","TRT").

cols.id Deprecated. Use by instead.

as.fun The default is to return a data.table if data is a data.table and return a data.frame
in all other cases. Pass a function in as.fun to convert to something else. If data
is not a data.table, the default can be configured using NMdataConf.

Value

a data set with one observation per combination of values of variables listed in by.

See Also

Other DataCreate: NMorderColumns(), NMstamp(), NMwriteData(), addTAPD(), findVars(),
flagsAssign(), flagsCount(), mergeCheck(), tmpcol()

Examples

dt1=data.frame(ID=c(1,1,2,2),
OCC=c(1,2,1,2),
ID level
eta1=c(1,1,3,3),
occasion level
eta2=c(1,3,1,5),
not used
eta3=0
)

model level

findVars 15

findCovs(dt1)
ID level
findCovs(dt1,"ID")
acual ID level
findVars(findCovs(dt1,"ID"))
occasion level
findCovs(findVars(dt1,"ID"),c("ID","OCC"))
Based on a "real data example"
Not run:
dat <- NMscanData(system.file("examples/nonmem/xgxr001.lst", package = "NMdata"))
findCovs(dat,by="ID")
Without an ID column we get non-varying columns
findCovs(dat)

End(Not run)

findVars Extract columns that vary within values of other columns in a
data.frame

Description

If you want to look at the variability of a number of columns and you want to disregard those that
are constant. Like for findCovs, by can be of arbitrary length.

Usage

findVars(data, by = NULL, cols.id, as.fun = NULL)

Arguments

data data.frame in which to look for covariates

by optional covariates will be searched for in combinations of values in these columns.
Often by will be either empty or ID. But it can also be both say c("ID","DRUG")
or c("ID","TRT").

cols.id Deprecated. Use by instead.

as.fun The default is to return a data.table if data is a data.table and return a data.frame
in all other cases. Pass a function in as.fun to convert to something else. If data
is not a data.table, the default can be configured using NMdataConf.

Details

Use this to exclude columns that are constant within by. If by=ID, this could be to get only time-
varying covariates.

Value

a data set with as many rows as in data.

16 flagsAssign

See Also

Other DataCreate: NMorderColumns(), NMstamp(), NMwriteData(), addTAPD(), findCovs(),
flagsAssign(), flagsCount(), mergeCheck(), tmpcol()

Examples

dt1 <- data.frame(ID=c(1,1,2,2),
OCC=c(1,2,1,2),

ID level
eta1=c(1,1,3,3),

occasion level
eta2=c(1,3,1,5),

not used
eta3=0

)
model level
findCovs(dt1)
ID level
findCovs(dt1,"ID")
acual ID level
findVars(findCovs(dt1,"ID"))
occasion level
findCovs(findVars(dt1,"ID"),c("ID","OCC"))

flagsAssign Assign exclusion flags to a dataset based on specified table

Description

The aim with this function is to take a (say PK) dataset and a pre-specified table of flags, assign the
flags automatically.

Usage

flagsAssign(
data,
tab.flags,
subset.data,
col.flagn,
col.flagc,
flags.increasing = FALSE,
grp.incomp = "EVID",
flagc.0 = "Analysis set",
as.fun = NULL

)

flagsAssign 17

Arguments

data The dataset to assign flags to.

tab.flags A data.frame containing at least these named columns: FLAG, flag, condi-
tion. Condition is disregarded for FLAG==0. FLAG must be numeric and non-
negative, flag and condition are characters.

subset.data An optional string that provides a subset of data to assign flags to. A common
example is subset=\"EVID==0\" to only assign to observations. Numerical and
character flags will be missing in rows that are not matched by this subset.

col.flagn The name of the column containing the numerical flag values in tab.flags. This
will be added to data. Default value is FLAG and can be configured using NM-
dataConf.

col.flagc The name of the column containing the character flag values in tab.flags. This
will be added to data. Default value is flag and can be configured using NMdat-
aConf.

flags.increasing

The flags are applied by either decreasing (default) or increasing value of col.flagn.
Decreasing order means that conditions associated with higher values of col.flagn
will be evaluated first. By using decreasing order, you can easily adjust the Non-
mem IGNORE statement from IGNORE(FLAG.NE.0) to say IGNORE(FLAG.GT.10)
if BLQ’s have FLAG=10, and you decide to include these in the analysis.

grp.incomp Column(s) that distinct incompatible subsets of data. Default is "EVID" mean-
ing that if different values of EVID are found in data, the function will return an
error. This is a safeguard not to mix data unintentionally when counting flags.

flagc.0 The character flag to assign to rows that are not matched by exclusion conditions
(numerical flag 0).

as.fun The default is to return data.tables if input data is a data.table, and return a
data.frame for all other input classes. Pass a function in as.fun to convert to
something else. If return.all=FALSE, this is applied to data and tab.flags inde-
pendently.

Details

dt.flags must contain a column with numerical exclusion flags, one with character exclusion flags,
and one with a expressions to evaluate for whether to apply the exclusion flag. The flags are applied
sequentially, by increasing value of the numerical exclusion flag.

Value

The dataset with flags added. Class as defined by as.fun. See parameter flags.return as well.

See Also

Other DataCreate: NMorderColumns(), NMstamp(), NMwriteData(), addTAPD(), findCovs(),
findVars(), flagsCount(), mergeCheck(), tmpcol()

18 flagsCount

Examples

Not run:
pk <- readRDS(file=system.file("examples/data/xgxr2.rds",package="NMdata"))
dt.flags <- data.frame(

flagn=10,
flagc="Below LLOQ",
condition=c("BLQ==1")

)
pk <- flagsAssign(pk,dt.flags,subset.data="EVID==0",col.flagn="flagn",col.flagc="flagc")
pk <- flagsAssign(pk,subset.data="EVID==1",flagc.0="Dosing",

col.flagn="flagn",col.flagc="flagc")
unique(pk[,c("EVID","flagn","flagc","BLQ")])
flagsCount(pk[EVID==0],dt.flags,col.flagn="flagn",col.flagc="flagc")

End(Not run)

flagsCount Create an overview of number of retained and discarded datapoints.

Description

Generate an overview of number of observations disregarded due to different reasons. And how
many are left after each exclusion flag.

Usage

flagsCount(
data,
tab.flags,
file,
col.id = "ID",
col.flagn,
col.flagc,
by = NULL,
flags.increasing = FALSE,
flagc.0 = "Analysis set",
name.all.data = "All available data",
grp.incomp = "EVID",
save = TRUE,
quiet = FALSE,
as.fun = NULL

)

Arguments

data The dataset including both FLAG and flag columns.

tab.flags A data.frame containing at least these named columns: FLAG, flag, condition.
Condition is disregarded for FLAG==0.

flagsCount 19

file A file to write the table of flag counts to. Will probably be removed and put in a
separate function.

col.id The name of the subject ID column. Default is "ID".

col.flagn The name of the column containing the numerical flag values in tab.flags. This
will be added to data. Use the same as when flagsAssign was called (if that was
used). Default value is FLAG and can be configured using NMdataConf.

col.flagc The name of the column containing the character flag values in data and tab.flags.
Use the same as when flagsAssign was called (if that was used). Default value
is flag and can be configured using NMdataConf.

by An optional column to group the counting by. This could be "STUDY", "DRUG",
"EVID", or a combination of multiple columns.

flags.increasing

The flags are applied by either decreasing (default) or increasing value of col.flagn.
By using decreasing order, you can easily adjust the Nonmem IGNORE state-
ment from IGNORE(FLAG.NE.0) to say IGNORE(FLAG.GT.10) if BLQ’s have
FLAG=10, and you decide to include these in the analysis.

flagc.0 The character flag to assign to rows that are not matched by exclusion conditions
(numerical flag 0).

name.all.data What to call the total set of data before applying exclusion flags. Default is "All
available data".

grp.incomp Column(s) that distinct incompatible subsets of data. Default is "EVID" mean-
ing that if different values of EVID are found in data, the function will return an
error. This is a safeguard not to mix data unintentionally when counting flags.

save Save file? Default is TRUE, meaning that a file will be written if file argument
is supplied.

quiet Suppress non-critical messages? Default is ‘FALSE‘.

as.fun The default is to return a data.table if input data is a data.table, and return a
data.frame for all other input classes. Pass a function in as.fun to convert to
something else. If data is not a data.table, default can be configured using NM-
dataConf.

Details

This function is used to count flags as assigned by the flagsAssign function.

Notice that the character flags reported in the output table are taken from tab.flags. The data column
named by the value of col.flagc (default is flag) is not used.

In the returned table, N.discarded is the difference in number of subjects since previous step. If two
is reported, it can mean that the remaining one observation of these two subjects are discarded due
to this flag. The majority of the samples can have been discarded by earlier flags.

Value

A summary table with number of discarded and retained subjects and observations when applying
each condition in the flag table. "discarded" means that the reduction of number of observations
and subjects resulting from the flag, "retained" means the numbers that are left after application of
the flag. The default is "both" which will report both. Class as defined by as.fun.

20 fnAppend

See Also

Other DataCreate: NMorderColumns(), NMstamp(), NMwriteData(), addTAPD(), findCovs(),
findVars(), flagsAssign(), mergeCheck(), tmpcol()

Examples

Not run:
pk <- readRDS(file=system.file("examples/data/xgxr2.rds",package="NMdata"))
dt.flags <- data.frame(

flagn=10,
flagc="Below LLOQ",
condition=c("BLQ==1")

)
pk <- flagsAssign(pk,dt.flags,subset.data="EVID==0",col.flagn="flagn",col.flagc="flagc")
pk <- flagsAssign(pk,subset.data="EVID==1",flagc.0="Dosing",

col.flagn="flagn",col.flagc="flagc")
unique(pk[,c("EVID","flagn","flagc","BLQ")])
flagsCount(pk[EVID==0],dt.flags,col.flagn="flagn",col.flagc="flagc")

End(Not run)

fnAppend paste something before file name extension.

Description

Append a file name like file.mod to file_1.mod or file_pk.mod. If it’s a number, we can pad some
zeros if wanted. The separator (default is underscore) can be modified.

Usage

fnAppend(fn, x, pad0 = 0, sep = "_", collapse = sep, allow.noext = FALSE)

Arguments

fn The file name or file names to modify.
x A character string or a numeric to add to the file name
pad0 In case x is numeric, a number of zeros to pad before the appended number. This

is useful if you are generating say more than 10 files, and your counter will be
01, 02,.., 10,... and not 1, 2,...,10,...

sep The separator between the existing file name (until extension) and the addition.
collapse If ‘x‘ is of length greater than 1, the default is to collapse the elements to a single

string using ‘sep‘ as separator. See the ‘collapse‘ argument to ‘?paste‘. If you
want to treat them as separate strings, use ‘collapse=NULL‘ which will lead to
generation of separate file names. However, currently ‘fn‘ or ‘x‘ must be of
length 1.

allow.noext Allow ‘fn‘ to be string(s) without extensions? Default is ‘FALSE‘ in which case
an error will be thrown if ‘fn‘ contains strings without extensions. If ‘TRUE‘,
‘x‘ will be appended to fn in these cases.

fnExtension 21

Value

A character (vector)

Examples

fnAppend("plot.png",1)
fnAppend("plot.png",1,pad0=2,sep="-")
fnAppend("plot.png","one")
fnAppend("plot","one",allow.noext=TRUE)

fnExtension Change file name extension

Description

Very simple but often applicable function to retrieve or change the file name extension (from say
file.lst to file.mod)

Usage

fnExtension(fn, ext)

Arguments

fn file name. Often ending in an extension after a period but the extension is not
needed.

ext new file name extension. If omitted or NULL, the extension of fn is returned.

Value

A text string

Examples

fnExtension("file.lst",".mod")
fnExtension("file.lst","mod")
fnExtension("file.lst","..mod")
fnExtension("file.lst",cc(.mod,xml))
fnExtension(cc(file1.lst,file2.lst),cc(.xml))
fnExtension(cc(file1.lst,file2.lst),cc(.xml,.cov))
fnExtension("file.lst","")
fnExtension("file.lst")

22 listMissings

is.NMdata Check if an object is ’NMdata’

Description

Check if an object is ’NMdata’

Usage

is.NMdata(x)

Arguments

x Any object

Value

logical if x is an ’NMdata’ object

listMissings List rows with missing values across multiple columns

Description

Missing can be NA and for character variables it can be certain strings too. This function is experi-
mental and design may change in future releases.

Usage

listMissings(data, cols, by, na.strings = c("", "."), quiet = FALSE, as.fun)

Arguments

data The data to look into.

cols The columns to look for missings in.

by If supplied, we are keeping track of the missings within the values of the by
columns. In summary, by is included too.

na.strings Strings that should be interpreted as missing. All spaces will be removed before
we compare to na.strings. The default is c("",".") so say " . " is a missing by
default.

quiet Keep quiet? Default is not to.

as.fun A function that will be run on the result before returning. If first input data set
is a data.table, the default is to return a data.table, if not the default is to return a
data.frame. Use whatever to get what fits in with your workflow. Default can be
configured with NMdataConf.

mat2dt 23

Value

Invisibly, a data.frame including all findings

See Also

Other DataWrangling: compareCols(), dims()

mat2dt upper or lower triangle or all values of a matrix as long-format

Description

upper or lower triangle or all values of a matrix as long-format

Usage

mat2dt(x, triangle = "lower", as.fun)

Arguments

x A matrix

triangle Either ‘"lower"‘ (default) or ‘"upper"‘, or ‘"all"‘ for which triangle to return.
‘"lower"‘ and ‘"upper"‘ are equivalent for covariance or correlation matrices but
the returned indexes will differ. ‘"all"‘ will return the full matrix which mostly
makes sense if matrix is not a covariance or correlation matrix.

as.fun See ‘?NMdataConf‘

Details

The matrix is assumed ordered and the index numbers for rows and columns will be returned in
‘i‘ and ‘j‘ columns. Row names and column names will be returned in columns ‘parameter.i‘ and
‘parameter.j‘.

Value

A ‘data.frame‘-like object with indexes ‘i‘ and ‘j‘ for position and matrix element value in ‘value‘
column.

See Also

dt2mat

24 mergeCheck

mergeCheck Merge, order, and check resulting rows and columns.

Description

Stop checking that the number of rows is unchanged after a merge - ‘mergeCheck‘ checks what you
really want - i.e. x is extended with columns from y while all rows in x are retained, and no new
rows are created (plus some more checks). ‘mergeCheck‘ is not a merge implementation - it is a
useful merge wrapper. The advantage over using much more flexible merge or join function lies in
the fully automated checking that the results are consistent with the simple merge described above.

Usage

mergeCheck(
x,
y,
by,
by.x,
by.y,
common.cols = base::warning,
ncols.expect,
track.msg = FALSE,
quiet,
df1,
df2,
subset.x,
fun.na.by = base::stop,
as.fun,
fun.commoncols,
...

)

Arguments

x A data.frame with the number of rows must should be obtained from the merge.
The resulting data.frame will be ordered like x.

y A data.frame that will be merged onto x.

by The column(s) to merge by. Character string (vector). by or by.x and by.y must
be supplied.

by.x If the columns to merge by in x and y are named differently. by or by.x and by.y
must be supplied.

by.y If the columns to merge by in x and y are named differently. by or by.x and by.y
must be supplied.

common.cols If common columns are found in x and y, and they are not used in ‘by‘, this
will by default create columns named like col.x and col.y in result (see ?merge).

mergeCheck 25

Often, this is a mistake, and the default is to throw a warning if this happens. If
using ‘mergeCheck‘ in programming, you may want to make sure this is not
happening and use common.cols=stop. If you want nothing to happen, you
can do common.cols=NULL. You can also use ‘common.cols="drop.x"‘ to drop
"non-by" columns in ‘x‘ with identical column names in ‘y‘. Use "drop.y"
to drop them in ‘y‘ and avoid the conflicts. The last option is to use ‘com-
mon.cols="merge.by"‘ which means ‘by‘ will automatically be extended to in-
clude all common column names.

ncols.expect If you want to include a check of the number of columns being added to the
dimensions of ‘x‘. So if ncols.expect=1, the resulting data must have exactly
one column more than ‘x‘ - if not, an error will be returned.

track.msg If using ‘mergeCheck‘ inside other functions, it can be useful to use track.msg=TRUE.
This will add information to messages/warnings/errors that they came from
‘mergeCheck()‘.

quiet If FALSE, the names of the added columns are reported. Default value con-
trolled by NMdataConf.

df1 Deprecated. Use x.

df2 Deprecated. Use y.

subset.x Not implemented.

fun.na.by If NA’s are found in (matched) by columns in both x and why, what should we
do? This could be OK, but in many cases, it’s because something unexpected is
happening. Use fun.na.by=NULL if you don’t want to be notified and want to
go ahead regardless.

as.fun The default is to return a data.table if x is a data.table and return a data.frame in
all other cases. Pass a function in as.fun to convert to something else.

fun.commoncols Deprecated. Please use ‘common.cols‘.

... additional arguments passed to data.table::merge. If all is among them, an error
will be returned.

Details

Besides merging and checking rows, ‘mergeCheck‘ makes sure the order in x is retained in the
resulting data (both rows and column order). Also, a warning is given if column names are over-
lapping, making merge create new column names like col.x and col.y. Merges and other operations
are done using data.table. If x is a data.frame (and not a data.table), it will internally be converted
to a data.table, and the resulting data.table will be converted back to a data.frame before returning.

‘mergeCheck‘ is for the kind of merges where we think of x as the data to be enriched with columns
from y - rows unchanged. This is even further limited than a left join where you can match rows
multiple times. A common example of the use of ‘mergeCheck‘ is for adding covariates to a pk/pd
data set. We do not want that to remove or duplicate doses, observations, or simulation records.
In those cases, ‘mergeCheck‘ does all needed checks, and you can run full speed without checking
dimensions (which is anyway not exactly the right thing to do in the general case) or worry that
something might go wrong.

Checks performed:

• x has >0 rows

26 mergeCheck

• by columns are present in x an y

• Merge is not performed on NA values. If by=ID and both x$ID and y$ID contain NA’s, an
error is thrown (see argument fun.na.by).

• Merge is done by all common column names in x and y. A warning is thrown if there are
column names that are not being used to merge by. This will result in two columns named like
BW.x and BW.y and is often unintended.

• Before merging a row counter is added to x. After the merge, the result is assured to have
exactly one occurrence of each of the values of the row counter in x.

Moreover, row and column order from x is retained in the result.

Value

a data.frame resulting from merging x and y. Class as defined by as.fun.

See Also

Other DataCreate: NMorderColumns(), NMstamp(), NMwriteData(), addTAPD(), findCovs(),
findVars(), flagsAssign(), flagsCount(), tmpcol()

Examples

df1 <- data.frame(x = 1:10,
y=letters[1:10],
stringsAsFactors=FALSE)

df2 <- data.frame(y=letters[1:11],
x2 = 1:11,
stringsAsFactors=FALSE)

mc1 <- mergeCheck(x=df1,y=df2,by="y")

Notice as opposed to most merge/join algorithms, `mergeCheck` by
#default retains both row and column order from x
library(data.table)
merge(as.data.table(df1),as.data.table(df2))
Here we get a duplicate of a df1 row in the result. If we only
check dimensions, we make a mistake. `mergeCheck` captures the
error - and tell us where to find the problem (ID 31 and 180):
Not run:
pk <- readRDS(file=system.file("examples/data/xgxr2.rds",package="NMdata"))
dt.cov <- pk[,.(ID=unique(ID))]
dt.cov[,COV:=sample(1:5,size=.N,replace=TRUE)]
dt.cov <- dt.cov[c(1,1:(.N-1))]
res.merge <- merge(pk,dt.cov,by="ID")
dims(pk,dt.cov,res.merge)
mergeCheck(pk,dt.cov,by="ID")

End(Not run)

NMcheckColnames 27

NMcheckColnames Compare $INPUT in control stream to column names in input data

Description

Mis-specification of column names in $DATA is a common source of problems with Nonmem
models, and should be one of the first things to check for when seemingly inexplicable things
happen. This function lines up input data column names with $DATA and how NMscanData will
interpret $DATA so you can easily spot if something is off.

Usage

NMcheckColnames(file, as.fun, ...)

Arguments

file A Nonmem control stream or list file

as.fun See ?NMdataConf

... Additional arguments passed to

Value

An overview of input column names and how they are translated

NMcheckData Check data for Nonmem compatibility or check control stream for data
compatibility

Description

Check data in various ways for compatibility with Nonmem. Some findings will be reported even
if they will not make Nonmem fail but because they are typical dataset issues.

Usage

NMcheckData(
data,
file,
covs,
covs.occ,
cols.num,
col.id = "ID",
col.time = "TIME",
col.dv = "DV",
col.mdv = "MDV",

28 NMcheckData

col.cmt = "CMT",
col.amt = "AMT",
col.flagn,
col.row,
col.usubjid,
cols.dup,
type.data = "est",
cols.disable,
na.strings,
return.summary = FALSE,
quiet = FALSE,
as.fun

)

Arguments

data The data to check. data.frame, data.table, tibble, anything that can be
converted to data.table.

file Alternatively to checking a data object, you can use file to specify a control
stream to check. This can either be a (working or non-working) input control
stream or an output control stream. In this case, NMdataCheck checks column
names in data against control stream (see NMcheckColnames), reads the data
as Nonmem would do, and do the same checks on the data as NMdataCheck
would do using the data argument. col.flagn is ignored in this case - instead,
ACCEPT/IGNORE statements in control stream are applied. The file argument
is useful for debugging a Nonmem model.

covs columns that contain subject-level covariates. They are expected to be non-
missing, numeric and not varying within subjects.

covs.occ A list specifying columns that contain subject:occasion-level covariates. They
are expected to be non-missing, numeric and not varying within combinations
of subject and occasion. covs.occ=list(PERIOD=c("FED")) means that FED
is the covariate, while PERIOD indicates the occasion.

cols.num Columns that are expected to be present, numeric and non-NA. If a character
vector is given, the columns are expected to be used in all rows. If a column is
only used for a subset of rows, use a list and name the elements by subsetting
strings. See examples.

col.id The name of the column that holds the subject identifier. Default is "ID".

col.time The name of the column holding actual time.

col.dv The name of the column holding the dependent variable. For now, only one
column can be specified, and MDV is assumed to match this column. Default is
DV.

col.mdv The name of the column holding the binary indicator of the dependent variable
missing. Default is MDV.

col.cmt The name(s) of the compartment column(s). These will be checked to be posi-
tive integers for all rows. They are also used in checks for row duplicates.

col.amt The name of the dose amount column.

NMcheckData 29

col.flagn Optionally, the name of the column holding numeric exclusion flags. Default
value is FLAG and can be configured using NMdataConf. Even though FLAG is
the default value, no finding will be returned if the column is missing unless
explicitly defined as col.flagn="FLAG". This is because this way of using
exclusion flags is only one of many ways you could choose to handle exclusions.
Disable completely by using col.flagn=FALSE.

col.row A column with a unique value for each row. Such a column is recommended to
use if possible. Default ("ROW") can be modified using NMdataConf.

col.usubjid Optional unique subject identifier. It is recommended to keep a unique subject
identifier (typically a character string including an abbreviated study name and
the subject id) from the clinical datasets in the analysis set. If you supply the
name of the column holding this identifier, NMcheckData will check that it is
non-missing, that it is unique within values of col.id (i.e. that the analysis sub-
ject ID’s are unique across actual subjects), and that col.id is unique within the
unique subject ID (a violation of the latter is less likely).

cols.dup Additional column names to consider in search of duplicate events. col.id,
col.cmt, col.evid, and col.time are always considered if found in data, and
cols.dup is added to this list if provided.

type.data "est" for estimation data (default), and "sim" for simulation data. Differ-
ences are that col.row is not expected for simulation data, and subjects will
be checked to have EVID==0 rows for estimation data and EVID==2 rows for
simulation data.

cols.disable Columns to not check. This is particularly useful when checking data sets that do
not include i.e. ‘CMT‘, ‘EVID‘, and others. To skip checking specific columns,
provide their names like ‘cols.disable=c("CMT","EVID")‘.

na.strings Strings to be accepted when trying to convert characters to numerics. This
will typically be a string that represents missing values. Default is ".". No-
tice, actual NA, i.e. not a string, is allowed independently of na.strings. See
?NMisNumeric.

return.summary If TRUE (not default), the table summary that is printed if quiet=FALSE is re-
turned as well. In that case, a list is returned, and the findings are in an element
called findings.

quiet Keep quiet? Default is not to.
as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)

in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Details

The following checks are performed. The term "numeric" does not refer to a numeric representation
in R, but compatibility with Nonmem. The character string "2" is in this sense a valid numeric, "id2"
is not.

• Column names must be unique and not contain special characters
• If an exclusion flag is used (for ACCEPT/IGNORE in Nonmem), elements must be non-

missing and integers. Notice, if an exclusion flag is found, the rest of the checks are performed
on rows where that flag equals 0 (zero) only.

30 NMcheckData

• If a unique row identifier is found, it has to be non-missing, increasing integers.

• col.time (TIME), EVID, col.id (ID), col.cmt (CMT), and col.mdv (MDV): If present, elements
must be non-missing and numeric.

• col.time (TIME) must be non-negative

• EVID must be in {0,1,2,3,4}.

• CMT must be positive integers. However, can be missing or zero for EVID==3.

• MDV must be the binary (1/0) representation of is.na(DV) for dosing records (EVID==0).

• AMT must be 0 or NA for EVID 0 and 2

• AMT must be positive for EVID 1 and 4

• DV must be numeric

• DV must be missing for EVID in {1,4}.

• If found, RATE must be a numeric, equaling -2 or non-negative for dosing events.

• If found, SS must be a numeric, equaling 0 or 1 for dosing records.

• If found, ADDL must be a non-negative integer for dosing records. II must be present.

• If found, II must be a non-negative integer for dosing records. ADDL must be present.

• ID must be positive and values cannot be disjoint (all records for each ID must be following
each other. This is technically not a requirement in Nonmem but most often an error. Use a
second ID column if you deliberately want to soften this check)

• TIME cannot be decreasing within ID, unless EVID in {3,4}.

• all ID’s must have doses (EVID in {1,4})

• all ID’s must have observations (EVID==0)

• ID’s should not have leading zeros since these will be lost when Nonmem read, then write the
data.

• If a unique row identifier is used, this must be non-missing, increasing, integer

• Character values must not contain commas (they will mess up writing/reading csv)

• Columns specified in covs argument must be non-missing, numeric and not varying within
subjects.

• Columns specified in covs.occ must be non-missing, numeric and not varying within combi-
nations of subject and occasion.

• Columns specified in cols.num must be present, numeric and non-NA.

• If a unique subject identifier column (col.usubjid) is provided, ‘col.id‘ must be unique
within values of col.usubjid and vice versa.

• Events should not be duplicated. For all rows, the combination of col.id, col.cmt, col.evid,
col.time plus the optional columns specified in cols.dup must be unique. In other words,
if a subject (col.id) that has say observations (col.evid) at the same time (col.time), this
is considered a duplicate. The exception is if there is a reset event (col.evid is 3 or 4) in
between the two rows. cols.dup can be used to add columns to this analysis. This is useful
for different assays run on the same compartment (say a DVID column) or maybe stacked
datasets. If col.cmt is of length>1, this search is repeated for each cmt column.

NMdataConf 31

Value

A table with findings

Examples

Not run:
dat <- readRDS(system.file("examples/data/xgxr2.rds", package="NMdata"))
NMcheckData(dat)
dat[EVID==0,LLOQ:=3.5]
expecting LLOQ only for samples
NMcheckData(dat,cols.num=list(c("STUDY"),"EVID==0"=c("LLOQ")))

End(Not run)

NMdataConf Configure default behavior of NMdata functions

Description

Configure default behavior across the functions in NMdata rather than typing the arguments in all
function calls. Configure for your file organization, data set column names, and other NMdata
behavior. Also, you can control what data class NMdata functions return (say data.tables or tibbles
if you prefer one of those over data.frames).

Usage

NMdataConf(..., allow.unknown = FALSE, summarize = FALSE)

Arguments

... NMdata options to modify. These are named arguments, like for base::options.
Normally, multiple arguments can be used. The exception is if reset=TRUE is
used which means all options are restored to default values. If NULL is passed
to an argument, the argument is reset to default. is See examples for how to use.

allow.unknown Allow to store configuration of variables that are not pre-defined in NMdata.
This should only be needed in cases where say another package wants to use the
NMdata configuration system for variables unknown to NMdata.

summarize If TRUE, an overview of the configuration changes is summarized in a printed
table. This is useful for transparency when sourcing a file with configuration.
Default is FALSE.

Details

Parameters that can be controlled are:

32 NMdataConf

• args.fread Arguments passed to fread when reading _input_ data files (fread options for read-
ing Nonmem output tables cannot be configured at this point). If you change this, you are
starting from scratch, except from file. This means that existing default argument values are
all disregarded.

• args.fwrite Arguments passed to fwrite when writing csv files (NMwriteData). If you use this,
you have to supply all arguments you want to use with fwrite, except for x (the data) and file.

• as.fun A function that will be applied to data returned by various data reading functions (NM-
scanData, NMreadTab, NMreadCsv, NMscanInput, NMscanTables). Also, data processing
functions like mergeCheck, findCovs, findVars, flagsAssign, flagsCount take this into account,
but slightly differently. For these functions that take data as arguments, the as.fun configura-
tion is only taken into account if a the data passed to the functions are not of class data.table.
The argument as.fun to these functions is always adhered to. Pass an actual function, say
as.fun=tibble::as_tibble. If you want data.table, use as.fun="data.table" (not a function).

• check.time Logical, applies to NMscanData only. NMscanData by defaults checks if output
control stream is newer than input control stream and input data. Set this to FALSE if you are
in an environment where time stamps cannot be relied on.

• col.flagc The name of the column containing the character flag values for data row omission.
Default value is flag. Used by flagsAssign, flagsCount.

• col.flagn The name of the column containing numerical flag values for data row omission.
Default value is FLAG. Used by flagsAssign, flagsCount, NMcheckData.

• col.model The name of the column that will hold the name of the model. See modelname too
(which defines the values that the column will hold).

• col.nmout A column of this name will be a logical representing whether row was in output
table or not.

• col.nomtime The name of the column holding nominal time. This is only used for sorting
columns by NMorderColumns.

• col.row The name of the column containing a unique row identifier. This is used by NMscan-
Data when merge.by.row=TRUE, and by NMorderColumns (row counter will be first column
in data).

• col.id The name of the column holding the numeric subject ID. As of ‘NMdata‘ 0.1.5 this is
only used for sorting columns by NMorderColumns.

• col.time The name of the column holding actual time. As of ‘NMdata‘ 0.1.5 this is only used
for sorting columns by NMorderColumns.

• dir.psn The directory in which to find psn executables like ‘execute‘ and ‘update_inits‘. De-
fault is "" meaning that executables must be in the system search path. Not used by NMdata.

• dir.res Directory in which ‘NMsim‘ will store simulation results files. Not used by NMdata.
See dir.sims too.

• dir.sims Directory in which ‘NMsim‘ will store Nonmem simulations. Not used by NMdata.
See dir.res too.

• file.cov A function that will derive the path to the covariance (.cov) output file stream based
on the path to the output control stream. Technically, it can be a string too, but when using
NMdataConf, this would make little sense because it would direct all output control streams
to the same input control streams.

NMdataConf 33

• file.ext A function that will derive the path to the parameter (.ext) output file stream based
on the path to the output control stream. Technically, it can be a string too, but when using
NMdataConf, this would make little sense because it would direct all output control streams
to the same input control streams.

• file.mod A function that will derive the path to the input control stream based on the path to
the output control stream. Technically, it can be a string too, but when using NMdataConf, this
would make little sense because it would direct all output control streams to the same input
control streams.

• file.phi A function that will derive the path to the Nonmem output (.phi) file containing indi-
vidual ETA, ETC, and/or PHI values stream based on the path to the output control stream.
Technically, it can be a string too, but when using NMdataConf, this would make little sense
because it would direct all output control streams to the same input control streams.

• file.data A function that will derive the path to the input data based on the path to the output
control stream. Technically, it can be a string too, but when using NMdataConf, this would
make little sense because it would direct all output control streams to the same input control
streams.

• formats.read Prioritized input data file formats to look for and use if found. Default is c("rds","csv")
which means rds will be used if found, and csv if not. fst is possible too.

• formats.write character vector of formats.write. Default is c("csv","rds"). "fst" is possible too.

• merge.by.row Adjust the default combine method in NMscanData.

• modelname A function that will translate the output control stream path to a model name.
Default is to strip .lst, so /path/to/run1.lst will become run1. Technically, it can be a string
too, but when using NMdataConf, this would make little sense because it would translate all
output control streams model name.

• path.nonmem Path (a character string) to a nonmem executable. Not used by NMdata. Default
is NULL.

• quiet For non-interactive scripts, you can switch off the chatty behavior once and for all using
this setting.

• recover.rows In NMscanData, Include rows from input data files that do not exist in output
tables? This will be added to the $row dataset only, and $run, $id, and $occ datasets are
created before this is taken into account. A column called nmout will be TRUE when the row
was found in output tables, and FALSE when not. Default is FALSE.

• use.input In NMscanData, merge with columns in input data? Using this, you don’t have
to worry about remembering including all relevant variables in the output tables. Default is
TRUE.

• use.rds Deprecated, use formats.read and formats.write instead. Affects NMscanData(),
NMscanInput(), NMwriteData().

Recommendation: Use this function transparently in the code and not in a configuration file hidden
from other users.

Value

If no arguments given, a list of active settings. If arguments given and no issues found, TRUE
invisibly.

34 NMdataOperations

Examples

get current defaults
NMdataConf()
change a parameter
NMdataConf(check.time=FALSE)
reset one parameter to default value
NMdataConf(modelname=NULL)
reset all parameters to defaults
NMdataConf(reset=TRUE)

NMdataOperations Basic arithmetic on NMdata objects

Description

Basic arithmetic on NMdata objects

Usage

S3 method for class 'NMdata'
merge(x, ...)

S3 method for class 'NMdata'
t(x, ...)

S3 method for class 'NMdata'
dimnames(x, ...)

S3 method for class 'NMdata'
rbind(x, ...)

S3 method for class 'NMdata'
cbind(x, ...)

Arguments

x an NMdata object

... arguments passed to other methods.

Details

When ’dimnames’, ’merge’, ’cbind’, ’rbind’, or ’t’ is called on an ’NMdata’ object, the ’NMdata’
class is dropped, and then the operation is performed. So if and ’NMdata’ object inherits from
’data.frame’ and no other classes (which is default), these operations will be performed using the
’data.frame’ methods. But for example, if you use ’as.fun’ to get a ’data.table’ or ’tbl’, their respec-
tive methods are used instead.

NMexpandDoses 35

Value

An object that is not of class ’NMdata’.

NMexpandDoses Transform repeated dosing events (ADDL/II) to individual dosing
events

Description

Replaces single row repeated dosing events by multiple lines, then reorders rows with respect to ID
and TIME. If the row order is different, you have to reorder the output manually.

Usage

NMexpandDoses(
data,
col.time = "TIME",
col.id = "ID",
col.evid = "EVID",
track.expand = FALSE,
subset.dos,
quiet = FALSE,
as.fun

)

Arguments

data The data set to expand

col.time The name of the column holding the time on which time since previous dose
will be based. This is typically actual or nominal time since first dose.

col.id The subject identifier. All new columns will be derived within unique values of
this column.

col.evid The name of the event ID column. This must exist in data. Default is EVID.

track.expand Keep track of what rows were in data originally and which ones are added by
NMexpandDoses by including a column called nmexpand? nmexpand will be
TRUE if the row is "generated" by NMexpandDoses.

subset.dos A string that will be evaluated as a custom expression to identify relevant events.

quiet Suppress messages back to user (default is FALSE)

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Value

A data set with at least as many rows as data. If doses are found to expand, these will be added.

36 NMextractText

NMextractDataFile Extract the data file used in a control stream

Description

A function that identifies the input data file based on a control stream. The default is to look at
the $DATA section of of the output control stream (or input control stream if file.mod argument is
used). This can be partly or fully overruled by using the dir.data or file.data arguments.

Usage

NMextractDataFile(file, dir.data = NULL, file.mod, file.data = NULL)

Arguments

file The input control stream or the list file.

dir.data See NMscanInput. If used, only the file name mentioned in $DATA is used.
dir.data will be used as the path, and the existence of the file in that directory is
not checked.

file.mod The input control stream. Default is to look for \"file\" with extension changed to
‘.mod‘ (PSN style). You can also supply the path to the file, or you can provide
a function that translates the output file path to the input file path. The default
behavior can be configured using NMdataConf. See dir.data too.

file.data Specification of the data file path. When this is used, the control streams are not
used at all.

Value

The path to the input data file.

NMextractText Versatile text extractor from Nonmem (input or output) control streams

Description

If you want to extract input sections like $PROBLEM, $DATA etc, see NMreadSection. This func-
tion is more general and can be used to extract eg result sections.

NMextractText 37

Usage

NMextractText(
file,
lines,
text,
section,
char.section,
char.end = char.section,
return = "text",
keep.empty = FALSE,
keep.name = TRUE,
keep.comments = TRUE,
as.one = TRUE,
clean.spaces = FALSE,
simplify = TRUE,
match.exactly = TRUE,
type = "mod",
linesep = "\n",
keepEmpty,
keepName,
keepComments,
asOne

)

Arguments

file A file path to read from. Normally a .mod or .lst. See lines and text as well.

lines Text lines to process. This is an alternative to using the file and text arguments.

text Use this argument if the text to process is one long character string, and indicate
the line separator with the linesep argument. Use only one of file, lines, and text.

section The name of section to extract. Examples: "INPUT", "PK", "TABLE", etc. It
can also be result sections like "MINIMIZATION".

char.section The section denoted as a string compatible with regular expressions. "$" (re-
member to escape properly) for sections in .mod files, "0" for results in .lst files.

char.end A regular expression to capture the end of the section. The default is to look for
the next occurrence of char.section.

return If "text", plain text lines are returned. If "idx", matching line numbers are re-
turned. "text" is default.

keep.empty Keep empty lines in output? Default is FALSE. Notice, comments are removed
before empty lines are handled if ‘keep.comments=TRUE‘.

keep.name Keep the section name in output (say, "$PROBLEM") Default is TRUE. It can
only be FALSE, if return="text".

keep.comments Default is to keep comments. If FALSE, the will be removed.

as.one If multiple hits, concatenate into one. This will most often be relevant with
name="TABLE". If FALSE, a list will be returned, each element representing

38 NMgenText

a table. Default is TRUE. So if you want to process the tables separately, you
probably want FALSE here.

clean.spaces If TRUE, leading and trailing are removed, and multiplied succeeding white
spaces are reduced to single white spaces.

simplify If asOne=FALSE, do you want the result to be simplified if only one table is
found? Default is TRUE which is desirable for interactive analysis. For pro-
gramming, you probably want FALSE.

match.exactly Default is to search for exact matches of ‘section‘. If FALSE, only the first three
characters are matched. E.G., this allows "ESTIMATION" to match "ESTIMA-
TION" or "EST".

type Either mod, res or NULL. mod is for information that is given in .mod (.lst file
can be used but results section is disregarded). If NULL, NA or empty string,
everything is considered.

linesep If using the text argument, use linesep to indicate how lines should be separated.
keepEmpty Deprecated. See keep.empty.
keepName Deprecated. See keep.name.
keepComments Deprecated. See keep.comments.
asOne Deprecated. See as.one.

Details

This function is planned to get a more general name and then be called by NMreadSection.

Value

character vector with extracted lines.

See Also

Other Nonmem: NMapplyFilters(), NMgenText(), NMreadSection(), NMreplaceDataFile(),
NMwriteSection()

Examples

NMreadSection(system.file("examples/nonmem/xgxr001.lst", package = "NMdata"),section="DATA")

NMgenText Generate text for INPUT and possibly DATA sections of NONMEM
control streams.

Description

The user is provided with text to use in Nonmem. NMwriteSection can use the results to update the
control streams. INPUT lists names of the data columns while DATA provides a path to data and
ACCEPT/IGNORE statements. Once a column is reached that Nonmem will not be able to read as
a numeric and column is not in nm.drop, the list is stopped. Only exception is TIME which is not
tested for whether character or not.

NMgenText 39

Usage

NMgenText(
data,
drop,
col.flagn,
rename,
copy,
file,
dir.data,
capitalize = FALSE,
until,
allow.char.TIME = TRUE,
width,
quiet

)

Arguments

data The data that NONMEM will read. Either as a ‘data.frame‘, of if a path to an
rds or a delimited text file, the data will automatically be read first.

drop Only used for generation of proposed text for INPUT section. Columns to drop
in Nonmem $INPUT. This has two implications. One is that the proposed $IN-
PUT indicates =DROP after the given column names. The other that in case it
is a non-numeric column, succeeding columns will still be included in $INPUT
and can be read by NONMEM.

col.flagn Name of a numeric column with zero value for rows to include in Nonmem run,
non-zero for rows to skip. The argument is only used for generating the proposed
$DATA text to paste into the Nonmem control stream. Default is defined by
‘NMdataConf()‘. To skip this feature, use ‘col.flagn=FALSE‘.

rename For the $INPUT text proposal only. If you want to rename columns in NON-
MEM $DATA, NMwriteData can adjust the suggested $DATA text. If you plan
to use BBW instead of BWBASE in Nonmem, consider rename=c(BBW="BWBASE").
The result will include BBW and not BWBASE.

copy For the $INPUT text proposal only. If you plan to use additional names for
columns in Nonmem $INPUT, NMwriteData can adjust the suggested $INPUT
text. Say you plan to use CONC as DV in Nonmem, use copy=c(DV="CONC"),
i.e. copy=c(newname="existing"). INPUT suggestion will in this case contain
DV=CONC.

file The file name NONMEM will read the data from (for the $DATA section). It
can be a full path.

dir.data For the $DATA text proposal only. The path to the input datafile to be used in
the Nonmem $DATA section. Often, a relative path to the actual Nonmem run
is wanted here. If this is used, only the file name and not the path from the file
argument is used.

capitalize For the $INPUT text proposal only. If TRUE, all column names in $INPUT text
will be converted to capital letters.

40 NMinfo

until Use this to truncate the columns in $INPUT. until can either be a character (col-
umn name) or a numeric (column number). If a character is given, it is matched
against the resulting column name representation in $INPUT, i.e. this could be
"DV=CONC" if you are using in this case the copy argument. In case until is
of length>1, the maximum will be used (probably only interesting if character
values are supplied).

allow.char.TIME

For the $INPUT text proposal only. Assume Nonmem can read TIME and DATE
even if it can’t be translated to numeric. This is necessary if using the 00:00
format. Default is TRUE.

width If positive, will be passed to strwrap for the $INPUT text. If missing or NULL,
strwrap will be called with default value. If negative or zero, strwrap will not be
called.

quiet Hold messages back? Default is defined by NMdataConf.

Value

Text for inclusion in Nonmem control stream, invisibly. A list with elements ‘DATA‘ and ‘INPUT‘.

See Also

Other Nonmem: NMapplyFilters(), NMextractText(), NMreadSection(), NMreplaceDataFile(),
NMwriteSection()

NMinfo Get metadata from an NMdata object

Description

Extract metadata such as info on tables, columns and further details in your favorite class

Usage

NMinfo(data, info, as.fun)

Arguments

data An object of class NMdata (a result of ‘NMscanData()‘)
info If not passed, all the metadata is returned. You can use "details", "tables", or

"columns" to get only these subsets. If info is "tables" or "columns"
as.fun The default is to return data as a ‘data.frame‘. Pass a function (say ‘tibble::as_tibble‘)

in as.fun to convert to something else. If ‘data.table‘s are wanted, use ‘as.fun="data.table"‘.
The default can be configured using ‘NMdataConf()‘.

Value

A table of class as defined by as.fun in case info is "columns" or "tables". A list if info missing or
equal to "details".

NMisNumeric 41

NMisNumeric Test if a variable can be interpreted by Nonmem

Description

Nonmem can only interpret numeric data. However, a factor or a character variable may very well
be interpretable by Nonmem (e.g. "33"). This function tells whether Nonmem will be able to read
it.

Usage

NMisNumeric(x, na.strings = ".", each = FALSE)

Arguments

x The vector to check Don’t export

na.strings Tolerated strings that do not translate to numerics. Default is to accept "." be-
cause it’s common to write missing values that way to Nonmem (even if Non-
mem will handle them as zeros rather than missing). Notice actual NA’s are
accepted so you may want to use na.strings=NULL if you don’t code missings
as "." and just do this when writing the data set to a delimited file (like NMwrite-
Data will do for you).

each Use each=TRUE to evaluate each element in a vector individually. The default
(each=FALSE) is to return a single-length logical for a vector x summarizing
whether all the elements are numeric-compatible.

Value

TRUE or FALSE

NMorderColumns Standardize column order in Nonmem input data

Description

Order data columns for easy export to Nonmem. No data values are edited. The order is config-
urable through multiple arguments. See details.

42 NMorderColumns

Usage

NMorderColumns(
data,
first,
last,
lower.last = FALSE,
chars.last = TRUE,
alpha = TRUE,
col.id,
col.nomtime,
col.time,
col.row,
col.flagn,
col.dv = "DV",
allow.char.TIME = TRUE,
as.fun = NULL,
quiet

)

Arguments

data The dataset which columns to reorder.

first Columns that should come almost first. See details.

last Columns to move to back of dataset. If you work with a large dataset, and some
columns are irrelevant for the Nonmem runs, you can use this argument.

lower.last Should columns which names contain lowercase characters be moved towards
the back? Some people use a standard of lowercase variables (say "race") being
character representations ("Asian", "Caucasian", etc.) variables and the upper-
case (1,2,...) being the numeric representation for Nonmem.

chars.last Should columns which cannot be converted to numeric be put towards the end?
A column can be a character or a factor in R, but still be valid in Nonmem (often
the case for ID which can only contain numeric digits but really is a character
or factor). So rather than only looking at the column class, the columns are
attempted converted to numeric. Notice, it will attempted to be converted to
numeric to test whether Nonmem will be able to make sense of it, but the values
in the resulting dataset will be untouched. No values will be edited. If TRUE,
logicals will always be put last. NA’s must be NA or ".".

alpha Sort columns alphabetically. Notice, this is the last order priority applied.

col.id Name of the (numeric) unique subject ID. Can be controlled with ‘NMdata-
Conf()‘.

col.nomtime The name of the column containing nominal time. If given, it will put the column
quite far left, just after row counter and ‘col.id‘. Default value is NOMTIME
and can be configured with ‘NMdataConf()‘.

col.time The name of the column containing actual time. If given, it will put the column
quite far left, just after row counter, subject ID, and nominal time. Default value
is ‘TIME‘. Can be controlled with ‘NMdataConf()‘.

NMorderColumns 43

col.row A row counter column. This will be the first column in the dataset. Technically,
you can use it for whatever column you want first. Default value is ‘ROW‘ and
can be configured with ‘NMdataConf()‘.

col.flagn The name of the column containing numerical flag values for data row omission.
Default value is FLAG and can be configured with ‘NMdataConf()‘.

col.dv a vector of column names to put early to represent dependent variable(s). Default
is DV.

allow.char.TIME

For the $INPUT text proposal only. Assume Nonmem can read TIME and DATE
even if it can’t be translated to numeric. This is necessary if using the 00:00
format. Default is TRUE.

as.fun The default is to return a data.table if data is a data.table and return a data.frame
in all other cases. Pass a function in as.fun to convert to something else. The de-
fault can be configured using ‘NMdataConf()‘. However, if data is a data.table,
settings via ‘NMdataConf()‘ are ignored.

quiet If true, no warning will be given about missing standard Nonmem columns.

Details

This function will change the order of columns but it will never edit values in any columns. The
ordering is by the following steps, each step depending on corresponding argument.

"col.row - " Row id if argument row is non-NULL

"not editable - " ID (if a column is called ID)

"col.nomtime - " Nominal time.

"col.time - " Actual time.

"first - " user-specified first columns

"Only col.dv editable - " Standard Nonmem columns: EVID, CMT, AMT, RATE, col.dv, MDV

"last - " user-specified last columns

"chars.last - " numeric, or interpretable as numeric

"not editable - " less often used Nonmem names: col.flagn, OCC, ROUTE, GRP, TRIAL, DRUG,
STUDY

"lower.last - " lower case in name

"alpha - " Alphabetic/numeric sorting

Value

data with modified column order.

See Also

Other DataCreate: NMstamp(), NMwriteData(), addTAPD(), findCovs(), findVars(), flagsAssign(),
flagsCount(), mergeCheck(), tmpcol()

44 NMreadCsv

NMreadCov Read covariance matrix from ‘.cov‘ file

Description

Read covariance matrix from ‘.cov‘ file

Usage

NMreadCov(file, auto.ext, tableno = "max", simplify = TRUE)

Arguments

file The ".cov" covariance Nonmem matrix file to read

auto.ext If ‘TRUE‘ (default) the extension will automatically be modified using ‘NMdat-
aConf()$file.cov‘. This means ‘file‘ can be the path to an input or output control
stream, and ‘NMreadCov()‘ will still read the ‘.cov‘ file.

tableno The table number to read. The ".cov" file can contain multiple tables and will
often do so if using SAEM/IMP methods. Default is "max" which means the last
table is used. Alternative values are "min" and "all" or numeric values. If "all"
or multiple numeric values are used, a list is returned. However, see ‘simplify‘
too.

simplify If ‘TRUE‘ (default) and only one table is returned (say using tableno="max")
only that matrix is returned as a matrix object. If ‘FALSE‘ or multiple tables are
returned, the result is a list.

Value

A matrix with covariance step from NONMEM or a list of such matrices (see ‘simplify‘)

NMreadCsv Read input data formatted for Nonmem

Description

This function is especially useful if the csv file was written using NMwriteData.

Usage

NMreadCsv(file, args.fread, as.fun = NULL, format, args.fst)

NMreadExt 45

Arguments

file The file to read. Must be pure text.

args.fread List of arguments passed to fread. Notice that except for "file", you need to
supply all arguments to fread if you use this argument. Default values can be
configured using NMdataConf.

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

format Format of file to read. Can be of length>1 in which case the first format found
will be used (i.e. format is a prioritized vector). If not one of "rds" or "fst", it
is assumed to be a delimited text file. Default is to determine this from the file
name extension. Notice, if a delimited format is used, the extension can very
well be different from "csv" (say file name is "input.tab")". This will work for
any delimited format supported by fread.

args.fst Optional arguments to pass to read_fst if format="fst" is used.

Details

This is almost just a shortcut to fread so you don’t have to remember how to read the data that was
exported for Nonmem. The only added feature is that meta data as written by NMwriteData is read
and attached as NMdata metadata before data is returned.

Value

A data set of class as defined by as.fun.

See Also

NMwriteData

Other DataRead: NMreadTab(), NMscanData(), NMscanInput(), NMscanTables()

NMreadExt Read information from Nonmem ext files

Description

Read information from Nonmem ext files

Usage

NMreadExt(
file,
return,
as.fun,
modelname,

46 NMreadExt

col.model,
auto.ext,
tableno = "max",
file.ext,
slow

)

Arguments

file Path to the ext file

return The .ext file contains both final parameter estimates and iterations of the esti-
mates. If return="pars" (default) the final estimates are returned in addition to
what other parameter-level information is found, like FIX, sd etc. as columns. If
return="iterations", the iterations are returned (including objective function
value). If return="obj" objective function value at final estimate is returned.
If return="all", all er returned, though in separate data.frames compiled in a
list.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble‘)
in as.fun to convert to something else. If ‘data.table‘s are wanted, use ‘as.fun="data.table"‘.
The default can be configured using ‘NMdataConf()‘.

modelname See ‘?NMscanData‘

col.model See ‘?NMscanData‘

auto.ext If ‘TRUE‘ (default) the extension will automatically be modified using ‘NMdat-
aConf()$file.ext‘. This means ‘file‘ can be the path to an input or output control
stream, and ‘NMreadExt‘ will still read the ‘.ext‘ file.

tableno In case the ext file contains multiple tables, this argument controls which one to
choose. The options are

• "max" (default) Pick the table with the highest table number. This typically
means the results from the last ‘$ESTIMATION‘ step are used.

• "min" Pick results from the first table available.
• "all" Keep all results. The tables can be distinguished by the ‘tableno‘ col-

umn.
• an integer greater than 0, in which case the table with this table number will

be picked.

file.ext Deprecated. Please use file instead.

slow Use a slow but more robust method to read tables? If missing or ‘NULL‘, the
fast method will be tried first, and if any issues are seen, the method will switch
to ‘slow=TRUE‘. If ‘FALSE‘,it will also swich in case of issues, but a warning
is issued. In other words, it should be safe to not use this argument.

Details

The parameter table returned if return="pars" or return="all" will contain columns based on
the Nonmem 7.5 manual. It defines codes for different parameter-level values. They are:

-1e+09: se -1000000002: eigCor -1000000003: cond -1000000004: stdDevCor -1000000005: seS-
tdDevCor -1000000006: FIX -1000000007: termStat -1000000008: partLik

NMreadFilters 47

The parameter name is in the parameter column. The "parameter type", like "THETA", "OMEGA",
"SIGMA" are available in the par.type column. Counters are available in i and j columns. j will
be NA for par.type=="THETA"

The objective function value is included as a parameter.

Notice that in case multiple tables are available in the ‘ext‘ file, the column names are taken from
the first table. E.g., in case of SAEM/IMP estimation, the objective function values will be in the
‘SAEMOBJ‘ column, even for the IMP step. This may change in the future.

Value

If return="all", a list with a final parameter table and a table of the iterations. If return="pars",
only the parameter table, and if return="iterations" only the iterations table. If you need both,
it may be more efficient to only read the file once and use return="all". Often, only one of the
two are needed, and it more convenient to just extract one.

NMreadFilters Read data filters from a NONMEM model

Description

Read data filters from a NONMEM model

Usage

NMreadFilters(file, lines, filters.only = TRUE, as.fun)

Arguments

file Control stream path

lines Control stream lines if already read from file

filters.only Return the filters only or also return the remaining text in a separate object? If
‘FALSE‘, a list with the two objects is returned.

as.fun Function to run on the tables with filters.

Value

A ‘data.frame‘ with filters

48 NMreadParsText

NMreadInits Tabulate information from parameter sections in control streams

Description

Tabulate information from parameter sections in control streams

Usage

NMreadInits(file, lines, section, return = "pars", as.fun)

Arguments

file Path to a control stream. See ‘lines‘ too.

lines A control stream as text lines. Use this or ‘file‘.

section The section to read. Typically, "theta", "omega", or "sigma". Default is those
three.

return By default (when return="pars", a parameter table with initial values, FIX,
lower and upper bounds etc. In most cases, that is what is needed to derive
information about parameter definitions. If return="all", two additional tables
are returned which can be used if the aim is to modify and write the resulting
parameters to a control stream.

as.fun See ?NMscanData

Value

A ‘data.frame‘ with parameter values. If ‘return="all"‘, a list of three tables.

NMreadParsText Read comments to parameter definitions in Nonmem control streams

Description

When interpreting parameter estimates, it is often needed to recover information about the meaning
of the different parameters from control stream. ‘NMreadParsText‘ provides a flexible way to or-
ganize the comments in the parameter sections into a ‘data.frame‘. This can subsequently easily be
merged with parameter values as obtained with ‘NMreadExt‘.

NMreadParsText 49

Usage

NMreadParsText(
file,
lines,
format,
format.omega = format,
format.sigma = format.omega,
spaces.split = FALSE,
unique.matches = TRUE,
field.idx = "idx",
use.idx = FALSE,
modelname,
col.model,
as.fun,
use.theta.idx,
fields,
fields.omega = fields,
fields.sigma = fields.omega

)

Arguments

file Path to the control stream to read.

lines As an alternative to ‘file‘, the control stream or selected lines of the control
stream can be provided as a vector of lines.

format Defines naming and splitting of contents of lines in parameter sections. Default
is "%init;%idx;%symbol;%label;%unit". Be careful to remember percentage
symbols in front of any variable names.

format.omega Like ‘format‘, applied to ‘$OMEGA‘ section. Default is to reuse ‘format‘.

format.sigma Like ‘format‘, applied to ‘$SIGMA‘ section. Default is to reuse ‘format.omega‘.

spaces.split Is a blank in ‘fields‘ to be treated as a field seperator? Default is not to (i.e.
neglect spaces in ‘fields‘).

unique.matches If TRUE, each line in the control stream is assigned to one parameter, at most.
This means, if two parameters are listed in one line, the comments will only
be used for one of the parameters, and only that parameter will be kept in out-
put. Where this will typically happen is in ‘$OMEGA‘ and ‘$SIGMA‘ sections
where off-diagonal may be put on the same line as diagonal elements. Since the
off-diagonal elements are covariances of variables that have already been identi-
fied by the diagonals, the off-diagonal elements can be automatically described.
For example, if ‘OMEGA(1,1)‘ is between-subject variability (BSV) on CL and
‘OMEGA(2,2) is BSV on V, then we know that ‘OMEGA(2,1)‘ is covariance of
(BSV on) CL and V.

field.idx If an index field is manually provided in the control stream comments, define
the name of that field in ‘format‘ and tell ‘NMreadParsTab()‘ to use this idx
to organize especially OMEGA and SIGMA elements by pointing to it with
‘field.idx‘. The default is to look for a variable called ‘idx‘. If the index has

50 NMreadParsText

values like 1-2 on an OMEGA or SIGMA row, the row is interpreted as the
covariance between OMEGA/SIGMA 1 and 2.

use.idx The default method is to automatically identify element numbering (‘i‘ for THETAs,
‘i‘ and ‘j‘ for OMEGAs and SIGMAs). The automated method is based on iden-
tification of ‘BLOCK()‘ structures and numbers of initial values. Should this
fail, or should you want to control this manually, you can include a parameter
counter in the comments and have ‘NMreadParsText()‘ use that to assign the
numbering. ‘use.idx=FALSE‘ is default and means all blocks are handled au-
tomatically, ‘use.idx=TRUE‘ assumes you have a counter in all sections, and a
character vector like ‘use.idx="omega"‘ can be used to denote which sections
use such a counter from the control stream. When using a counter on OMEGA
and SIGMA, off-diagonal elements MUST be denoted by ‘i-j‘, like ‘2-1‘ for
OMEGA(2,1). See ‘field.idx‘ too.

modelname See ?NMscanData

col.model See ?NMscanData

as.fun See ?NMscanData

use.theta.idx If an index field in comments should be used to number thetas. The index
field is used to organize ‘$OMEGA‘s and ‘$SIGMA‘s because they are ma-
trices but I do not see where this is advantageous to do for ‘$THETA‘s. Default
‘use.theta.idx=FALSE‘ which means ‘$THETA‘s are simply counted.

fields Deprecated. Use ‘format‘.

fields.omega Deprecated. Use ‘format.omega‘.

fields.sigma Deprecated. Use ‘format.sigma‘.

Details

Off-diagonal omega and sigma elements will only be correctly treated if their num field specifies
say 1-2 to specify it is covariance between 1 and 2.

SAME elements in $OMEGA will be skipped altogether.

Value

data.frame with parameter names and fields read from comments

Examples

setDTthreads() is only needed for CRAN. Users should not do this.
data.table::setDTthreads(1)
end setDTthreads() for CRAN

notice, examples on explicitly stated lines. Most often in
practice, one would use the file argument to automatically
extract the $THETA, $OMEGA and $SIGMA sections from a control
stream.

text <- c("

NMreadPhi 51

$THETA (.1) ;[1]; LTVKA (mL/h)
$OMEGA BLOCK(3)
0.126303 ; IIV.CL ; 1 ;IIV ;Between-subject variability on CL;-
0.024 ; IIV.CL.V2.cov ; 1-2 ;IIV ;Covariance of BSV on CL and V2;-
0.127 ; IIV.V2 ; 2 ;IIV ;Between-subject variability on V2;-
0.2 ; IIV.CL.V3.cov ; 1-3 ;IIV ;Covariance of BSV on CL and V3;-
0.2 ; IIV.V2.V3.cov ; 2-3 ;IIV ;Covariance of BSV on V2 and V3;-
0.38 ; IIV.V3 ; 3 ;IIV ;Between-subject variability on V3;-
$OMEGA 0 FIX ; IIV.KA ; 4 ;IIV ;Between-subject variability on KA;-
$SIGMA 1
")

lines <- strsplit(text,split="\n")[[1]]

res <- NMreadParsText(lines=lines,
format="%init;[%num];%symbol",
format.omega="%init; %symbol ; %num ; %type ; %label ; %unit",
field.idx="num")

BLOCK() SAME are skipped
text <- c("
$THETA
(0,0.1) ; THE1 - 1) 1st theta
(0,4.2) ; THE2 - 2) 2nd theta
$OMEGA 0.08 ; IIV.TH1 ; 1 ;IIV
$OMEGA BLOCK(1)
0.547465 ; IOV.TH1 ; 2 ;IOV
$OMEGA BLOCK(1) SAME
$OMEGA BLOCK(1) SAME")
lines <- strsplit(text,split="\n")[[1]]
res <- NMreadParsText(lines=lines,

format="%init;%symbol - %idx) %label",
format.omega="%init; %symbol ; %idx ; %label "
)

NMreadPhi Read information from Nonmem phi files

Description

Read information from Nonmem phi files

Usage

NMreadPhi(file, as.fun, modelname, col.model, auto.ext, file.phi)

Arguments

file Path to the phi file. See ‘auto.ext‘ too.

52 NMreadSection

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

modelname See ?NMscanData

col.model See ?NMscanData

auto.ext If ‘auto.ext=TRUE‘, the file name extension will automatically be changed using
the setting in ‘NMdataConf()$file.phi‘ - this by default means that the ‘.phi‘
extension will be used no matter what extension the provided file name has.

file.phi Deprecated. Use ‘file‘.

Value

A list with a final parameter table and a table of the iterations

NMreadSection Extract sections of Nonmem control streams

Description

This is a very commonly used wrapper for the input part of the model file. Look NMextractText for
more general functionality suitable for the results part too.

Usage

NMreadSection(
file = NULL,
lines = NULL,
text = NULL,
section,
return = "text",
keep.empty = FALSE,
keep.name = TRUE,
keep.comments = TRUE,
as.one = TRUE,
clean.spaces = FALSE,
simplify = TRUE,
keepEmpty,
keepName,
keepComments,
asOne,
...

)

NMreadSection 53

Arguments

file A file path to read from. Normally a .mod or .lst. See lines also.
lines Text lines to process. This is an alternative to using the file argument.
text Deprecated, use ‘lines‘. Use this argument if the text to process is one long char-

acter string, and indicate the line separator with the linesep argument (handled
by NMextractText). Use only one of file, lines, and text.

section The name of section to extract without "$". Examples: "INPUT", "PK", "TA-
BLE", etc. Not case sensitive.

return If "text", plain text lines are returned. If "idx", matching line numbers are re-
turned. "text" is default.

keep.empty Keep empty lines in output? Default is FALSE. Notice, comments are removed
before empty lines are handled if ‘keep.comments=TRUE‘.

keep.name Keep the section name in output (say, "$PROBLEM") Default is FALSE. It can
only be FALSE, if return="text".

keep.comments Default is to keep comments. If FALSE, the will be removed. See keep.empty
too. Notice, there is no way for NMreadSection to keep comments and also drop
lines that only contain comments.

as.one If multiple hits, concatenate into one. This will most often be relevant with
name="TABLE". If FALSE, a list will be returned, each element representing
a table. Default is TRUE. So if you want to process the tables separately, you
probably want FALSE here.

clean.spaces If TRUE, leading and trailing are removed, and multiplied succeeding white
spaces are reduced to single white spaces.

simplify If asOne=FALSE, do you want the result to be simplified if only one section is
found? Default is TRUE which is desirable for interactive analysis. For pro-
gramming, you probably want FALSE.

keepEmpty Deprecated. See keep.empty.
keepName Deprecated. See keep.name.
keepComments Deprecated. See keep.comments.
asOne Deprecated. See as.one.
... Additional arguments passed to NMextractText

Value

character vector with extracted lines.

See Also

Other Nonmem: NMapplyFilters(), NMextractText(), NMgenText(), NMreplaceDataFile(),
NMwriteSection()

Examples

NMreadSection(system.file("examples/nonmem/xgxr001.lst", package="NMdata"),section="DATA")

54 NMreadSizes

NMreadShk Read Shrinkage data reported by Nonmem

Description

Read Shrinkage data reported by Nonmem

Usage

NMreadShk(file, auto.ext, as.fun)

Arguments

file A model file. Extension will be replaced by ".shk".
auto.ext If ‘TRUE‘ (default) the extension will automatically be modified using ‘NMdat-

aConf()$file.shk‘. This means ‘file‘ can be the path to an input or output control
stream, and ‘NMreadShk‘ will still read the ‘.shk‘ file.

as.fun See ?NMdataConf

Details

Type 1=etabar Type 2=Etabar SE Type 3=P val Type 4= Type 5= Type 6= Type 7=number of
subjects used. Type 8= Type 9= Type 10= Type 11=

Value

A ‘data.frame‘ with shrinkage values, indexes, and name of related parameter, like ‘OMEGA(1,1)‘.

NMreadSizes Read SIZES info from a control stream

Description

Read SIZES info from a control stream

Usage

NMreadSizes(file.mod = NULL, lines = NULL)

Arguments

file.mod Control stream path.
lines Character vector with control stream file.

Value

A list with SIZES parameter values

NMreadTab 55

NMreadTab Read an output table file from Nonmem

Description

Read a table generated by a $TABLE statement in Nonmem. Generally, these files cannot be read by
read.table or similar because formatting depends on options in the $TABLE statement, and because
Nonmem sometimes includes extra lines in the output that have to be filtered out. NMreadTab can
do this automatically based on the table file alone.

Usage

NMreadTab(
file,
col.tableno,
col.nmrep,
col.table.name,
header = TRUE,
skip,
quiet = TRUE,
as.fun,
...

)

Arguments

file path to Nonmem table file

col.tableno In case of simulations where tables are being repeated, a counter of the repetition
number can be useful to include in the output. For now, this will only work if
the NOHEADER option is not used. This is because NMreadTab searches for
the "TABLE NO..." strings in Nonmem output tables. If col.tableno is TRUE
(default), a counter of tables is included as a column called NMREP. Notice,
the table numbers in NMREP are cumulatively counting the number of tables
reported in the file. NMREP is not the actual table number as given by Nonmem.

col.nmrep col.nmrep If tables are repeated, include a counter? It does not relate to the or-
der of the $TABLE statements but to cases where a $TABLE statement is run
repeatedly. E.g., in combination with the SUBPROBLEMS feature in Nonmem,
it is useful to keep track of the table (repetition) number. If col.nmrep is TRUE,
this will be carried forward and added as a column called NMREP. This is de-
fault behavior when more than one $TABLE repetition is found in data. Set it to
a different string to request the column with a different name. The argument is
passed to NMscanTables.

col.table.name The name of a column containing the name or description of the table (generated
by Nonmem). The default is "table.name". Use FALSE not to include this
column.

header Use header=FALSE if table was created with NOHEADER option in $TABLE.

56 NMrelate

skip The number of rows to skip. The default is skip=1 if header==TRUE and skip=0
if header==FALSE.

quiet logical stating whether or not information is printed about what is being done.
Default can be configured using NMdataConf.

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

... Arguments passed to data.table::fread().

Details

The actual reading of data is based on data.table::fread. Generally, the function is fast thanks to
data.table.

Value

The Nonmem table data.

See Also

Other DataRead: NMreadCsv(), NMscanData(), NMscanInput(), NMscanTables()

NMrelate Relate parameter names and variables based on control stream code
sections.

Description

Relate parameter names and variables based on control stream code sections.

Usage

NMrelate(file, lines, modelname, par.type, col.model, sections, as.fun)

Arguments

file Path to a control stream to process. See ‘lines‘ too.
lines If the control stream has been read already, the text can be provided here instead

of using the ‘file‘ argument. Character vector of text lines.
modelname Either a model name (like "Base") or a function that derives the model name

from the control stream file path. The default is dropping the file name extension
on the control stream file name.

par.type Parameter type(s) to include. Default is all three possible which is c("THETA","OMEGA","SIGMA").
col.model Name of the column containing the model name.
sections Sections of the control stream to consider. Default is all of c("PRED","PK","ERROR").
as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)

in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

NMreplaceDataFile 57

Details

‘NMrelate()‘ processes $PRED, $PK and $ERROR sections. It does not read ext files or $THETA,
$OMEGA, $SIGMA sections to gain information but only extracts what it can from the model
code. You can then merge with information from functions such as ‘NMreadExt()‘ and ‘NMread-
ParText()‘.

Value

data.frame relating parameters to variable names

NMreplaceDataFile Replace data file used in Nonmem control stream

Description

Replace data file used in Nonmem control stream

Usage

NMreplaceDataFile(files, file.pattern, dir, path.data, newfile = file.mod, ...)

Arguments

files Paths to input control streams to modify. See file.pattern and dir too.

file.pattern A pattern to look for if ‘dir‘ is supplied too (and not ‘file.mod‘). This is used to
modify multiple input control streams at once.

dir Directory in which to look for ‘file.pattern‘. Notice, use either just ‘file.mod‘ or
both ‘dir‘ and ‘file.pattern‘.

path.data Path to input control stream to use in newfile

newfile A path to a new control stream to write to (and don’t edit contents of ‘file.mod‘).
Default is to overwrite ‘file.mod‘.

... Additional arguments to pass to NMwriteSection.

Value

Lines for a new control stream (invisibly)

See Also

Other Nonmem: NMapplyFilters(), NMextractText(), NMgenText(), NMreadSection(), NMwriteSection()

58 NMscanData

NMscanData Automatically find Nonmem input and output tables and organize data

Description

This is a very general solution to automatically identifying, reading, and merging all output and
input data in a Nonmem model. The most important steps are

• Read and combine output tables,

• If wanted, read input data and restore variables that were not output from the Nonmem model

• If wanted, also restore rows from input data that were disregarded in Nonmem (e.g. observa-
tions or subjects that are not part of the analysis)

Usage

NMscanData(
file,
col.row,
use.input,
merge.by.row,
recover.rows,
file.mod,
dir.data,
file.data,
translate.input = TRUE,
quiet,
formats.read,
args.fread,
as.fun,
col.id = "ID",
modelname,
col.model,
col.nmout,
col.nmrep,
order.columns = TRUE,
check.time,
tz.lst,
skip.absent = FALSE,
tab.count,
use.rds

)

Arguments

file Path to a Nonmem control stream or output file from Nonmem (.mod or .lst)

NMscanData 59

col.row A column with a unique value for each row. Such a column is recommended to
use if possible. See merge.by.row and details as well. Default ("ROW") can be
modified using NMdataConf.

use.input Should the input data be added to the output data. Only column names that are
not found in output data will be retrieved from the input data. Default is TRUE
which can be modified using NMdataConf. See merge.by.row too.

merge.by.row If use.input=TRUE, this argument determines the method by which the input
data is added to output data. The default method (merge.by.row=FALSE) is to
interpret the Nonmem code to imitate the data filtering (IGNORE and ACCEPT
statements), but the recommended method is merge.by.row=TRUE which means
that data will be merged by a unique row identifier. The row identifier must be
present in input and at least one full length output data table. See argument
col.row too.

recover.rows Include rows from input data files that do not exist in output tables? This will
be added to the $row dataset only, and $run, $id, and $occ datasets are created
before this is taken into account. A column called nmout will be TRUE when
the row was found in output tables, and FALSE when not. Default is FALSE
and can be configured using NMdataConf.

file.mod The input control stream file path. Default is to look for \"file\" with extension
changed to .mod (PSN style). You can also supply the path to the file, or you
can provide a function that translates the output file path to the input file path.
The default behavior can be configured using NMdataConf. See dir.data too.

dir.data The data directory can only be read from the control stream (.mod) and not from
the output file (.lst). So if you only have the output control stream, use dir.data
to tell in which directory to find the data file. If dir.data is provided, the .mod
file is not used at all.

file.data Specification of the data file path. When this is used, the control streams are not
used at all.

translate.input

Default is TRUE, meaning that input data column names are translated accord-
ing to $INPUT section in Nonmem listing file.

quiet The default is to give some information along the way on what data is found. But
consider setting this to TRUE for non-interactive use. Default can be configured
using NMdataConf.

formats.read Prioritized input data file formats to look for and use if found. Default is c("rds","csv")
which means rds will be used if found, and csv if not. fst is possible too. De-
fault can be modified using NMdataConf().

args.fread List of arguments passed to when reading _input_ data. Notice that except for
"input" and "file", you need to supply all arguments to fread if you use this
argument. Default values can be configured using NMdataConf.

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

col.id The name of the subject ID variable, default is "ID".

60 NMscanData

modelname The model name to be stored if col.model is not NULL. If not supplied, the name
will be taken from the control stream file name by omitting the directory/path
and deleting the .lst extension (path/run001.lst becomes run001). This can be a
character string or a function which is called on the value of file (file is another
argument to NMscanData). The function must take one character argument and
return another character string. As example, see NMdataConf()$modelname.
The default can be configured using NMdataConf.

col.model A column of this name containing the model name will be included in the re-
turned data. The default is to store this in a column called "model". See ar-
gument "modelname" as well. Set to NULL if not wanted. Default can be
configured using NMdataConf.

col.nmout A column of this name will be a logical representing whether row was in output
table or not. Default can be modified using NMdataConf.

col.nmrep If tables are repeated, include a counter? It does not relate to the order of the
$TABLE statements but to cases where a $TABLE statement is run repeatedly.
E.g., in combination with the SUBPROBLEMS feature in Nonmem, it is useful
to keep track of the table (repetition) number. If col.nmrep is TRUE, this will be
carried forward and added as a column called NMREP. This is default behavior
when more than one $TABLE repetition is found in data. Set it to a different
string to request the column with a different name. The argument is passed to
NMscanTables.

order.columns If TRUE (default), NMorderColumns is used to reorder the columns before
returning the data. NMorderColumns will be called with alpha=FALSE, so
columns are not sorted alphabetically. But standard Nonmem columns like ID,
TIME, and other will be first. If col.row is used, this will be passed to NMorder-
Columns too.

check.time If TRUE (default) and if input data is used, input control stream and input data
are checked to be newer than output control stream and output tables. These
are important assumptions for the way information is merged by NMscanData.
However, if data has been transferred from another system where Nonmem was
run, these checks may not make sense, and you may not want to see these warn-
ings. The default can be configured using NMdataConf. For the output control
stream, the time stamp recorded by Nonmem is used if possible, and if the input
data is created with NMwriteData, the recorded creation time is used if possible.
If not, and for all other files, the file modification times are used.

tz.lst If supplied, the timezone to be used when reading the time stamp in the out-
put control stream. Please supply something listed in OlsonNames(). Can be
configured using NMdataConf() too.

skip.absent Skip missing output table files with a warning? Default is FALSE in which case
an error is thrown.

tab.count Deprecated. Use col.tableno.
use.rds Deprecated - use formats.read instead. If provided (though not recommended),

this will overwrite formats.read, and only formats rds and csv can be used.

Details

This function makes it very easy to collect the data from a Nonmem run.

NMscanInput 61

A useful feature of this function is that it can automatically combine "input" data (the data read
by Nonmem in $INPUT or $INFILE) with "output" data (tables written by Nonmem in $TABLE).
There are two implemented methods for doing so. One (the default but not recommended) relies
on interpretation of filter (IGNORE and ACCEPT) statements in $INPUT. This will work in most
cases, and checks for consistency with Nonmem results. However, the recommended method is
using a unique row identifier in both input data and at least one output data file (not a FIRSTONLY
or LASTONLY table). Supply the name of this column using the col.row argument.

Limitations. A number of Nonmem features are not supported. Most of this can be overcome by
using merge.by.row=TRUE. Incomplete list of known limitations:

character TIME If Nonmem is used to translate DAY and a character TIME column, TIME has
to be available in an output table. NMscanData does not do the translation to numeric.

RECORDS The RECORDS option to limit the part of the input data being used is not searched
for. Using merge.by.row=TRUE will work unaffectedly.

NULL The NULL argument to specify missing value string in input data is not respected. If delim-
ited input data is read (as opposed to rds files), missing values are assumed to be represented
by dots (.).

Value

A data set of class ’NMdata’.

See Also

Other DataRead: NMreadCsv(), NMreadTab(), NMscanInput(), NMscanTables()

Examples

Not run:
res1 <- NMscanData(system.file("examples/nonmem/xgxr001.lst", package="NMdata"))

End(Not run)

NMscanInput Find and read input data and optionally translate column names ac-
cording to the $INPUT section

Description

This function finds and reads the input data based on a control stream file path. It can align the
column names to the definitions in $INPUT in the control stream, and it can subset the data based
on ACCEPT/IGNORE statements in $DATA. It supports a few other ways to identify the input data
file than reading the control stream, and it can also read an rds or fst file instead of the delimited
text file used by Nonmem.

62 NMscanInput

Usage

NMscanInput(
file,
formats.read,
file.mod,
dir.data = NULL,
file.data = NULL,
apply.filters = FALSE,
translate = TRUE,
recover.cols = TRUE,
details = TRUE,
col.id = "ID",
col.row,
quiet,
args.fread,
invert = FALSE,
modelname,
col.model,
as.fun,
applyFilters,
use.rds

)

Arguments

file a .lst (output) or a .mod (input) control stream file. The filename does not need to
end in .lst. It is recommended to use the output control stream because it reflects
the model as it was run rather than how it is planned for next run. However, see
file.mod and dir.data.

formats.read Prioritized input data file formats to look for and use if found. Default is c("rds","csv")
which means rds will be used if found, and csv if not. fst is possible too. De-
fault can be modified using NMdataConf().

file.mod The input control stream file path. Default is to look for \"file\" with extension
changed to .mod (PSN style). You can also supply the path to the file, or you
can provide a function that translates the output file path to the input file path.
If dir.data is missing, the input control stream is needed. This is because the .lst
does not contain the path to the data file. The .mod file is only used for finding
the data file. How to interpret the datafile is read from the .lst file. The default
can be configured using NMdataConf. See dir.data too.

dir.data The data directory can only be read from the control stream (.mod) and not from
the output file (.lst). So if you only have the output file, use dir.data to tell in
which directory to find the data file. If dir.data is provided, the .mod file is not
used at all.

file.data Specification of the data file path. When this is used, the control streams are not
used at all.

apply.filters If TRUE (default), IGNORE and ACCEPT statements in the Nonmem control

NMscanInput 63

streams are applied before returning the data. This affects what rows are re-
turned, not columns.

translate If TRUE (default), data columns are named as interpreted by Nonmem (in ‘$IN-
PUT‘).

recover.cols recover columns that were not used in the Nonmem control stream? This means
adding column from the input data file that are not used in ‘$INPUT‘. If data
file contains more columns than mentioned in ‘$INPUT‘, these will be named
as in data file (if data file contains named variables). This affects what columns
are returned, not rows.

details If TRUE, metadata is added to output. In this case, you get a list. Typically, this
is mostly useful if programming up functions which behavior must depend on
properties of the output. See details.

col.id The name of the subject ID column. Optional and only used to calculate number
of subjects in data. Default is modified by NMdataConf.

col.row The name of the row counter column. Optional and only used to check whether
the row counter is in the data.

quiet Default is to inform a little, but TRUE is useful for non-interactive stuff.

args.fread List of arguments passed to fread. Notice that except for "input" and "file", you
need to supply all arguments to fread if you use this argument. Default values
can be configured using ‘NMdataConf()‘.

invert If TRUE, the data rows that are dismissed by the Nonmem data filters (ACCEPT
and IGNORE) and only this will be returned. Only used if ‘apply.filters‘ is
‘TRUE‘.

modelname Only affects meta data table. The model name to be stored if col.model is not
NULL. If not supplied, the name will be taken from the control stream file name
by omitting the directory/path and deleting the .lst extension (path/run001.lst
becomes run001). This can be a character string or a function which is called on
the value of file (file is another argument to NMscanData). The function must
take one character argument and return another character string. As example, see
NMdataConf()$modelname. The default can be configured using NMdataConf.

col.model Only affects meta data table. A column of this name containing the model name
will be included in the returned data. The default is to store this in a column
called "model". See argument "modelname" as well. Set to NULL if not wanted.
Default can be configured using NMdataConf.

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

applyFilters Deprecated - use apply.filters.

use.rds Deprecated - use formats.read instead. If provided (though not recommended),
this will overwrite formats.read, and only formats rds and csv can be used.

Details

Columns that are dropped (using ‘DROP‘ or ‘SKIP‘ in ‘$INPUT‘) in the model will be included in
the output.

64 NMscanMultiple

It may not work if a column is dropped, and a new column is renamed to the same name. Say you
have DV and CONC as the only two columns (not possible but illustrative), and in Nonmem you do
DV=DROP DV. Not sure it will work in Nonmem, and it probably won’t work in NMscanInput.

Value

A data set, class defined by ’as.fun’

See Also

Other DataRead: NMreadCsv(), NMreadTab(), NMscanData(), NMscanTables()

NMscanMultiple Run NMscanData on multiple models and stack results

Description

Useful function for meta analyses when multiple models are stored in one folder and can be read
with NMscanData using the same arguments.

Usage

NMscanMultiple(files, dir, file.pattern, as.fun, ...)

Arguments

files File paths to the models (control stream) to edit. See file.pattern too.

dir The directory in which to find the models. Passed to list.files(). See file.pattern
argument too.

file.pattern The pattern used to match the filenames to read with NMscanData. Passed
to list.files(). If dir is supplied and files is not (or is NULL), the default is
".*\.lst" which means all files ending in ‘.lst‘. See dir argument too.

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

... Additional arguments passed to NMscanData.

Value

All results stacked, class as defined by as.fun

NMscanTables 65

Examples

Not run:
res <- NMscanMultiple(dir=system.file("examples/nonmem", package="NMdata"),
file.pattern="xgxr01.*\\.lst",as.fun="data.table")
res.mean <- res[,.(meanPRED=exp(mean(log(PRED)))),by=.(model,NOMTIME)]
library(ggplot2)
ggplot(res.mean,aes(NOMTIME,meanPRED,colour=model))+geom_line()

End(Not run)

NMscanTables Find and read all output data tables in Nonmem run

Description

Find and read all output data tables in Nonmem run

Usage

NMscanTables(
file,
as.fun,
quiet,
col.nmrep = TRUE,
col.tableno = FALSE,
col.id = "ID",
col.row,
details,
skip.absent = FALSE,
meta.only = FALSE,
modelname,
col.model

)

Arguments

file the Nonmem file to read (normally .mod or .lst)

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

quiet The default is to give some information along the way on what data is found. But
consider setting this to TRUE for non-interactive use. Default can be configured
using NMdataConf.

col.nmrep col.nmrep If tables are repeated, include a counter? It does not relate to the or-
der of the $TABLE statements but to cases where a $TABLE statement is run
repeatedly. E.g., in combination with the SUBPROBLEMS feature in Nonmem,

66 NMscanTables

it is useful to keep track of the table (repetition) number. If col.nmrep is TRUE,
this will be carried forward and added as a column called NMREP. This is de-
fault behavior when more than one $TABLE repetition is found in data. Set it to
a different string to request the column with a different name. The argument is
passed to NMscanTables.

col.tableno Nonmem includes a counter of tables in the written data files. These are often
not useful. However, if col.tableno is TRUE (not default), this will be carried
forward and added as a column called NMREP. Even if NMREP is generated by
NMscanTables, it is treated like any other table column in meta (?NMinfo) data.

col.id name of the subject ID column. Used for calculation of the number of subjects
in each table.

col.row The name of the row counter column. Optional and only used to check whether
the row counter is in the data.

details If TRUE, metadata is added to output. In this case, you get a list. Typically, this
is mostly useful if programming up functions which behavior must depend on
properties of the output.

skip.absent Skip missing output table files with a warning? Default is FALSE in which case
an error is thrown.

meta.only If TRUE, tables are not read, only a table is returned showing what tables were
found and some available meta information. Notice, not all meta information
(e.g., dimensions) are available because the tables need to be read to derive that.

modelname Only affects meta data table. The model name to be stored if col.model is not
NULL. If not supplied, the name will be taken from the control stream file name
by omitting the directory/path and deleting the .lst extension (path/run001.lst
becomes run001). This can be a character string or a function which is called on
the value of file (file is another argument to NMscanData). The function must
take one character argument and return another character string. As example, see
NMdataConf()$modelname. The default can be configured using NMdataConf.

col.model Only affects meta data table. A column of this name containing the model name
will be included in the returned data. The default is to store this in a column
called "model". See argument "modelname" as well. Set to NULL if not wanted.
Default can be configured using NMdataConf.

Value

A list of all the tables as data.frames. If details=TRUE, this is in one element, called data, and meta
is another element. If not, only the data is returned.

See Also

Other DataRead: NMreadCsv(), NMreadTab(), NMscanData(), NMscanInput()

Examples

tabs1 <- NMscanTables(system.file("examples/nonmem/xgxr001.lst", package="NMdata"))

NMstamp 67

NMstamp stamp a dataset or any other object

Description

Dataset metadata can be valuable, eg. by tracing an archived dataset back to the code that generated
it. The metadata added by NMstamp can be accessed using the function NMinfo.

Usage

NMstamp(data, script, time = Sys.time(), ...)

Arguments

data The dataset to stamp.

script path to the script where the dataset was generated.

time the time stamp to attach. Default is to use cpu clock.

... other named metadata elements to add to the dataset. Example: Description="PK
data for phase 1 trials in project".

Details

NMstamp modifies the meta data by reference. See example.

Value

data with meta data attached. Class unchanged.

See Also

NMinfo

Other DataCreate: NMorderColumns(), NMwriteData(), addTAPD(), findCovs(), findVars(),
flagsAssign(), flagsCount(), mergeCheck(), tmpcol()

Examples

x=1
NMstamp(x,script="example.R",description="Example data")
NMinfo(x)

68 NMwriteData

NMwriteData Write dataset for use in Nonmem (and R)

Description

Instead of trying to remember the arguments to pass to write.csv, use this wrapper. It tells you what
to write in $DATA and $INPUT in Nonmem, and it (additionally) exports an rds file as well which
is highly preferable for use in R. It never edits the data before writing the datafile. The filenames
for csv, rds etc. are derived by replacing the extension to the filename given in the file argument.

Usage

NMwriteData(
data,
file,
formats.write = c("csv", "rds"),
script,
args.stamp,
args.fwrite,
args.rds,
args.RData,
args.write_fst,
quiet,
args.NMgenText,
csv.trunc.as.nm = FALSE,
genText,
save = TRUE,
write.csv,
write.rds,
write.RData,
nm.drop,
nmdir.data,
col.flagn,
nm.rename,
nm.copy,
nm.capitalize,
allow.char.TIME

)

Arguments

data The dataset to write to file for use in Nonmem.

file The file to write to. The extension (everything after and including last ".") is
dropped. csv, rds and other standard file name extensions are added.

formats.write character vector of formats.write. Default is c("csv","rds"). "fst" is possible too.
Default can be modified with NMdataConf().

NMwriteData 69

script If provided, the object will be stamped with this script name before saved to rds
or RData. See ?NMstamp.

args.stamp A list of arguments to be passed to NMstamp.
args.fwrite List of arguments passed to fwrite. Notice that except for "x" and "file", you

need to supply all arguments to fwrite if you use this argument. Default values
can be configured using NMdataConf.

args.rds A list of arguments to be passed to saveRDS.
args.RData A list of arguments to be passed to save. Please note that writing RData is

deprecated.
args.write_fst An optional list of arguments to be passed to write_fst.
quiet The default is to give some information along the way on what data is found. But

consider setting this to TRUE for non-interactive use. Default can be configured
using NMdataConf.

args.NMgenText List of arguments to pass to NMgenText - the function that generates text sug-
gestion for INPUT and DATA sections in the Nonmem control stream. You can
use these arguments to get a text suggestion you an use directly in Nonmem -
and NMwriteSection can even update multiple Nonmem control streams based
on the result. This will update your control streams to match your new data file
with just one command.

csv.trunc.as.nm

If TRUE, csv file will be truncated horizontally (columns will be dropped)
to match the $INPUT text generated for Nonmem (genText must be TRUE
for this option to be allowed). This can be a great advantage when dealing
with large datasets that can create problems in parallellization. Combined with
write.rds=TRUE, the full data set will still be written to an rds file, so this can be
used when combining output and input data when reading model results. This is
done by default by NMscanData. This means writing a lean (narrow) csv file for
Nonmem while keeping columns of non-numeric class like character and factor
for post-processing.

genText Run and report results of NMgenText? Default is ‘TRUE‘ if a csv file is written,
otherwise ‘FALSE‘. You may want to disable this if data set is not for Nonmem.

save Save defined files? Default is TRUE. If a variable is used to control whether a
script generates outputs (say writeOutputs=TRUE/FALSE), if you use save=writeOutputs
to comply with this.

write.csv Write to csv file? Deprecated, use ‘formats.write‘ instead.
write.rds write an rds file? Deprecated, use ‘formats.write‘ instead.
write.RData Deprecated and not recommended - will be removed. RData is not a adequate

format for a dataset (but is for environments). Please use write.rds instead.
nm.drop Deprecated, use args.NMgenText=list(drop=c("column")) instead.
nmdir.data Deprecated, use args.NMgenText=list(dir.data="your/path") instead.
col.flagn Deprecated, use args.NMgenText=list(col.flagn="column.name"). Name of a

numeric column with zero value for rows to include in Nonmem run, non-
zero for rows to skip. The argument is only used for generating the proposed
$DATA text to paste into the Nonmem control stream. To skip this feature, use
‘col.flagn=FALSE‘.

70 NMwriteSection

nm.rename Deprecated, use args.NMgenText=list(rename=c(newname="existing")) instead.

nm.copy Deprecated, use args.NMgenText=list(copy=c(newname="existing")) instead.

nm.capitalize Deprecated, use args.NMgenText=list(capitalize=TRUE) instead.
allow.char.TIME

Deprecated, use args.NMgenText=list(allow.char.TIME=TRUE) instead.

Details

When writing csv files, the file will be comma-separated. Because Nonmem does not support
quoted fields, you must avoid commas in character fields. An error is returned if commas are found
in strings.

The user is provided with text to use in Nonmem. This lists names of the data columns. Once a
column is reached that Nonmem will not be able to read as a numeric and column is not in nm.drop,
the list is stopped. Only exception is TIME which is not tested for whether character or not.

Value

Text for inclusion in Nonmem control stream, invisibly.

See Also

Other DataCreate: NMorderColumns(), NMstamp(), addTAPD(), findCovs(), findVars(), flagsAssign(),
flagsCount(), mergeCheck(), tmpcol()

NMwriteSection Replace ($)sections of a Nonmem control stream

Description

Just give the section name, the new lines and the file path, and the "$section", and the input to
Nonmem will be updated.

Usage

NMwriteSection(
files,
file.pattern,
dir,
section,
newlines,
list.sections,
location = "replace",
newfile,
backup = TRUE,
blank.append = TRUE,
data.file,

NMwriteSection 71

write = TRUE,
quiet,
simplify = TRUE

)

Arguments

files File paths to the models (control stream) to edit. See file.pattern too.

file.pattern Alternatively to files, you can supply a regular expression which will be passed
to list.files as the pattern argument. If this is used, use ‘dir‘ argument as well.
Also see data.file to only process models that use a specific data file.

dir If file.pattern is used, ‘dir‘ is the directory to search in.

section The name of the section to update with or without "$". Example: ‘section="EST"‘
or ‘section="$EST"‘ to edit the sections starting by ‘$EST‘. Section specifica-
tion is not case-sensitive. See ‘?NMreadSection‘ too.

newlines The new text (including "$SECTION"). Better be broken into lines in a character
vector since this is simply past to writeLines().

list.sections Named list of new sections, each element containing a section. Names must
be section names, contents of each element are the new section lines for each
section.

location In combination with ‘section‘, this determines where the new section is inserted.
Possible values are "replace" (default), "before", "after", "first", "last".

newfile path and filename to new run. If missing, the original file (from files or
file.pattern) is overwritten (see the backup option below). If NULL, out-
put is returned as a character vector rather than written.

backup In case you are overwriting the old file, do you want to backup the file (to say,
backup_run001.mod)?

blank.append Append a blank line to output?

data.file Use this to limit the scope of models to those that use a specific input data
data file. The string has to exactly match the one in ‘$DATA‘ or ‘$INFILE‘ in
Nonmem.

write Default is to write to file. If write=FALSE, ‘NMwriteSection()‘ returns the re-
sulting input.txt without writing it to disk. Default is ‘TRUE‘.

quiet The default is to give some information along the way on what data is found. But
consider setting this to TRUE for non-interactive use. Default can be configured
using ‘NMdataConf()‘.

simplify If TRUE (default) and only one file is edited, the resulting rows are returned
directly. If more than one file is edited, the result will always be a list with one
element per file.

Details

The new file will be written with unix-style line endings.

72 print.summary_NMdata

Value

The new section text is returned. If write=TRUE, this is done invisibly.

See Also

Other Nonmem: NMapplyFilters(), NMextractText(), NMgenText(), NMreadSection(), NMreplaceDataFile()

Examples

newlines <- "$EST POSTHOC INTERACTION METHOD=1 NOABORT PRINT=5 MAXEVAL=9999 SIG=3"
NMwriteSection(files=system.file("examples/nonmem/xgxr001.mod", package = "NMdata"),
section="EST", newlines=newlines,newfile=NULL)
Not run:
text.nm <- NMwriteData(data)
NMwriteSection(dir="nonmem",

file.pattern="^run.*\\.mod",
list.sections=text.nm["INPUT"])

End(Not run)

print.summary_NMdata print method for NMdata summaries

Description

print method for NMdata summaries

Usage

S3 method for class 'summary_NMdata'
print(x, ...)

Arguments

x The summary object to be printed. See ?summary.NMdata

... Arguments passed to other print methods.

Value

NULL (invisibly)

renameByContents 73

renameByContents Rename columns matching properties of data contents

Description

For instance, lowercase all columns that Nonmem cannot interpret (as numeric).

Usage

renameByContents(data, fun.test, fun.rename, invert.test = FALSE, as.fun)

Arguments

data data.frame in which to rename columns

fun.test Function that returns TRUE for columns to be renamed.

fun.rename Function that takes the existing column name and returns the new one.

invert.test Rename those where FALSE is returned from fun.test.

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Value

data with (some) new column names. Class as defined by as.fun.

Examples

pk <- readRDS(file=system.file("examples/data/xgxr2.rds",package="NMdata"))
pk[,trtact:=NULL]
pk <- renameByContents(data=pk,

fun.test = NMisNumeric,
fun.rename = tolower,
invert.test = TRUE)

Or append a "C" to the same column names
pk <- readRDS(file=system.file("examples/data/xgxr2.rds",package="NMdata"))
pk[,trtact:=NULL]
pk <- renameByContents(data=pk,

fun.test = NMisNumeric,
fun.rename = function(x)paste0(x,"C"),
invert.test = TRUE)

74 triagSize

summary.NMdata summary method for NMdata objects

Description

summary method for NMdata objects

Usage

S3 method for class 'NMdata'
summary(object, ...)

Arguments

object An NMdata object (from NMscanData).

... Only passed to the summary generic if object is missing NMdata meta data (this
should not happen anyway).

Details

The subjects are counted conditioned on the nmout column. If only id-level output tables are
present, there are no nmout=TRUE rows. This means that in this case it will report that no IDs
are found in output. The correct statement is that records are found for zero subjects in output
tables.

Value

A list with summary information on the NMdata object.

triagSize Calculate number of elements for matrix specification

Description

calculate number of elements in the diagonal and lower triangle of a squared matrix, based on the
length of the diagonal.

Usage

triagSize(diagSize)

Arguments

diagSize The length of the diagonal. Same as number of rows or columns.

uniquePresent 75

Value

An integer

Examples

triagSize(1:5)

uniquePresent Extract unique non-missing value from vector

Description

Extract unique non-missing value from vector

Usage

uniquePresent(x, req.n1 = TRUE, na.pattern)

Arguments

x A vector, either numeric or character.

req.n1 Require one unique value? If ‘TRUE‘ (default), an error is thrown if non-unique
values found. If ‘FALSE‘, all the unique values are returned.

na.pattern In addition to NA-elements, what text strings should be considered missing?
Default is empty strings and strings only containing white spaces (‘na.pattern="^
*$"‘).

Details

This function is particularly useful when combining data sets of which only some contain certain
variables. uniquePresent with ‘req.n1=TRUE‘ makes sure the result is a single unique value (e.g.,
within subjects). A typical use is carrying subject-level covariates from one data set to another in a
longitudinal analysis.

Value

a vector of same class as ‘x‘

76 unNMdata

unNMdata Remove NMdata class and discard NMdata meta data

Description

Remove NMdata class and discard NMdata meta data

Usage

unNMdata(x)

Arguments

x An ’NMdata’ object.

Value

x stripped from the ’NMdata’ class

Index

∗ DataCreate
addTAPD, 4
findCovs, 14
findVars, 15
flagsAssign, 16
flagsCount, 18
mergeCheck, 24
NMorderColumns, 41
NMstamp, 67
NMwriteData, 68

∗ DataRead
NMreadCsv, 44
NMreadTab, 55
NMscanData, 58
NMscanInput, 61
NMscanTables, 65

∗ DataWrangling
compareCols, 8
dims, 10
listMissings, 22

∗ Nonmem
NMextractText, 36
NMgenText, 38
NMreadSection, 52
NMreplaceDataFile, 57
NMwriteSection, 70

∗ debug
NMcheckColnames, 27

addCor, 3
addOmegaCorr, 4
addTAPD, 4, 14, 16, 17, 20, 26, 43, 67, 70

cbind.NMdata (NMdataOperations), 34
cc, 6
cl, 7
colLabels, 8
compareCols, 8, 10, 23

dimnames.NMdata (NMdataOperations), 34

dims, 10, 10, 23
dt2mat, 11

editCharCols, 12
egdt, 13

findCovs, 6, 14, 16, 17, 20, 26, 43, 67, 70
findVars, 6, 14, 15, 17, 20, 26, 43, 67, 70
flagsAssign, 6, 14, 16, 16, 20, 26, 43, 67, 70
flagsCount, 6, 14, 16, 17, 18, 26, 43, 67, 70
fnAppend, 20
fnExtension, 21

is.NMdata, 22

listMissings, 10, 22

mat2dt, 23
merge.NMdata (NMdataOperations), 34
mergeCheck, 6, 14, 16, 17, 20, 24, 43, 67, 70

NMapplyFilters, 38, 40, 53, 57, 72
NMcheckColnames, 27
NMcheckData, 27
NMdataConf, 31
NMdataOperations, 34
NMexpandDoses, 35
NMextractDataFile, 36
NMextractText, 36, 40, 53, 57, 72
NMgenText, 38, 38, 53, 57, 72
NMinfo, 40
NMisNumeric, 41
NMorderColumns, 6, 14, 16, 17, 20, 26, 41, 67,

70
NMreadCov, 44
NMreadCsv, 44, 56, 61, 64, 66
NMreadExt, 45
NMreadFilters, 47
NMreadInits, 48
NMreadParsText, 48
NMreadPhi, 51

77

78 INDEX

NMreadSection, 38, 40, 52, 57, 72
NMreadShk, 54
NMreadSizes, 54
NMreadTab, 45, 55, 61, 64, 66
NMrelate, 56
NMreplaceDataFile, 38, 40, 53, 57, 72
NMscanData, 45, 56, 58, 64, 66
NMscanInput, 45, 56, 61, 61, 66
NMscanMultiple, 64
NMscanTables, 45, 56, 61, 64, 65
NMstamp, 6, 14, 16, 17, 20, 26, 43, 67, 70
NMwriteData, 6, 14, 16, 17, 20, 26, 43, 67, 68
NMwriteSection, 38, 40, 53, 57, 70

print.summary_NMdata, 72

rbind.NMdata (NMdataOperations), 34
renameByContents, 73

summary.NMdata, 74

t.NMdata (NMdataOperations), 34
tmpcol, 6, 14, 16, 17, 20, 26, 43, 67, 70
triagSize, 74

uniquePresent, 75
unNMdata, 76

	addCor
	addOmegaCorr
	addTAPD
	cc
	cl
	colLabels
	compareCols
	dims
	dt2mat
	editCharCols
	egdt
	findCovs
	findVars
	flagsAssign
	flagsCount
	fnAppend
	fnExtension
	is.NMdata
	listMissings
	mat2dt
	mergeCheck
	NMcheckColnames
	NMcheckData
	NMdataConf
	NMdataOperations
	NMexpandDoses
	NMextractDataFile
	NMextractText
	NMgenText
	NMinfo
	NMisNumeric
	NMorderColumns
	NMreadCov
	NMreadCsv
	NMreadExt
	NMreadFilters
	NMreadInits
	NMreadParsText
	NMreadPhi
	NMreadSection
	NMreadShk
	NMreadSizes
	NMreadTab
	NMrelate
	NMreplaceDataFile
	NMscanData
	NMscanInput
	NMscanMultiple
	NMscanTables
	NMstamp
	NMwriteData
	NMwriteSection
	print.summary_NMdata
	renameByContents
	summary.NMdata
	triagSize
	uniquePresent
	unNMdata
	Index

