Package 'PWEALL'

July 21, 2025

Type Package **Version** 1.3.0.1

Date 2018-10-18

Title Design and Monitoring of Survival Trials Accounting for Complex Situations

Description Calculates various functions needed for design and monitoring survival trials accounting for complex situations such as delayed treatment effect, treatment crossover, non-uniform accrual,

and different censoring distributions between groups. The event time distribution is assumed to be piecewise exponential (PWE) distribution and the entry time is assumed to be piecewise uniform distribution.

As compared with Version 1.2.1, two more types of hybrid crossover are added.

A bug is corrected in the function ``pwecx" that calculates the crossover-

adjusted survival, distribution,

density, hazard and cumulative hazard functions.

Also, to generate the crossover-adjusted event time random variable, a more efficient algorithm is used and the output includes crossover indicators.

Depends R (>= 3.1.2)

Imports survival, stats

License GPL (>= 2)

RoxygenNote 5.0.1

NeedsCompilation yes

Author Xiaodong Luo [aut, cre],

Xuezhou Mao [ctb],

Xun Chen [ctb],

Hui Quan [ctb],

Sanofi [cph]

Maintainer Xiaodong Luo < Xiaodong Luo@sanofi.com>

Repository CRAN

Date/Publication 2023-08-09 04:33:51 UTC

2 Contents

Contents

Index

PWEALL-package	3
cp	6
cpboundary	7
cpstop	9
fourhr	11
hxbeta	13
	14
	16
	19
	23
	26
	28
1	31
	33
	36
L	37
L	39
L	40
L L	12
L L	14
	17 46
L	+0 47
	+ / 49
L 1	52
	54
	57
· ·	51 59
<u> </u>	
L	51
n .	53
1	54
	55
	57
1	58
1	71
	73
	76
	77
rpwecx	79
rpwu	30
spf	31
wlrcal	32
wlrcom	33
wlrutil	35

86

PWEALL-package 3

PWEALL-package Design and Monitoring of Survival Trials Accounting for Complex Sit-

uations

Description

Calculates various functions needed for design and monitoring survival trials accounting for complex situations such as delayed treatment effect, treatment crossover, non-uniform accrual, and different censoring distributions between groups. The event time distribution is assumed to be piecewise exponential (PWE) distribution and the entry time is assumed to be piecewise uniform distribution. As compared with Version 1.2.1, two more types of hybrid crossover are added. A bug is corrected in the function "pwecx" that calculates the crossover-adjusted survival, distribution, density, hazard and cumulative hazard functions. Also, to generate the crossover-adjusted event time random variable, a more efficient algorithm is used and the output includes crossover indicators.

Details

The DESCRIPTION file:

Package: PWEALL
Type: Package
Version: 1.3.0.1
Date: 2018-10-18

Title: Design and Monitoring of Survival Trials Accounting for Complex Situations

Description: Calculates various functions needed for design and monitoring survival trials accounting for complex sit

Authors@R: c(person(given="Xiaodong", family="Luo", email = "Xiaodong.Luo@sanofi.com", role =c("aut", "cre"

Depends: R (>= 3.1.2)Imports: survival, stats License: GPL (>= 2)

RoxygenNote: 5.0.1 LazyData: true NeedsCompilation: yes

Packaged: 2018-10-18 03:31:00 UTC; Administrator

Author: Xiaodong Luo [aut, cre], Xuezhou Mao [ctb], Xun Chen [ctb], Hui Quan [ctb], Sanofi [cph]

Maintainer: Xiaodong Luo <Xiaodong.Luo@sanofi.com>

Repository: CRAN

Date/Publication: 2018-10-18 11:30:13 UTC

Index of help topics:

PWEALL-package Design and Monitoring of Survival Trials

Accounting for Complex Situations

cp Conditional power given observed log hazard

ratio

cpboundary The stopping boundary based on the conditional

4 PWEALL-package

power criteria

cpstop The stopping probability based on the stopping

boundary

fourhr A utility functon

hxbeta A function to calculate the beta-smoothed

hazard rate

innercov A utility function to calculate the inner

integration of the overall covariance

innervar A utility function to calculate the inner

integration of the overall variance

instudyfindt calculate the timeline in study when some or

all subjects have entered

ovbeta calculate the overall log hazard ratio overallcov calculate the overall covariance

overallcovp1 calculate the first part of the overall

covariance

overallcovp2 calculate the other parts of the overall

covariance

overallvar calculate the overall variance

pwe Piecewise exponential distribution: hazard,

cumulative hazard, density, distribution,

survival

pwecx Various function for piecewise exponential

distribution with crossover effect

exponential distribution with crossover effect

and the censoring function

pwecxpwu Integration of the density of piecewise

exponential distribution with crossover effect,

censoring and recruitment function

pwecxpwufindt calculate the timeline when certain number of

events accumulates

pwecxpwuforvar calculate the utility function used for

varaince calculation

pwefv2 A utility function pwefvplus A utility functon

pwepower Calculating the powers of various the test

statistics for superiority trials

pwepowereq Calculating the powers of various the test

statistics for equivalence trials

pwepowerfindt Calculating the timepoint where a certain power

of the specified test statistics is obtained

pwepowerni Calculating the powers of various the test

statistics for non-inferiority trials

pwesim simulating the test statistics

pwu Piecewise uniform distribution: distribution qpwe Piecewise exponential distribution: quantile

function

PWEALL-package 5

qpwu Piecewise uniform distribution: quantile

function

rmstcov Calculation of the variance and covariance of

estimated restricted mean survival time

rmsth Estimate the restricted mean survival time

(RMST) and its variance from data

rmstpower Calculate powers at different cut-points based

on difference of restricted mean survival times

(RMST)

rmstpowerfindt Calculating the timepoint where a certain power

of mean difference of RMSTs is obtained

rmstsim simulating the restricted mean survival times

A utility function to calculate the true
restricted mean survival time (RMST) and its
variance account for delayed treatment,
discontinued treatment and non-uniform entry

discontinued treatment and non-uniform entry
Piecewise exponential distribution, random

rpwe Piecewise exponential distribution: random

number generation

rpwecx Piecewise exponential distribution with crossover effect: random number generation

Piecewise uniform distribution: random number

generation

spf A utility function

rpwu

wlrcal A utility function to calculate the weighted

log-rank statistics and their varainces given

the weights

wlrcom A function to calculate the various weighted

log-rank statistics and their varainces

wlrutil A utility function to calculate some common

functions in contructing weights

There are 5 types of crossover considered in the package: (1) Markov crossover, (2) Semi-Markov crossover, (3) Hybrid crossover-1, (4) Hybrid crossover-2 and (5) Hybrid crossover-3. The first 3 types are described in Luo et al. (2018). The fourth and fifth types are added for Version 1.3.0. The crossover type is determined by the hazard function after crossover $\lambda_2^{\mathbf{x}}(t \mid u)$. For Type (1), the Markov crossover,

$$\lambda_2^{\mathbf{x}}(t \mid u) = \lambda_2(t).$$

For Type (2), the Semi-Markov crossover,

$$\lambda_2^{\mathbf{x}}(t \mid u) = \lambda_2(t - u).$$

For Type (3), the hybrid crossover-1,

$$\lambda_2^{\mathbf{x}}(t \mid u) = \pi_2 \lambda_2(t - u) + (1 - \pi_2)\lambda_4(t).$$

For Type (4), the hazard after crossover is

$$\lambda_2^{\mathbf{x}}(t \mid u) = \frac{\pi_2 \lambda_2(t-u) S_2(t-u) + (1-\pi_2)\lambda_4(t) S_4(t) / S_4(u)}{\pi_2 S_2(t-u) + (1-\pi_2)S_4(t) / S_4(u)}.$$

6 *cp*

For Type (5), the hazard after crossover is

$$\lambda_2^{\mathbf{x}}(t \mid u) = \frac{\pi_2 \lambda_2(t-u) S_2(t-u) + (1-\pi_2)\lambda_4(t-u) S_4(t-u)}{\pi_2 S_2(t-u) + (1-\pi_2)S_4(t-u)}.$$

The types (4) and (5) are more closely related to "re-randomization", i.e. when a patient crosses, (s)he will have probability π_2 to have hazard λ_2 and probability $1 - \pi_2$ to have hazard λ_4 . The types (4) and (5) differ in having λ_4 as Markov or Semi-markov.

Author(s)

Xiaodong Luo [aut, cre], Xuezhou Mao [ctb], Xun Chen [ctb], Hui Quan [ctb], Sanofi [cph] Maintainer: Xiaodong Luo <Xiaodong.Luo@sanofi.com>

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

ср

Conditional power given observed log hazard ratio

Description

This will calculate the conditional power given the observed log hazard ratio based on Cox model

Usage

```
cp(Dplan=300,alpha=0.05,two.sided=1,pi1=0.5,0bsbeta=log(seq(1,0.6,by=-0.01)),

BetaD=log(0.8),Beta0=log(1),prop=seq(0.1,0.9,by=0.1))
```

Arguments

Dplan	Planned number of events at study end
alpha	Type 1 error rate
two.sided	=1 two-sided test and =0 one-sided test
pi1	Allocation probability for the treatment group
Obsbeta	observed log hazard ratio
BetaD	designed log hazard ratio, i.e. under alternative hypothesis
Beta0	null log hazard ratio, i.e. under null hypothesis
prop	proportion of Dplan observed

Details

This is to calculated conditional power at time point when certain percent of target number of event has been observed and an observed log hazard ratio is provided.

cpboundary 7

Value

CPT	Conditional power under current trend
CPN	Conditional power under null hypothesis
CPD	Conditional power according to design, i.e. under alternative hypothesis

Note

This will calculate the conditional power given the observed log hazard ratio based on Cox model

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

cpboundary,cpstop

Examples

```
###Calculate the CP at 10-90 percent of the target 300 events when the observed HR ###are seq(1,0.6,by=-0.01) with 2:1 allocation ###ratio between the treatment group and the control group cp(pi1=2/3)
```

C	pbo	unc	lary
_	~~~		·~· ,

The stopping boundary based on the conditional power criteria

Description

This will calculate the stopping boundary based on the conditional power criteria, i.e. if observed HR is above the boundary, the conditional power will be lower than the designated level. All the calculation is based on the proportional hazards assumption and the Cox model.

Usage

```
cpboundary(Dplan=300,alpha=0.05,two.sided=1,pi1=0.5,cpcut=c(0.2,0.3,0.4), BetaD=log(0.8),BetaO=log(1),prop=seq(0.1,0.9,by=0.1))
```

8 cpboundary

Arguments

Dplan Planned number of events at study end

alpha Type 1 error rate

two.sided =1 two-sided test and =0 one-sided test

pi1 Allocation probability for the treatment group

cpcut the designated conditional power level

BetaD designed log hazard ratio, i.e. under alternative hypothesis

Beta0 null log hazard ratio, i.e. under null hypothesis

prop proportion of Dplan observed

Details

This will calculate the stopping boundary based on the conditional power criteria, i.e. if observed HR is above the boundary, the conditional power will be lower than the designated level. All the calculation is based on the proportional hazards assumption and the Cox model.

Value

CPTbound Boundary based on the conditional power under current trend
CPNbound Boundary based on the conditional power under null hypothesis

CPDbound Boundary based on the conditional power according to design, i.e. under alter-

native hypothesis

Note

This will calculate the stopping boundary based on the conditional power criteria

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

cp,cpstop

```
###Calculate the stopping boundary at 10-90 percent of the target 300 events ###when the condition power are c(0.2,0.3,0.4) with ###2:1 allocation ratio between the treatment group and the control group cpboundary(pi1=2/3)
```

cpstop 9

Description

This will calculate the stopping probability given the stopping boundary. All the calculation is based on the proportional hazards assumption and the Cox model.

Usage

```
\label{eq:cpstop} \begin{split} & \operatorname{cpstop}(\operatorname{Dplan=300,pi1=0.5,Beta1=log(0.8),Beta0=log(1),} \\ & \operatorname{prop=seq(0.1,0.9,by=0.1),HRbound=rep(0.85,length(prop)))} \end{split}
```

Arguments

Dplan	Planned number of events at study end
pi1	Allocation probability for the treatment group
Beta1	designed log hazard ratio, i.e. under alternative hypothesis
Beta0	null log hazard ratio, i.e. under null hypothesis
prop	proportion of Dplan observed
HRbound	the stopping boundary

Details

This will calculate the stopping probability given the stopping boundary. All the calculation is based on the proportional hazards assumption and the Cox model.

Value

pstop0	Stopping probability under null hypothesis
pstop1	Stopping probability under alternative hypothesis

Note

This will calculate the stopping probability given the stopping boundary

Author(s)

Xiaodong Luo

References

Halperin, Lan, Ware, Johnson and DeMets (1982). Controlled Clinical Trials.

See Also

```
cp,cpboundary
```

10 cpstop

```
###Calculate the stopping boundary at 10-90 percent of the target 300 events
###when the condition power are c(0.2,0.3,0.4) with 2:1 allocation ratio
###between the treatment group and the control group, we pick the boundary
###based on 20 percent conditional power according to design, i.e. under alternative
targetD<-800 ###target number of events at study end
############Allocation prob for the treatment group#############
pi1<-2/3
propevent<-seq(0.1,0.9,by=0.1) ###proportion of events at interim
HRbound<-cpboundary(Dplan=targetD,pi1=pi1,prop=propevent)$CPDbound[,1] ###picking a boundary
pa<-cpstop(pi1=pi1,HRbound=HRbound) ###stopping probabilities under null and alternative
ра
###Calculate the stopping probability under non-constant hazard ratio
n1<-length(propevent)</pre>
####time point at which hazard rates and hazard ratios change
tchange < -c(0,6,12,24)
###annual event rates=0.09(1st yr), 0.07(2nd yr) and 0.05(2+yr) for control
ratet<-c(0.09/12,0.09/12,0.07/12,0.05/12)
###annual censoring rate=0%(1st yr) and 1.5%(after) for control and treatment
ratec0<-c(0/12,0/12,0.015/12,0.015/12)
ratec1<-ratec0
###annual treatment discontinuation rate=4% (1st yr) and 3% (after)
rate31<-c(0.04/12,0.04/12,0.03/12,0.03/12)
rate30<-rep(0,length(tchange))</pre>
ntotal<-sum(oa)</pre>
ntotal
taur<-length(oa)
ut<-seq(1,taur,by=1)
u<-oa/ntotal
############Type-1 error rate############
alpha<-0.05
####null hypothesis
eta0<-log(1)
####constant HR
etac < -log(0.8)
####non-constant HR
eta<-c(log(1), log(0.75), log(0.75), log(0.75)) ###6-m delayed
####target number of events where calculations are performed#############
sevent<-propevent*targetD
```

fourhr 11

```
nse<-length(sevent)</pre>
xtimeline<-xbeta<-xvar<-pxstop<-matrix(0,ncol=2,nrow=nse)</pre>
xtimeline[,1]<-xbeta[,1]<-xvar[,1]<-pxstop[,1]<-sevent</pre>
tbegin<-proc.time()</pre>
for (i in 1:nse){
###find timeline
xtimeline[i,2]<-pwecxpwufindt(target=sevent[i],ntotal=ntotal,</pre>
                 taur=taur,u=u,ut=ut,pi1=0.5,
                rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
                 rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
                 tchange = tchange, eps = 0.001, init = taur, epsilon = 0.000001, maxiter = 100) \$tau1
#Overall hazard ratio and varaince
xbeta[i,2]<-ovbeta(tfix=xtimeline[i,2],taur=taur,u=u,ut=ut,pi1=pi1,</pre>
                rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
                 rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
                 tchange=tchange,eps=0.001,veps=0.001,epsbeta=1.0e-10)$b1
xvar[i,2]<-overallvar(tfix=xtimeline[i,2],taur=taur,u=u,ut=ut,pi1=pi1,</pre>
                rate11=exp(eta)*ratet,rate21=exp(eta)*ratet,rate31=rate31,ratec1=ratec1,
                 rate10=ratet,rate20=ratet,rate30=rate30,ratec0=ratec0,
                 tchange=tchange.eps=0.001,veps=0.001,beta=xbeta[i,2])$vbeta
}
##stopping prob
pxstop[,2]<-1-pnorm(sqrt(ntotal)*(log(HRbound)-xbeta[,2])/sqrt(xvar[,2]))</pre>
tend<-proc.time()
xout<-cbind(xtimeline[,1],xtimeline[,2],xbeta[,2],xvar[,2]/ntotal,</pre>
            1/pi1/(1-pi1)/xtimeline[,1],pxstop[,2],pa$pstop0,pa$pstop1)
xnames<-c("# of events", "Time", "Estbeta", "TrueV", "ApproxV", "NCHR", "Null", "CHR")
colnames(xout)<-xnames</pre>
options(digits=2)
xout
```

fourhr

A utility function

Description

This will calculate the more complex integration

Usage

```
fourhr(t=seq(0,5,by=0.5),rate1=c(0,5,0.8),rate2=rate1,
rate3=c(0.1,0.2),rate4=rate2,tchange=c(0,3),eps=1.0e-2)
```

Arguments

t A vector of time points rate1 piecewise constant event rate 12 fourhr

rate2	piecewise constant event rate
rate3	piecewise constant event rate
rate4	additional piecewise constant
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates and tchange must have the same length.

eps tolerance

Details

Let h_1, \ldots, h_4 correspond to rate1,...,rate4, and H_1, \ldots, H_4 be the corresponding survival functions. We calculate

$$\int_0^t h_1(s)H_2(s)h_3(t-s)H_4(t-s)ds.$$

Value

fx values

Note

This provides the result of the complex integration

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

hxbeta 13

L	٠.	ıЬ	۹	+	_
r	١)	r	ıе	т	а

A function to calculate the beta-smoothed hazard rate

Description

A function to calculate the beta-smoothed hazard rate

Usage

```
hxbeta(x=c(0.5,1),y=seq(.1,1,by=0.01),d=rep(1,length(y)),

tfix=2,K=20,eps=1.0e-06)
```

Arguments

X	time points where the estimated hazards are calculated
у	observed times
d	non-censoring indicators
tfix	maximum time point at which the hazard function is estimated
K	smooth parameter for the hazard estimate

smooth parameter for the hazard estimate

eps the error tolerance when comparing event times

Details

V1:3/21/2018

Value

lambda estimated hazard at points x

Author(s)

Xiaodong Luo

```
n<-200
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
tfix<-taur+2
tseq<-seq(0,tfix,by=0.1)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
tchange<-c(0,1.873)</pre>
```

14 innercov

innercov

A utility function to calculate the inner integration of the overall covariance

Description

This will calculate the inner integration of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

tupp

tlow	A vector of lower bounds
taur	recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group

A vector of upper bounds

innercov 15

rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob for the treatment group
rp20	re-randomization prob for the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the integrations.
beta	The value at which the inner part of the covaraince is computed.

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

qf1 The first part of the inner integration qf2 The second part of the inner integration

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

16 innervar

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

pwe,rpwe,qpwe,pwecx,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
rate11=r11, rate21=r21, rate31=r31,
                   rate41=r41, rate51=r51, ratec1=rc1,
                   rate10=r10, rate20=r20, rate30=r30,
                   rate40=r40, rate50=r50, ratec0=rc0,
                   tchange=c(0,1), type1=1, type0=1,
                   eps=1.0e-2, veps=1.0e-2, beta=0.5)
cbind(getinner$qf1,getinner$qf0)
```

innervar

A utility function to calculate the inner integration of the overall variance

Description

This will calculate the inner integration of the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

innervar 17

Arguments

t	A vector of time points where the integration is calculated.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob for the treatment group
rp20	re-randomization prob for the control group
eps	A small number representing the error tolerance when calculating the utility function $\int_{-\infty}^{x} ds^{-s} ds$
	$\Phi_l(x) = \frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the varaince is computed.

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

18 innervar

Value

qf1	The first part of the inner integration
qf2	The second part of the inner integration

Note

```
Version 1.0 (7/19/2016)
```

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

pwe,rpwe,qpwe,pwecx,ovbeta,innervar

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5,1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
getinner<-innervar(t=seq(0,10,by=0.5),taur=taur,u=u,ut=ut,pi1=0.5,</pre>
                       rate11=r11, rate21=r21, rate31=r31,
                       rate41=r41, rate51=r51, ratec1=rc1,
                       rate10=r10, rate20=r20, rate30=r30,
                       rate40=r40, rate50=r50, ratec0=rc0,
                       tchange=c(0,1),type1=1,type0=1,
                       eps=1.0e-2, veps=1.0e-2, beta=0.5)
cbind(getinner$qf1,getinner$qf0)
```

instudyfindt

calculate the timeline in study when some or all subjects have entered

Description

This will calculate the timeline from some timepoint in study when some/all subjects have entered accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
instudyfindt(target=400,y=exp(rnorm(300)),z=rbinom(300,1,0.5),
                  d=rep(c(0,1,2),each=100),
                  tcut=2,blinded=1,type0=1,type1=type0,
                  rp20=0.5,rp21=0.5,tchange=c(0,1),
             rate10=c(1,0.7),rate20=c(0.9,0.7),rate30=c(0.4,0.6),rate40=rate20,
                  rate50=rate20, ratec0=c(0.3,0.3),
                  rate11=rate10, rate21=rate20, rate31=rate30,
                  rate41=rate40, rate51=rate50, ratec1=ratec0,
                  withmorerec=1,
               ntotal=1000,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                  ntype0=1,ntype1=1,
                  nrp20=0.5,nrp21=0.5,ntchange=c(0,1),
                  nrate10=rate10, nrate20=rate20, nrate30=rate30, nrate40=rate40,
                  nrate50=rate50,nratec0=ratec0,
                  nrate11=rate10,nrate21=rate20,nrate31=rate30,nrate41=rate40,
                  nrate51=rate50,nratec1=ratec0,
                  eps=1.0e-2,init=tcut*1.1,epsilon=0.001,maxiter=100)
```

Arguments

target	target number of events
у	observed times
Z	observed treatment indicator when blinded=0, z=1 denotes the treatment group and 0 the control group
d	event indicator, 1=event, 0=censored, 2=no event or censored up to tcut, the data cut-point
tcut	the data cut-point
blinded	blinded=1 if the data is blinded,=0 if it is unblinded
type0	type of the crossover for the observed data in the control group
type1	type of the crossover for the observed data in the treatment group
rp20	re-randomization prob for the observed data in the control group
rp21	re-randomization prob for the observed data in the treatment group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as $ratejk$, $j=1,2,3,4,5,c$; $k=0,1$

rate10	Hazard before crossover for the old subjects in the control group
rate20	Hazard after crossover for the old subjects in the control group
rate30	Hazard for time to crossover for the old subjects in the control group
rate40	Hazard after crossover for the old subjects in the control group for complex case
rate50	Hazard after crossover for the old subjects in the control group for complex case
ratec0	Hazard for time to censoring for the old subjects in the control group
rate11	Hazard before crossover for the old subjects in the treatment group
rate21	Hazard after crossover for the old subjects in the treatment group
rate31	Hazard for time to crossover for the old subjects in the treatment group
rate41	Hazard after crossover for the old subjects in the treatment group for complex case
rate51	Hazard after crossover for the old subjects in the treatment group for complex case
ratec1	Hazard for time to censoring for the old subjects in the treatment group
withmorerec	withmorerec=1 if more subjects are needed to be recruited; =0 otherwise
ntotal	total number of the potential new subjects
taur	recruitment time for the potential new subjects
u	Piecewise constant recuitment rate for the potential new subjects
ut	Recruitment intervals for the potential new subjects
pi1	Allocation probability to the treatment group for the potential new subjects
ntype0	type of the crossover for the potential new subjects in the control group
ntype1	type of the crossover for the potential new subjects in the treatment group
nrp20	re-randomization prob for the potential new subjects in the control group
nrp21	re-randomization prob for the potential new subjects in the treatment group
ntchange	A strictly increasing sequence of time points at which the event rates changes. The first element of ntchange must be zero. It must have the same length as $nratejk, j=1,2,3,4,5,c; k=0,1$
nrate10	Hazard before crossover for the potential new subjects in the control group
nrate20	Hazard after crossover for the potential new subjects in the control group
nrate30	Hazard for time to crossover for the potential new subjects in the control group
nrate40	Hazard after crossover for the potential new subjects in the control group for complex case
nrate50	Hazard after crossover for the potential new subjects in the control group for complex case
nratec0	Hazard for time to censoring for the potential new subjects in the control group
nrate11	Hazard before crossover for the potential new subjects in the treatment group
nrate21	Hazard after crossover for the potential new subjects in the treatment group
nrate31	Hazard for time to crossover for the potential new subjects in the treatment group

nrate41	Hazard after crossover for the potential new subjects in the treatment group for complex case
nrate51	Hazard after crossover for the potential new subjects in the treatment group for complex case
nratec1	Hazard for time to censoring for the potential new subjects in the treatment group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s}ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
init	initital value of the timeline estimate
epsilon	A small number representing the error tolerance when calculating the timeline.

Details

maxiter

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m=\infty$. Note that all the rates must have the same tchange. The hazard functions corresponding to nrate11,...,nrate51,nratec1, nrate10,...,nrate50,nratec0 are all piecewise constant functions and all must have the same ntchange.

Maximum number of iterations when calculating the timeline

Value

t1	the calculated timeline
dvalue	the number of events
dvprime	the derivative of the event cumulative function at time t1
tvar	the variance of the timeline estimator
ny	total number of subjects that could be in the study
eps	final tolerance
iter	Number of iterations performed
t1hist	the history of the iteration for timeline
dvaluehist	the history of the iteration for the event count
dvprimehist	the history of the iteration for the derivative of event count with respect to time

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,pwecxpwufindt

```
n<-1000
target<-550
ntotal<-1000
pi1<-0.5
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21<-c(0.5,0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
tchange<-c(0,1.873)
tcut<-2
####generate the data
E<-T<-C<-Z<-delta<-rep(0,n)
E<-rpwu(nr=n,u=u,ut=ut)$r
Z < -rbinom(n, 1, pi1)
n1 < -sum(Z)
n0 < -sum(1-Z)
C[Z==1]<-rpwe(nr=n1,rate=rc1,tchange=tchange)$r</pre>
C[Z==0]<-rpwe(nr=n0,rate=rc0,tchange=tchange)$r
T[Z==1]<-rpwecx(nr=n1,rate1=r11,rate2=r21,rate3=r31,
                 rate4=r41, rate5=r51, tchange=tchange, type=1) $r
T[Z==0]<-rpwecx(nr=n0,rate1=r10,rate2=r20,rate3=r30,
                 rate4=r40, rate5=r50, tchange=tchange, type=1) $r
y<-pmin(pmin(T,C),tcut-E)
y1<-pmin(C,tcut-E)
delta[T \le y] \le -1
delta[C<=y]<-0
delta[tcut-E<=y & tcut-E>0]<-2
delta[tcut-E<=y & tcut-E<=0]<--1
ys<-y[delta>-1]
Zs < -Z[delta > -1]
ds<-delta[delta>-1]
```

ovbeta 23

```
nplus<-sum(delta==-1)
nd0 < -sum(ds == 0)
nd1 < -sum(ds == 1)
nd2 < -sum(ds == 2)
ntaur<-taur-tcut
nu<-c(1/ntaur,1/ntaur)</pre>
nut<-c(ntaur/2,ntaur)</pre>
###calculate the timeline at baseline
xt<-pwecxpwufindt(target=target,ntotal=n,taur=taur,u=u,ut=ut,pi1=pi1,
              rate11=r11, rate21=r21, rate31=r31, ratec1=rc1,
              rate10=r10, rate20=r20, rate30=r30, ratec0=rc0,
              tchange=tchange,eps=0.001,init=taur,epsilon=0.000001,maxiter=100)
###calculate the timeline in study
yt<-instudyfindt(target=target,y=ys,z=Zs,d=ds,</pre>
                        tcut=tcut,blinded=0,type1=1,type0=1,tchange=tchange,
                        rate10=r10, rate20=r20, rate30=r30, ratec0=rc0,
                        rate11=r11, rate21=r21, rate31=r31, ratec1=rc1,
                        withmorerec=1,
                        ntotal=nplus,taur=ntaur,u=nu,ut=nut,pi1=pi1,
                        ntype1=1,ntype0=1,ntchange=tchange,
                        nrate10=r10,nrate20=r20,nrate30=r30,nratec0=rc0,
                        nrate11=r11,nrate21=r21,nrate31=r31,nratec1=rc1,
                        eps=1.0e-2,init=2,epsilon=0.001,maxiter=100)
##timelines
c(yt$t1,xt$t1)
##standard errors of the timeline estimators
c(sqrt(yt$tvar/yt$ny),sqrt(xt$tvar/n))
###95 percent CIs
c(yt$t1-1.96*sqrt(yt$tvar/yt$ny),yt$t1+1.96*sqrt(yt$tvar/yt$ny))
c(xt$t1-1.96*sqrt(xt$tvar/n),xt$t1+1.96*sqrt(xt$tvar/n))
```

ovbeta

calculate the overall log hazard ratio

Description

This will calculate the overall (log) hazard ratio accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
ovbeta(tfix=2.0,taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
    rate11=c(1,0.5),rate21=rate11,rate31=c(0.7,0.4),rate41=rate21,
    rate51=rate21,ratec1=c(0.5,0.6),
    rate10=rate11,rate20=rate10,rate30=rate31,rate40=rate20,
    rate50=rate20,ratec0=c(0.4,0.3),
```

24 ovbeta

```
tchange=c(0,1),type1=1,type0=1,
rp21=0.5,rp20=0.5,
eps=1.0e-2,veps=1.0e-2,
beta0=0,epsbeta=1.0e-4,iterbeta=25)
```

Arguments

tfix	The time point where the overall log hazard ratio is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s}ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta0	The starting value of the Newton-Raphson iterative procedure.
epsbeta	Absolute tolerance when calculating the overall log hazard ratio.
iterbeta	Maximum number of iterations when calculating the overall log hazard ratio.

ovbeta 25

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

b1	The overall log hazard ratio
hr	The overall hazard ratio
err	Error at the last iterative step
iter	Number of iterations performed
bhist	The overall log hazard ratio at each step
xnum	The expected score function at each step
xdenom	The Fisher information at each step
atsupp	The grids used to cut the interval $[0,tfix]$ in order to approximate the Fisher information

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(1,0.5)
r21<-c(0.5,0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10<-c(1,0.7)
r20<-c(0.5,1)
r30<-c(0.3,0.4)
r40<-r50<-r20
```

26 overallcov

overallcov

calculate the overall covariance

Description

This will calculate the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

tfix	The upper point where the overall covariance is computed.
tfix0	The lower point where the overall covariance is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group

overallcov 27

rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the covaraince is computed, upper bound
beta0	The value at which the covaraince is computed, lower bound

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

covbeta	The covariance the score functions
covbeta1	The first part of the cov
covbeta2	The second part of the cov
covbeta3	The third part of the cov
covbeta4	The fourth part of the cov
EA1	The first score function
EA2	The second score function

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

28 overallcovp1

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21<-c(0.5,0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
getcov<-overallcov(tfix=2.0,tfix0=1.0,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
               rate11=r11, rate21=r21, rate31=r31,
               rate41=r41, rate51=r51, ratec1=rc1,
               rate10=r10, rate20=r20, rate30=r30,
               rate40=r40,rate50=r50,ratec0=rc0,
               tchange=c(0,1),type1=1,type0=1,
               eps=1.0e-2, veps=1.0e-2, beta=0, beta0=0)
getcov$covbeta
```

overallcovp1

calculate the first part of the overall covariance

Description

This will calculate the first part of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

overallcovp1 29

Arguments

tfix	The upper point where the overall covariance is computed.
tfix0	The lower point where the overall covariance is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the covaraince is computed, upper bound
beta0	The value at which the covaraince is computed, lower bound

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

30 overallcovp1

Value

covbeta1 The first part of the covariance

EA1 The first score function

Note

```
Version 1.0 (7/19/2016)
```

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

```
pwe,rpwe,qpwe,ovbeta,innervar
```

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31<-c(0.7,0.4)
r41<-r51<-r21
rc1<-c(0.5,0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0<-c(0.2,0.4)
\verb|getcov1<-overall covp1| (\verb|tfix=2.0|, \verb|tfix0=1.0|, \verb|taur=taur|, \verb|u=u|, \verb|ut=ut|, \verb|pi1=0.5|, \\
                rate11=r11,rate21=r21,rate31=r31,
                rate41=r41, rate51=r51, ratec1=rc1,
                rate10=r10, rate20=r20, rate30=r30,
                rate40=r40, rate50=r50, ratec0=rc0,
                tchange=c(0,1),type1=1,type0=1,
                eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
getcov1$covbeta1
```

overallcovp2 31

overallcovp2	calculate the other parts of the overall covariance

Description

This will calculate the other parts of the overall covariance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

tfix	The upper point where the overall covariance is computed.
tfix0	The lower point where the overall covariance is computed.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.

32 overallcovp2

type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the covaraince is computed, upper bound
beta0	The value at which the covaraince is computed, lower bound

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

cov234	The other part of the covariance
covbeta2	The second part of the covariance
covbeta3	The third part of the covariance
covbeta4	The fourth part of the covariance
EA2	The second score function

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,ovbeta,innervar

overallvar 33

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5,1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
getcov2<-overallcovp2(tfix=2.0,tfix0=1.0,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
               rate11=r11, rate21=r21, rate31=r31,
               rate41=r41, rate51=r51, ratec1=rc1,
               rate10=r10, rate20=r20, rate30=r30,
               rate40=r40, rate50=r50, ratec0=rc0,
               tchange=c(0,1), type1=1, type0=1,
               eps=1.0e-2,veps=1.0e-2,beta=0,beta0=0)
getcov2
```

overallvar

calculate the overall variance

Description

This will calculate the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

tfix	The time point where the overall variance is computed.
taur	Recruitment time

u Piecewise constant recuitment rate

ut Recruitment intervals

34 overallvar

pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s}ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
veps	A small number representing the error tolerance when calculating the Fisher information.
beta	The value at which the varaince is computed.

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

vbeta	The variance of the overall log hazard ratio at the specified beta
VS	The variance of the score function at the specified beta
xdenom	Fisher information at the specified beta
EA	value of the score function
EA2	The first part of the variance
AB	Half of the second part of the variance
EA EA2	Fisher information at the specified beta value of the score function The first part of the variance

overallvar 35

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,ovbeta,innervar

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30<-c(0.3,0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
###variance with beta=0, calculate log-rank variance under the alternative
vbeta0<-overallvar(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
        rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
        rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
        tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,veps=1.0e-2,beta=0)
###variance with beta=0, calculate log-rank variance under the alternative
###Estimate the overall beta
getbeta<-ovbeta(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
        rate11=r11,rate21=r21,rate31=r31,rate41=r41,rate51=r51,ratec1=rc1,
        rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
        tchange=c(0,1), type1=1, type0=1, eps=1.0e-2, veps=1.0e-2, beta0=0,\\
        epsbeta=1.0e-4,iterbeta=25)
vbeta<-overallvar(tfix=2.0,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
        rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
        rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
      tchange=c(0,1), type1=1, type0=1, eps=1.0e-2, veps=1.0e-2, beta=getbeta$b1)
cbind(vbeta0$vs,vbeta$vs)
```

36 pwe

pwe Piecewise exponential distribution: hazard, cumulative hazard, density, distribution, survival

Description

This will provide the related functions of the specified piecewise exponential distribution.

Usage

```
pwe(t=seq(0,5,by=0.5), rate=c(0,5,0.8), tchange=c(0,3))
```

Arguments

t A vector of time points.

A vector of event rates

tchange A strictly increasing sequence of time points at which the event rate changes.

The first element of tchange must be zero. It must have the same length as rate.

Details

Let $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \le t < t_j)$ be the hazard function, where $\lambda_1, \dots, \lambda_m$ are the corresponding elements of rate and t_0, \dots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. The cumulative hazard function

$$\Lambda(t) = \sum_{j=1}^{m} \lambda_j (t \wedge t_j - t \wedge t_{j-1}),$$

the survival function $S(t) = \exp\{-\Lambda(t)\}$, the distribution function F(t) = 1 - S(t) and the density function $f(t) = \lambda(t)S(t)$.

Value

hazard Hazard function

cumhazard Cumulative hazard function

density Density function
dist Distribution function
surv Survival function

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

pwecx 37

References

```
Luo, et al. (2017)
```

See Also

rpwe,qpwe

Examples

```
t<-seq(0,3,by=0.1)
rate<-c(0.6,0.3)
tchange<-c(0,1.75)
pwefun<-pwe(t=t,rate=rate,tchange=tchange)
pwefun</pre>
```

pwecx

Various function for piecewise exponential distribution with crossover effect

Description

This will calculate the functions according to the piecewise exponential distribution with crossover

Usage

```
pwecx(t=seq(0,10,by=0.5),rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4), rate4=rate2,rate5=rate2,tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2)
```

Arguments

t	a vector of time points
rate1	piecewise constant event rate before crossover
rate2	piecewise constant event rate after crossover
rate3	piecewise constant event rate for crossover
rate4	additional piecewise constant event rate for more complex crossover
rate5	additional piecewise constant event rate for more complex crossover
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to rate5 and tchange must have the same length.
type	type of crossover, i.e. 1: markov, 2: semi-markov, 3: hybrid case 1(as indicated in the reference), 4: hybrid case 2, 5: hybrid case 3.
rp2	re-randomization prob
eps	tolerance

38 pwecx

Details

More details

Value

hazard Hazard function

cumhazard Cumulative hazard function

density Density function

dist Distribution function

surv Survival function

Note

This provides a random number generator of the piecewise exponetial distribution with crossover

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

Examples

pwecxcens 39

pwecxcens	Integration of the density of piecewise exponential distribution with crossover effect and the censoring function
	crossover effect and the censoring function

Description

This will calculate the functions according to the piecewise exponential distribution with crossover

Usage

```
pwecxcens(t=seq(0,10,by=0.5),rate1=c(1,0.5),rate2=rate1, rate3=c(0.7,0.4),rate4=rate2,rate5=rate2,ratec=c(0.2,0.3), tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2)
```

Arguments

t	a vector of time points
rate1	piecewise constant event rate before crossover
rate2	piecewise constant event rate after crossover
rate3	piecewise constant event rate for crossover
rate4	additional piecewise constant event rate for more complex crossover
rate5	additional piecewise constant event rate for more complex crossover
ratec	censoring piecewise constant event rate
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to ratec and tchange must have the same length.
type	type of crossover, i.e. markov, semi-markov and hybrid
rp2	re-randomization prob
eps	tolerance

Details

This is to calculate the function (and its derivative)

$$\xi(t) = \int_0^t \widetilde{f}(s) S_C(s) ds,$$

where S_C is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \widetilde{f} is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type.

Value

du	the function
duprime	its derivative
S	the survival function of \hat{f}
sc	the survival function S_C

40 pwecxpwu

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

rpwe

Examples

рмесхрми

Integration of the density of piecewise exponential distribution with crossover effect, censoring and recruitment function

Description

This will calculate the functions according to the piecewise exponential distribution with crossover

Usage

```
pwecxpwu(t=seq(0,10,by=0.5),taur=5,
    u=c(1/taur,1/taur),ut=c(taur/2,taur),
    rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),
    rate4=rate2,rate5=rate2,ratec=c(0.5,0.6),
    tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2)
```

Arguments

t a vector of time points
taur recruitment time
u recruitment rate
ut recruitment interval, must have the same length as u

rate1 piecewise constant event rate before crossover

pwecxpwu 41

rate2	piecewise constant event rate after crossover
rate3	piecewise constant event rate for crossover
rate4	additional piecewise constant event rate for more complex crossover
rate5	additional piecewise constant event rate for more complex crossover
ratec	censoring piecewise constant event rate
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to ratec and tchange must have the same length.
type	type of crossover, i.e. markov, semi-markov and hybrid
rp2	re-randomization prob
eps	tolerance

Details

This is to calculate the function (and its derivative)

$$\xi(t) = \int_0^t G_E(t-s)\widetilde{f}(s)S_C(s)ds,$$

where G_E is the accrual function defined by taur, u and ut, S_C is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \widetilde{f} is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type.

Value

du the function duprime its derivative

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

rpwe

Examples

```
taur<-2
u<-c(0.6,0.4)
ut<-c(1,2)
r1<-c(0.6,0.3)
r2<-c(0.6,0.6)
r3<-c(0.1,0.2)
```

42 pwecxpwufindt

pwecxpwufindt

calculate the timeline when certain number of events accumulates

Description

This will calculate the timeline from study inception accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
\label{eq:pwecxpwufindt} \begin{split} \text{pwecxpwufindt}(\text{target=400}, \text{ntotal=1000}, \text{taur=5}, \text{u=c}(1/\text{taur}, 1/\text{taur}), \text{ut=c}(\text{taur/2}, \text{taur}), \text{pi1=0.5}, \\ & \text{rate11=c}(1, 0.5), \text{rate21=c}(0.8, 0.9), \text{rate31=c}(0.7, 0.4), \\ & \text{rate41=rate21}, \text{rate51=rate21}, \text{ratec1=c}(0.5, 0.6), \\ & \text{rate10=c}(1, 0.7), \text{rate20=c}(0.9, 0.7), \text{rate30=c}(0.4, 0.6), \\ & \text{rate40=rate20}, \text{rate50=rate20}, \text{ratec0=c}(0.3, 0.3), \\ & \text{tchange=c}(0, 1), \text{type1=1}, \text{type0=1}, \\ & \text{rp21=0.5}, \text{rp20=0.5}, \text{eps=1.0e-2}, \\ & \text{init=taur}, \text{epsilon=0.000001}, \text{maxiter=100}) \end{split}
```

Arguments

target	target number of events
ntotal	total number of subjects
taur	recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group

pwecxpwufindt 43

rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
	with $l = 0, 1, 2$.
init	initital value of the timeline estimate
epsilon	A small number representing the error tolerance when calculating the timeline.
maxiter	Maximum number of iterations when calculating the timeline

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

t1	the calculated timeline
tvar	the true variance of the timeline estimator
eps	final tolerance
iter	Number of iterations performed

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

44 pwecxpwuforvar

See Also

pwe,rpwe,qpwe,instudyfindt

Examples

```
target<-400
ntotal<-2000
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21<-c(0.5,0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
gettimeline<-pwecxpwufindt(target=target,ntotal=ntotal,</pre>
                 taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),pi1=0.5,
                 rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
                 rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
           tchange=c(0,1),type1=1,type0=1,eps=1.0e-2,init=taur,epsilon=0.000001,maxiter=100)
gettimeline$t1
```

pwecxpwuforvar

calculate the utility function used for varaince calculation

Description

This is a utility function to calculate the overall variance accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
pwecxpwuforvar(tfix=10,t=seq(0,10,by=0.5),taur=5,u=c(1/taur,1/taur),ut=c(taur/2,taur),\\ rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),rate4=rate2,rate5=rate2,ratec=c(0.5,0.6),\\ tchange=c(0,1),type=1,rp2=0.5,eps=1.0e-2)
```

Arguments

tfix The upper point where the integral is computed.

t A vector of lower bounds where the integral is computed.

taur Recruitment time

u Piecewise constant recuitment rate

pwecxpwuforvar 45

ut		Recruitment intervals
ra	te1	Hazard before crossover
ra	te2	Hazard after crossover
ra	te3	Hazard for time to crossover
ra	te4	Hazard after crossover for complex case
ra	te5	Hazard after crossover for complex case
ra	tec	Hazard for time to censoring
to	hange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate1, rate2, rate3, etc.
ty	ре	Type of crossover
rp	2	re-randomization prob
ер	s	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$
		with $l = 0, 1, 2$.

Details

This is to calculate the function

$$B_l(t,s) = \int_0^s x^l G_E(t-x) \widetilde{f}(x) S_C(x) dx,$$

where G_E is the accrual function defined by taur, u and ut, S_C is the piecewise exponential survival function of the censoring time, defined by tchange and ratec, and \widetilde{f} is the density for the event distribution subject to crossover defined by tchange, rate1 to rate5 and type. This function is useful when calculating the overall varaince and covariance.

Value

f0 the integral when l=0 f1 the integral when l=1

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

46 pwefv2

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

pwefv2

A utility function

Description

This will $\int_0^s s^k \ ds \le 1(s)S_2(s)ds$ where k=0,1,2 and rate l=1 and l=1 an

Usage

Arguments

t A vector of time points

rate1 piecewise constant event rate

rate2 piecewise constant event rate

tchange a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates and tchange must have the same length.

eps tolerance

Details

Let h_1, h_2 correspond to rate1,rate2, and H_1, H_2 be the corresponding survival functions. This function will calculate

$$\int_0^t s^k h_1(s) H_2(s) ds, \qquad k = 0, 1, 2.$$

pwefvplus 47

Value

f0	values when $k = 0$
f1	values when $k=1$
f2	values when $k=2$

Note

This will provide the number of events.

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

Examples

pwefvplus

A utility functon

Description

This will calculate the more complex integration accounting for crossover

Usage

```
pwefvplus(t=seq(0,5,by=0.5),rate1=c(0,5,0.8),rate2=rate1,\\ rate3=c(0.1,0.2),rate4=rate2,rate5=rate2,\\ rate6=c(0.5,0.3),tchange=c(0,3),type=1,\\ rp2=0.5,eps=1.0e-2)
```

48 pwefvplus

Arguments

t	A vector of time points
rate1	piecewise constant event rate
rate2	piecewise constant event rate
rate3	piecewise constant event rate
rate4	additional piecewise constant
rate5	additional piecewise constant
rate6	piecewise constant event rate for censoring
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates and tchange must have the same length.
type	type of the crossover, markov, semi-markov and hybrid
rp2	re-randomization prob
eps	tolerance

Details

Let h_1, \ldots, h_6 correspond to rate1,...,rate6, and H_1, \ldots, H_6 be the corresponding survival functions. Also let $\pi_2 = \text{rp2}$. when type=1, we calculate

$$\int_0^t s^k h_2(s) H_2(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) / H_2(u) du ds;$$

when type=2, we calculate

$$\int_0^t s^k H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2(s-u) du ds;$$

when type=3, we calculate the sum of

$$\pi_2 \int_0^t s^k H_4^{1-\pi_2}(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2^{\pi_2}(s-u) / H_4^{1-\pi_2}(u) du ds$$

and

$$(1-\pi_2)\int_0^t s^k h_4(s) H_4^{1-\pi_2}(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) H_2^{\pi_2}(s-u) / H_4^{1-\pi_2}(u) du ds;$$

when type=4, we calculate the sum of

$$\pi_2 \int_0^t s^k H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2(s-u) du ds$$

and

$$(1 - \pi_2) \int_0^t s^k h_4(s) H_4(s) H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) / H_4(u) du ds;$$

when type=5, we calculate the sum of

$$\pi_2 \int_0^t s^k H_6(s) \int_0^s h_3(u) H_1(u) H_3(u) h_2(s-u) H_2(s-u) du ds$$

and

$$(1-\pi_2)\int_0^t s^k H_6(s)\int_0^s h_3(u)H_1(u)H_3(u)h_4(s-u)H_4(s-u)duds.$$

pwepower 49

Value

f0	values when $k = 0$
f1	values when $k=1$
f2	values when $k=2$

Note

This provides the result of the complex integration

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

Examples

```
 \begin{array}{c} r1 < -c(0.6,0.3) \\ r2 < -c(0.6,0.6) \\ r3 < -c(0.1,0.2) \\ r4 < -c(0.5,0.4) \\ r5 < -c(0.4,0.5) \\ tchange < -c(0,1.75) \\ pwefun < -pwefvplus(t=seq(0,5,by=0.5),rate1=r1,rate2=r2,rate3=r3, \\ rate4=r4,rate5=r5,rate6=r6, \\ tchange = c(0,3),type=1,eps=1.0e-2) \\ pwefun \end{array}
```

pwepower

Calculating the powers of various the test statistics for superiority trials

Description

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

50 pwepower

Usage

Arguments

t	a vector of time points at which power is calculated, t must be positive
alpha	type-1 error rate
twosided	twosided test or not
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob for the treatment group
rp20	re-randomization prob for the control group
eps	error tolerence

pwepower 51

veps error tolenrence for calculating variance
epsbeta error tolerance for calculating overall log HR

iterbeta maximum number of iterations for calculating overall log HR

n total number of subjects

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

power

powers for various test statistics. Columns 2-6 are for log-rank and columns 12-16 are for cox model. Column 2 is the exact power based on log-rank/score test; column 3 uses variance approximated by Fisher information, i.e. Lakatos's method; column 4 uses approximated Fisher info by number of events i.e. 4/D(t); column 5 uses approximated Fisher info by assuming exp dist. 1/D1(t)+1/D0(t); column 6 uses Fisher information at beta. Column 12 is the exact power based on Wald test; column 13 uses variance approximated by Fisher information; column 14 uses approximated Fisher info by number of events i.e. 4/D(t); column 15 uses approximated Fisher info by assuming exp dist. 1/D1(t)+1/D0(t); column 16 uses Fisher information at beta=0.

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,ovbeta,innervar, pwepowerni,pwepowereq

Examples

```
t<-seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)</pre>
```

52 pwepowereq

pwepowereq

Calculating the powers of various the test statistics for equivalence trials

Description

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

t a vector of time points at which power is calculated, t must be positive

uppermargin the upper margin for the hazard ratio lowermargin the lower margin for the hazard ratio

alpha type-1 error rate taur Recruitment time

u Piecewise constant recuitment rate

ut Recruitment intervals

pi1 Allocation probability for the treatment group rate11 Hazard before crossover for the treatment group pwepowereq 53

rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	error tolerence
veps	error tolenrence for calculating variance
epsbeta	error tolerance for calculating overall log HR
iterbeta	maximum number of iterations for calculating overall log HR
n	total number of subjects

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

power powers for cox model. First column is the more accurate power, second column is the power assuming the Fisher information equal to the varaince of beta

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

54 pwepowerfindt

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar, pwepower,pwepowerni

Examples

```
t < -seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(0.2, 0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10 < -c(0.2, 0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0 < -c(0.02, 0.01)
getpowereq<-pwepowereq(t=t,uppermargin=1.3,lowermargin=0.8,alpha=0.05,taur=taur,</pre>
            u=u,ut=ut,pi1=0.5,rate11=r11,rate21=r21,rate31=r31,
            rate41=r41, rate51=r51, ratec1=rc1,
            rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
            tchange=c(0,1),type1=1,type0=1,n=1000)
###powers at each time point
cbind(t,getpowereq$power[,1:3])
```

pwepowerfindt

Calculating the timepoint where a certain power of the specified test statistics is obtained

Description

This will calculate the timepoint where a certain power of the specified test statistics is obtained accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

```
\label{eq:pwepowerfindt} power=0.9, alpha=0.05, two sided=1, tupp=5, tlow=1, taur=1.2, \\ u=c(1/taur, 1/taur), u=c(taur/2, taur), pi1=0.5, \\ rate11=c(1,0.5), rate21=rate11, rate31=c(0.7,0.4), \\ rate41=rate21, rate51=rate21, ratec1=c(0.5,0.6), \\ rate10=rate11, rate20=rate10, rate30=rate31, \\ rate40=rate20, rate50=rate20, ratec0=c(0.6,0.5), \\ tchange=c(0,1), type1=1, type0=1, \\ \end{cases}
```

pwepowerfindt 55

```
rp21=0.5,rp20=0.5,eps=1.0e-2,veps=1.0e-2,
epsbeta=1.0e-04,iterbeta=25,
n=1000.testtype=1,maxiter=20,itereps=0.001)
```

Arguments

the desired power power alpha type-1 error twosided twoside test or not an upper time point where the power should be larger than power tupp tlow a lower time point where the power should be smaller than power taur recruitment time Piecewise constant recuitment rate Recruitment intervals ut pi1 Allocation probability for the treatment group rate11 Hazard before crossover for the treatment group rate21 Hazard after crossover for the treatment group Hazard for time to crossover for the treatment group rate31 rate41 Hazard after crossover for the treatment group for complex case Hazard after crossover for the treatment group for complex case rate51 ratec1 Hazard for time to censoring for the treatment group Hazard before crossover for the control group rate10 rate20 Hazard after crossover for the control group Hazard for time to crossover for the control group rate30 rate40 Hazard after crossover for the control group for complex case rate50 Hazard after crossover for the control group for complex case ratec0 Hazard for time to censoring for the control group A strictly increasing sequence of time points at which the event rates changes. tchange The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc. type1 Type of crossover in the treatment group type0 Type of crossover in the control group rp21 re-randomization prob in the treatment group re-randomization prob in the control group rp20 eps error tolerence error tolenrence for calculating variance veps epsbeta error tolerance for calculating overall log HR maximum number of iterations for calculating overall log HR iterbeta total number of subjects testtype test statistics, =1 log-rank;=2 Cox model; =3 log-rank with robust variance maxiter maximum number of bi-section iterations

error tolerance of power

itereps

56 pwepowerfindt

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \le t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

testtype type of statistic, =1 log-rank;=2 Cox model; =3 log-rank with robust variance

time time calculated when the iterations stop

power the power at time

err distance from the desired power

k number of bi-section iterations performed

Note

```
Version 1.0 (7/19/2016)
```

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

```
t < -seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(0.2, 0.1)
r21<-r11
r31 < -c(0.03, 0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10 < -c(0.2, 0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0<-c(0.02,0.01)
getpower<-pwepower(t=t,alpha=0.05,twosided=1,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
                    rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
                    rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
```

pwepowerni 57

pwepowerni

Calculating the powers of various the test statistics for non-inferiority trials

Description

This will calculate the powers for the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

t	a vector of time points at which power is calculated, t must be positive
nimargin	the non-inferiority margin for the hazard ratio
alpha	type-1 error rate
twosided	twosided test or not
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group

58 pwepowerni

rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	error tolerence
veps	error tolenrence for calculating variance
epsbeta	error tolerance for calculating overall log HR
iterbeta	maximum number of iterations for calculating overall log HR
n	total number of subjects

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

power powers for cox model. First column is the more accurate power, second column is the power accurate the Fisher information agual to the varnings of hote

is the power assuming the Fisher information equal to the varaince of beta

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

pwesim 59

See Also

pwe,rpwe,qpwe,ovbeta,innervar, pwepower,pwepowereq

Examples

```
t < -seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(0.2, 0.1)
r21<-r11
r31 < -c(0.03, 0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10 < -c(0.2, 0.2)
r20<-r10
r30 < -c(0.02, 0.01)
r40<-r50<-r20
rc0 < -c(0.02, 0.01)
getpowerni<-pwepowerni(t=t,nimargin=1.3,alpha=0.05,twosided=1,taur=taur,u=u,ut=ut,pi1=0.5,
                    rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
                    rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
                    tchange=c(0,1),type1=1,type0=1,n=1000)
###powers at each time point
cbind(t,getpowerni$power[,1:3])
```

pwesim

simulating the test statistics

Description

This will simulate the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

60 pwesim

Arguments

t	a vector of time points
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
n	number of subjects
rn	number of simulations
testtype	types of test statistics.

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

outr test statistics at each time point and each simulation run

pwu 61

Note

```
Version 1.0 (7/19/2016)
```

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

pwe,rpwe,qpwe,ovbeta,innervar

Examples

```
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5, 1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
ar<-pwesim(t=seq(1,2,by=0.1),taur=taur,u=u,ut=ut,pi1=0.5,
        rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
        rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
        tchange=c(0,1), type1=1, type0=1,
        n=300, rn=10)
```

pwu

Piecewise uniform distribution: distribution

Description

This will calculate the distribution function of the piecewise uniform distribution

Usage

```
pwu(t=seq(0,1,by=0.1),u=c(0,5,0.5),ut=c(1,2))
```

62 pwu

Arguments

t a vector of time points

u piecewise constant density

ut a strictly increasing sequence of time points defining the pieces. The first element must be strictly greater than zero. u and ut must have the same length.

Details

Let $f(t) = \sum_{j=1}^m u_j I(t_{j-1} < t \le t_j)$ be the density function, where u_1, \dots, u_m are the corresponding elements of u and t_1, \dots, t_m are the corresponding elements of u and $t_0 = 0$. The distribution function

$$F(t) = \sum_{j=1}^{m} u_j(t \wedge t_j - t \wedge t_{j-1}).$$

User must make sure that $\sum_{j=1}^{m} u_j(t_j - t_{j-1}) = 1$ before using this function.

Value

dist distribution

Note

This provides distribution of the piecewise uniform distribution

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe

Examples

```
t<-seq(-1,3,by=0.5)
u<-c(0.6,0.4)
ut<-c(1,2)
pwud<-pwu(t=t,u=u,ut=ut)
pwud</pre>
```

qpwe 63

qpwe

Piecewise exponential distribution: quantile function

Description

This will provide the quantile function of the specified piecewise exponential distribution

Usage

```
qpwe(p=seq(0,1,by=0.1),rate=c(0,5,0.8),tchange=c(0,3))
```

Arguments

p a vector of probabilities rate piecewise constant event rate

tchange time points at which event rate changes. This must be an strictly increasing

sequence starting from zero. rate and tchange must have the same length.

Details

More details

Value

q quantiles

Note

This provides the quantile function related to the piecewise exponetial distribution

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

piecewise exponential

Examples

```
\begin{array}{l} p < -seq(\emptyset,1,by=0.1) \\ rate < -c(\emptyset.6,0.3) \\ tchange < -c(\emptyset,1.75) \\ pweq < -qpwe(p=p,rate=rate,tchange=tchange) \\ pweq \end{array}
```

64 qpwu

qpwu

Piecewise uniform distribution: quantile function

Description

This will provide the quantile function of the specified piecewise uniform distribution

Usage

```
qpwu(p=seq(0,1,by=0.1),u=c(0,5,0.5),ut=c(1,2))
```

Arguments

p a vector of probabilities u piecewise constant density

ut time points at which event rate changes. This must be an strictly increasing sequence. ut and u must have the same length.

Details

Let $f(t) = \sum_{j=1}^m u_j I(t_{j-1} < t \le t_j)$ be the density function, where u_1, \dots, u_m are the corresponding elements of u and t_1, \dots, t_m are the corresponding elements of u and $t_0 = 0$. The distribution function

$$F(t) = \sum_{j=1}^{m} u_j(t \wedge t_j - t \wedge t_{j-1}).$$

User must make sure that $\sum_{j=1}^{m} u_j(t_j - t_{j-1}) = 1$ before using this function.

Value

q quantiles

Note

This provides the quantile function related to the piecewise uniform distribution

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

piecewise uniform

rmstcov 65

Examples

```
p<-seq(0,1,by=0.1)
u<-c(0.6,0.4)
ut<-c(1,2)
pwuq<-qpwu(p=p,u=u,ut=ut)
pwuq</pre>
```

rmstcov

Calculation of the variance and covariance of estimated restricted mean survival time

Description

A function to calculate the variance and covariance of estimated restricted mean survival time using data from different cut-off points accounting for delayed treatment, discontinued treatment and non-uniform entry

Usage

Arguments

t1cut	time point at which rmst is calculated
t1study	the study time point from first patient in, it must be larger than t1cut. This will be used for study monitoring.
t2cut	time point at which rmst is calculated. t2cut must be not smaller than t1cut.
t2study	the study time point from first patient in, it must be larger than t2cut. This will be used for study monitoring.
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
rate1	piecewise constant event rate before crossover
rate2	piecewise constant event rate after crossover
rate3	piecewise constant event rate for crossover
rate4	additional piecewise constant event rate for more complex crossover
rate5	additional piecewise constant event rate for more complex crossover
ratec	Hazard for time to censoring

66 rmstcov

tchange	a strictly increasing sequence of	of time points starting	from zero at which event
---------	-----------------------------------	-------------------------	--------------------------

rate changes. The first element of tchange must be zero. The above rates rate1

to ratec and tchange must have the same length.

type type of crossover, 1=markov, 2=semi-markov, 3=hybrid

rp2 re-randomization probability to receive the rescue treatment when semi-markov

crossover occurs. When it happens, the overall hazard will be pi2*r2(t-s)+(1-pi2)*r4(t), where r2 is the hazard for the semi-markov rescue treatment and r4

is hazard for the markov rescue treatment.

A small number representing the error tolerance when calculating the utility

function

 $\Phi_l(x) = \frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}$

with l = 0, 1, 2.

veps A small number representing the error tolerance when calculating the variance.

Details

eps

More details

Value

t1cut	time point at which rmst is calculated
t1study	the study time point from first patient in, it must be larger than t1cut. This will be used for study monitoring.
t2cut	time point at which rmst is calculated. t2cut must be not smaller than t1cut.
t2study	the study time point from first patient in, it must be larger than t2cut. This will be used for study monitoring.
rmst	rmst at cut-point t1cut with study time t1study
rmst1	rmst at cut-point t2cut with study time t2study
rmstx	rmst at cut-point t1cut with study time t2study, which should be the same as rmst.
V	the variance of rmst
v1	the variance of rmst1

another covariance of rmst and rmst1, should be the same as cov

Note

This calculates the "true" variance and covariance of restricted mean survival times

the covariance of rmst and rmst1

Author(s)

cov

cov1

Xiaodong Luo

rmsth 67

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

Examples

rmsth

Estimate the restricted mean survival time (RMST) and its variance from data

Description

A function to estimate the restricted mean survival time (RMST) and its variance from data

Usage

```
rmsth(y=c(1,2,3),d=c(1,1,0),tcut=2.0,eps=1.0e-08)
```

Arguments

y observed times

d non-censoring indicators

tcut time point at which rmst is calculated

eps A small number representing the error tolerance when comparing the event times

Details

More details

Value

tcut time point at which rmst is calculated rmst estimated RMST var estimated variance of rmst

vadd estimated variance-covariance term of rmst

68 rmstpower

Note

This estimates the restricted mean survival time and its asymptotic variance

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

Examples

```
lamt<-0.8
lamc<-0.4
n<-3000
tcut<-2.0
truermst<-(1-exp(-lamt*tcut))/lamt
tt<-rexp(n)/lamt
cc<-rexp(n)/lamc
yy<-pmin(tt,cc)
dd<-rep(1,n)
dd[tt>cc]<-0
aest<-rmsth(y=yy,d=dd,tcut=tcut)
aest</pre>
```

rmstpower

Calculate powers at different cut-points based on difference of restricted mean survival times (RMST)

Description

A function to calculate powers at different cut-points based on difference of restricted mean survival times (RMST) account for delayed treatment, discontinued treatment and non-uniform entry

Usage

rmstpower 69

Arguments

tcut	timepoint at which rmst is calculated
tstudy	a vector of study time points, which must be not smaller than tcut
alpha	type-1 error rate
twosided	twosided test=1 or not
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob for the treatment group
rp20	re-randomization prob for the control group
eps	error tolerence
veps	error tolenrence for calculating variance
n	total number of subjects, both groups combined

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1,\ldots,\lambda_m$ are the corresponding elements of the rates and t_0,\ldots,t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

70 rmstpower

Value

power	power
rmst1	rmst in the treatment group
se1	standard error of the rmst in the treatment group
rmst0	rmst in the control group
se0	standard error of the rmst in the control group
drmst	rmst1-rmst0
sed	standard error of the mean difference

Note

This calculates the restricted mean survival times between the treatment and control groups and their standard errors

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

Examples

```
tcut<-3.0
tstudy < -seq(3,6,by=1)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11<-c(0.2,0.1)
r21<-r11
r31<-c(0.03,0.02)
r41<-r51<-r21
rc1<-c(0.01,0.02)
r10<-c(0.2,0.2)
r20<-r10
r30<-c(0.02,0.01)
r40<-r50<-r20
rc0 < -c(0.02, 0.01)
getrmst<-rmstpower(tcut=tcut,tstudy=tstudy,alpha=0.05,twosided=1,</pre>
          taur=taur,u=u,ut=ut,pi1=0.5,
          rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
          rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
          tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,n=1000)
###powers at each time point
cbind(tstudy,getrmst$power)
```

rmstpowerfindt 71

rmstpowerfindt Calculating the timepoint where a certain power of mean diffe RMSTs is obtained	rence of
--	----------

Description

This will calculate the timepoint where a certain power of the mean difference of RMSTs is obtained accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

Arguments

power	the desired power
alpha	type-1 error
twosided	twoside test or not
tcut	time point at which rmst is calculated
tupp	an upper study time point where the power should be larger than power
tlow	a lower study time point where the power should be smaller than power, tlow must be not smaller than $\ensuremath{\text{tcut}}$
taur	recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group

72 rmstpowerfindt

rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
eps	error tolerence
veps	error tolenrence for calculating variance
n	total number of subjects
maxiter	maximum number of bi-section iterations
itereps	error tolerance of power

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

Value

time time calculated when the iterations stop

power the power at time

err distance from the desired power

k number of bi-section iterations performed

Note

Version 1.0 (8/8/2017)

Author(s)

Xiaodong Luo

References

Luo, et al. (2017)

See Also

pwe,rpwe,qpwe,ovbeta,innervar

rmstsim 73

Examples

```
tcut<-3.0
tstudy < -seq(3,6,by=0.2)
taur<-2
u < -c(0.3, 0.7)
ut<-c(taur/2,taur)
r11 < -c(0.2, 0.1)
r21<-r11
r31 < -c(0.03, 0.02)
 r41<-r51<-r21
rc1 < -c(0.05, 0.04)
r10 < -c(0.22, 0.22)
r20<-r10
r30 < -c(0.02, 0.01)
r40<-r50<-r20
rc0 < -c(0.04, 0.05)
ntotal<-1200
 getrmst<-rmstpower(tcut=tcut,tstudy=tstudy,alpha=0.05,twosided=1,</pre>
                         taur=taur, u=u, ut=ut, pi1=0.5,
                        rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
                        rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
                        tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,n=ntotal)
 ###powers at each time point
 cbind(tstudy,getrmst$power)
 ###90 percent power should be in (3,4)
 gettime<-rmstpowerfindt(power=0.9,alpha=0.05,twosided=1,tcut=tcut,tupp=4,tlow=3.0,taur=taur,
                    u=u, ut=ut, pi1=0.5, rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1, rate61=r61, rate61=
                               rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
                               tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,eps=1.0e-2,veps=1.0e-2,
                               n=ntotal,maxiter=20,itereps=0.0001)
gettime
```

rmstsim

simulating the restricted mean survival times

Description

This will simulate the test statistics accouting for staggered entry, delayed treatment effect, treatment crossover and loss to follow-up.

Usage

74 rmstsim

```
tchange=c(0,1),type1=1,type0=1,rp21=0.5,rp20=0.5,
n=1000,rn=200,eps=1.0E-08)
```

Arguments

tcut	a vector of time points at which rmst are calculated
tstudy	a vector of study time points, should be the same length as tcut and should be not less than tcut element-wise
taur	Recruitment time
u	Piecewise constant recuitment rate
ut	Recruitment intervals
pi1	Allocation probability for the treatment group
rate11	Hazard before crossover for the treatment group
rate21	Hazard after crossover for the treatment group
rate31	Hazard for time to crossover for the treatment group
rate41	Hazard after crossover for the treatment group for complex case
rate51	Hazard after crossover for the treatment group for complex case
ratec1	Hazard for time to censoring for the treatment group
rate10	Hazard before crossover for the control group
rate20	Hazard after crossover for the control group
rate30	Hazard for time to crossover for the control group
rate40	Hazard after crossover for the control group for complex case
rate50	Hazard after crossover for the control group for complex case
ratec0	Hazard for time to censoring for the control group
tchange	A strictly increasing sequence of time points at which the event rates changes. The first element of tchange must be zero. It must have the same length as rate11, rate21, rate31, etc.
type1	Type of crossover in the treatment group
type0	Type of crossover in the control group
rp21	re-randomization prob in the treatment group
rp20	re-randomization prob in the control group
n	number of subjects
rn	number of simulations
eps	tolerence for comparing event times

Details

The hazard functions corresponding to rate11,...,rate51,ratec1, rate10,...,rate50,ratec0 are all piecewise constant function taking the form $\lambda(t) = \sum_{j=1}^m \lambda_j I(t_{j-1} \leq t < t_j)$, where $\lambda_1, \ldots, \lambda_m$ are the corresponding elements of the rates and t_0, \ldots, t_{m-1} are the corresponding elements of tchange, $t_m = \infty$. Note that all the rates must have the same tchange.

rmstsim 75

Value

outr

test statistics at each pair of tcut and tstudy in column and each simulation run in row

Note

```
Version 1.0 (7/19/2016)
```

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

```
pwe,rpwe,qpwe,ovbeta
```

```
tcuta < -c(2,3)
taur<-1.2
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1.5, 0.7)
r20 < -c(0.5,1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
ar<-rmstsim(tcut=tcuta,tstudy=tcuta+0.1,taur=taur,u=u,ut=ut,pi1=0.5,</pre>
             rate11=r11, rate21=r21, rate31=r31, rate41=r41, rate51=r51, ratec1=rc1,
             rate10=r10, rate20=r20, rate30=r30, rate40=r40, rate50=r50, ratec0=rc0,
             tchange=c(0,1), type1=1, type0=1,
             n=300,rn=200)
##Empirical power
apply(ar$outr>1.96,2,mean)
```

76 rmstutil

rmstutil	A utility function to calculate the true restricted mean survival time
	(RMST) and its variance account for delayed treatment, discontinued
	treatment and non-uniform entry

Description

A utility function to calculate the true restricted mean survival time (RMST) and its variance account for delayed treatment, discontinued treatment and non-uniform entry

Usage

Arguments

veps

tcut	time point at which rmst is calculated	
tstudy	the study time point from first patient in, it must be not smaller than tcut.	
taur	Recruitment time	
u	Piecewise constant recuitment rate	
ut	Recruitment intervals	
rate1	piecewise constant event rate before crossover	
rate2	piecewise constant event rate after crossover	
rate3	piecewise constant event rate for crossover	
rate4	additional piecewise constant event rate for more complex crossover	
rate5	additional piecewise constant event rate for more complex crossover	
ratec	Hazard for time to censoring	
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to ratec and tchange must have the same length.	
type	type of crossover, 1=markov, 2=semi-markov, 3=hybrid	
rp2	re-randomization probability to receive the rescue treatment when semi-markov crossover occurs. When it happens, the overall hazard will be rp2*r2(t-s)+(1-rp2)*r4(t), where r2 is the hazard for the semi-markov rescue treatment and r4 is hazard for the markov rescue treatment.	
eps	A small number representing the error tolerance when calculating the utility function $\Phi_l(x)=\frac{\int_0^x s^l e^{-s}ds}{x^{l+1}}$	
	with $l = 0, 1, 2$.	

A small number representing the error tolerance when calculating the variance.

rpwe 77

Details

More details

Value

tcut time point at which rmst is calculated

tstudy the study time point from first patient in, it must be not smaller than tcut

rmst at cut-point tcut var the variance of rmst

vadd the additional variance term of rmst

Note

This calculates the "true" variance of restricted mean survival times

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

Examples

rpwe

Piecewise exponential distribution: random number generation

Description

This will generate random numbers according to the specified piecewise exponential distribution

78 rpwe

Usage

```
rpwe(nr=10, rate=c(0,5,0.8), tchange=c(0,3))
```

Arguments

nr number of random numbers to be generated

rate piecewise constant event rate

tchange a strictly increasing sequence of time points starting from zero at which event

rate changes. The first element of tchange must be zero. rate and tchange must

have the same length.

Details

More details

Value

r random numbers

Note

This provides a random number generator of the piecewise exponetial distribution

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

piecewise exponential

```
nr<-10
rate<-c(0.6,0.3)
tchange<-c(0,1.75)
pwer<-rpwe(nr=nr,rate=rate,tchange=tchange)
pwer</pre>
```

rpwecx 79

rpwecx	Piecewise exponential distribution with crossover effect: random num-
	ber generation

Description

This will generate random numbers according to the piecewise exponential distribution with crossover

Usage

```
\label{eq:rpwecx} rpwecx(nr=1,rate1=c(1,0.5),rate2=rate1,rate3=c(0.7,0.4),\\ rate4=rate2,rate5=rate2,tchange=c(0,1),type=1,rp2=0.5)
```

Arguments

nr	number of random numbers to be generated	
rate1	piecewise constant event rate before crossover	
rate2	piecewise constant event rate after crossover	
rate3	piecewise constant event rate for crossover	
rate4	additional piecewise constant event rate for more complex crossover	
rate5	additional piecewise constant event rate for more complex crossover	
tchange	a strictly increasing sequence of time points starting from zero at which event rate changes. The first element of tchange must be zero. The above rates rate1 to rate6 and tchange must have the same length.	
type	type of crossover, 1=markov, 2=semi-markov, 3=hybrid	
rp2	re-randomization probability to receive the rescue treatment when semi-markov crossover occurs. When it happens, the overall hazard will be pi2*r2(t-s)+(1-pi2)*r4(t), where r2 is the hazard for the semi-markov rescue treatment and r4 is hazard for the markov rescue treatment.	

Details

More details

Value

r	random numbers for the event time
rx	random numbers for the crossover time
cxind	indicators for the crossover, the first column indicates whether crossover occurs, i.e. $rx < r$. When type=3,4,5, the second column of cxind indicates whether it crosses to the arm with rate2

Note

This provides a random number generator of the piecewise exponetial distribution with crossover

rpwu rpwu

Author(s)

Xiaodong Luo

References

Luo et al. (2018) Design and monitoring of survival trials in complex scenarios, Statistics in Medicine <doi: https://doi.org/10.1002/sim.7975>.

See Also

rpwe

Examples

```
 r1<-c(0.6,0.3) \\ r2<-c(0.6,0.6) \\ r3<-c(0.1,0.2) \\ r4<-c(0.5,0.4) \\ r5<-c(0.4,0.5) \\ pwecxr<-rpwecx(nr=10,rate1=r1,rate2=r2,rate3=r3,rate4=r4,rate5=r5,tchange=c(0,1),type=1) \\ pwecxr$r
```

rpwu

Piecewise uniform distribution: random number generation

Description

This will generate random numbers according to the specified piecewise uniform distribution

Usage

```
rpwu(nr=10,u=c(0,6,0.4),ut=c(1,2))
```

Arguments

nr number of random numbers to be generated

u piecewise constant density

ut a strictly increasing sequence of time points defining the pieces. The first element must be strictly greater than zero. u and ut must have the same length.

Details

Let $f(t) = \sum_{j=1}^m u_j I(t_{j-1} < t \le t_j)$ be the density function, where u_1, \dots, u_m are the corresponding elements of u and t_1, \dots, t_m are the corresponding elements of u and $t_0 = 0$. The distribution function

$$F(t) = \sum_{j=1}^{m} u_j(t \wedge t_j - t \wedge t_{j-1}).$$

User must make sure that $\sum_{j=1}^{m} u_j(t_j - t_{j-1}) = 1$ before using this function.

spf 81

Value

r random numbers

Note

This provides a random number generator of the piecewise uniform distribution

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

See Also

rpwe

Examples

```
nr<-10
u<-c(0.6,0.4)
ut<-c(1,2)
pwur<-rpwu(nr=nr,u=u,ut=ut)
pwur</pre>
```

spf

A utility function

Description

A utility function to calculate a ratio.

Usage

```
spf(x=seq(-1,1,by=0.2),eps=1.0e-3)
```

Arguments

x A vector eps tolerance

Details

This is to calculate

$$\Phi_l(x) = \frac{\int_0^x s^l e^{-s} ds}{x^{l+1}}, \quad l = 0, 1, 2.$$

This function is well defined even when x=0. However, it is numerical chanllenging to calculate it when x is small. So when $|x| \le \text{eps}$ we approximate this function and the absolute error is eps^5 .

82 wlrcal

Value

fx1	when $l = 0$;
fx2	when $l = 1$;
fx3	when $l=2$.

Note

Version 1.0 (7/19/2016)

Author(s)

Xiaodong Luo

References

```
Luo, et al. (2017)
```

Examples

```
fun<-spf(x=seq(-1,1,by=0.2),eps=1.0e-3) fun
```

wlrcal

A utility function to calculate the weighted log-rank statistics and their varainces given the weights

Description

A utility function to calculate the weighted log-rank statistics and their varainces given the weights

Usage

Arguments

n	total number of subjects in the study
te	(ascendingly) ordered unique event times from both groups
tfix	time point where weighted log-rank is calcualted
dd1	number of events from treatment group at each te
dd0	number of events from control group at each te
r1	number of at-risk subjects from treatment group at each te
r0	number of at-risk subjects from control group at each te
weights	user specified weights, each column is a set of weights at each te
eps	tolerence when comparing event times

wlrcom 83

Details

More details

Value

test unscaled test statistics

var variances of the unsclaed test statistics

wlr weighted log-rank statistics, i.e. scaled test statistics
wlcor the correlation matrix of the weighted log-rank statistics

Author(s)

Xiaodong Luo

Examples

```
 lr <-wlrcal(n=10,t=c(1,2,3),tfix=2.0,dd1=c(1,0,1),dd0=c(0,1,0),r1=c(1,2,3),r0=c(1,2,3)) \\ lr = (1,2,3),tfix=2.0,dd1=c(1,0,1),dd0=c(0,1,0),r1=c(1,2,3),r0=c(1,2,3)) \\ lr = (1,2,3),tfix=2.0,dd1=c(1,0,1),dd0=c(0,1,0),r1=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=c(1,2,3),r0=
```

wlrcom A function to calculate the various weighted log-rank statistics and their varainces

Description

A function to calculate the weighted log-rank statistics and their varainces given the weights including log-rank, gehan, Tarone-Ware, Peto-Peto, mPeto-Peto and Fleming-Harrington

Usage

```
wlrcom(y,d,z,tfix=max(y),p=c(1),q=c(1),eps=1.0e-08)
```

Arguments

у	observed times
d	non-censoring indicators
Z	group indicators, z=1: treatment, z=0 control
tfix	time point at which weighted log-rank is calculated
р	a vector of power numbers for S in the Fleming-Harrington weight
q	a vector of power numbers for 1-S in the Fleming-Harrington weight, ${\bf q}$ and ${\bf p}$ should have the same length
eps	the error tolerance when comparing event times

Details

V1:3/21/2018

84 wlrcom

Value

n total number of subjects, combined groups
test unscaled test statistics
var variances of the unsclaed test statistics
wlr weighted log-rank statistics, i.e. scaled test statistics

pvalue two-sided p-values of wlr

Author(s)

Xiaodong Luo

```
n<-1000
pi1<-0.5
taur<-2.8
u<-c(1/taur,1/taur)
ut<-c(taur/2,taur)
r11 < -c(1, 0.5)
r21 < -c(0.5, 0.8)
r31 < -c(0.7, 0.4)
r41<-r51<-r21
rc1 < -c(0.5, 0.6)
r10 < -c(1, 0.7)
r20 < -c(0.5,1)
r30 < -c(0.3, 0.4)
r40<-r50<-r20
rc0 < -c(0.2, 0.4)
tchange<-c(0,1.873)
tcut<-2
E<-T<-C<-z<-delta<-rep(0,n)
E<-rpwu(nr=n,u=u,ut=ut)$r
z<-rbinom(n,1,pi1)</pre>
n1 < -sum(z)
n0 < -sum(1-z)
C[z==1]<-rpwe(nr=n1,rate=rc1,tchange=tchange)$r
C[z==0]<-rpwe(nr=n0,rate=rc0,tchange=tchange)$r
T[z==1]<-rpwecx(nr=n1,rate1=r11,rate2=r21,rate3=r31,
                                                            rate4=r41,rate5=r51,tchange=tchange,type=1)$r
T[z==0]<-rpwecx(nr=n0, rate1=r10, rate2=r20, rate3=r30, rate3=r3
                                                             rate4=r40, rate5=r50, tchange=tchange, type=1) $r
y<-pmin(pmin(T,C),tcut-E)</pre>
y1<-pmin(C,tcut-E)
d<-rep(0,n);</pre>
d[T \le y] \le -1
wlr4<-wlrcom(y=y,d=d,z=z,p=c(1,1),q=c(0,1))
wlr4
```

wlrutil 85

wlrutil	A utility function to calculate some common functions in contructing weights

Description

A utility function to calculate some common functions in contructing weights

Usage

```
wlrutil(y=c(1,2,3),d=c(1,0,1),z=c(1,0,0),t==c(1,3),eps=1.0e-08)
```

Arguments

У	observed times
d	non-censoring indicators
z	group indicators with z=1 treatment and z=0 control
te	(ascendingly) ordered unique event times from both groups
eps	tolerence when comparing event times

Details

More details

Value

mfunc various functions in column

Author(s)

Xiaodong Luo

```
ww<-wlrutil(y=c(1,2,3),d=c(1,0,1),z=c(1,0,0),te=c(1,3),eps=1.0e-08) ww
```

Index

* conditional power	pwepowerni,57
cp, 6	* overall hazard ratio
cpboundary, 7	ovbeta, 23
* covariance	pwecxpwuforvar, 44
rmstcov, 65	pwepowerfindt, 54
* crossover effect	pwesim, 59
rmstpower, 68	rmstsim, 73
* crossover	* piecewise exponential distribution
pwecx, 37	rmstpower, 68
* delayed treatment effect	* piecewise exponential
innercov, 14	fourhr, 11
innervar, 16	innercov, 14
instudyfindt, 19	innervar, 16
ovbeta, 23	instudyfindt, 19
overallcov, 26	ovbeta, 23
overallcovp1, 28	overallcov, 26
overallcovp2, 31	overallcovp1, 28
overallvar, 33	overallcovp2, 31
pwecxpwufindt, 42	overallvar, 33
pwecxpwuforvar,44	PWEALL-package, 3
pwepower, 49	pwecx, 37
pwepowereq, 52	pwecxcens, 39
pwepowerfindt, 54	pwecxpwu, 40
pwepowerni, 57	pwecxpwufindt, 42
pwesim, 59	pwecxpwuforvar,44
rmstpower, 68	pwefv2, 46
rmstpowerfindt, 71	pwefvplus, 47
rmstsim, 73	pwepower, 49
* distribution	pwepowereq, 52
pwu, 61	pwepowerfindt, 54
* equivalence	pwepowerni,57
pwepowereq, 52	pwesim, 59
* hazard estimate	qpwe, 63
hxbeta, 13	rmstcov, 65
* mean difference of RMSTs	rmstpowerfindt, 71
rmstpowerfindt, 71	rmstsim, 73
* mean difference	rmstutil, 76
rmstpower, 68	rpwe,77
* non-inferiority	rpwecx, 79

INDEX 87

* piecewise exponetial	* smoothed estimate
pwe, 36	hxbeta, 13
* piecewise uniform	* stopping boundary
innercov, 14	cpboundary, 7
innervar, 16	* stopping probability
instudyfindt, 19	cpstop, 9
ovbeta, 23	* timeline for certain power
overallcov, 26	pwepowerfindt, 54
overallcovp1,28	rmstpowerfindt, 71
overallcovp2,31	* timeline
overallvar, 33	instudyfindt, 19
pwecxcens, 39	pwecxpwufindt, 42
pwecxpwu, 40	* treatment crossover
pwecxpwufindt, 42	fourhr, 11
pwecxpwuforvar,44	innercov, 14
pwepower, 49	innervar, 16
pwepowereq, 52	instudyfindt, 19
pwepowerfindt, 54	ovbeta, 23
pwepowerni, 57	overallcov, 26
pwesim, 59	overallcovp1,28
pwu, 61	overallcovp2,31
qpwu, 64	overallvar, 33
rmstpowerfindt, 71	pwecxcens, 39
rmstsim, 73	pwecxpwu, 40
rpwu, 80	pwecxpwufindt, 42
* power	pwecxpwuforvar,44
pwepower, 49	pwefvplus, 47
pwepowereq, 52	pwepower, 49
pwepowerni, 57	pwepowereq, 52
rmstpowerfindt, 71	pwepowerfindt, 54
* quantiles	pwepowerni, 57
qpwe, 63	pwesim, 59
qpwu, 64	rmstcov, 65
* random number generator	rmstpowerfindt, 71
pwecx, 37	rmstsim, 73
pwecxpwu, 40	rmstutil, 76
rpwe, 77	rpwecx, 79
rpwecx, 79	* utility function
rpwu, 80	spf, 81
* restricted mean survival times	* variance
rmstcov, 65	rmsth, 67
rmstutil, 76	rmstpower, 68
* restricted mean survival time	rmstutil,76
rmsth, 67	* various functions
rmstpower, 68	PWEALL-package, 3
* simulation	* weighted log-rank
pwesim, 59	wlrcal, 82
rmstsim, 73	wlrcom, 83

88 INDEX

```
wlrutil, 85
                                                      rpwe, 12, 16, 18, 22, 25, 28, 30, 32, 35, 37, 38,
                                                               40, 41, 44, 46, 47, 49, 51, 54, 56, 59,
cp, 6, 8, 9
                                                               61, 72, 75, 77, 80, 81
cpboundary, 7, 7, 9
                                                      rpwecx, 79
cpstop, 7, 8, 9
                                                      rpwu, 80
fourhr, 11
                                                      spf, 81
hxbeta, 13
                                                      wlrcal, 82
                                                      wlrcom, 83
innercov, 14
                                                      wlrutil, 85
innervar, 16, 16, 18, 28, 30, 32, 35, 46, 51,
         54, 56, 59, 61, 72
instudyfindt, 19, 44
ovbeta, 16, 18, 23, 28, 30, 32, 35, 46, 51, 54,
         56, 59, 61, 72, 75
overallcov, 26
overallcovp1, 28
overallcovp2, 31
overallvar, 33
pwe, 16, 18, 22, 25, 28, 30, 32, 35, 36, 44, 46,
         51, 54, 56, 59, 61, 62, 72, 75
PWEALL (PWEALL-package), 3
PWEALL-package, 3
pwecx, 16, 18, 37
pwecxcens, 39
pwecxpwu, 40
pwecxpwufindt, 22, 42
pwecxpwuforvar, 44
pwefv2, 46
pwefvplus, 47
pwepower, 49, 54, 59
pwepowereq, 51, 52, 59
pwepowerfindt, 54
pwepowerni, 51, 54, 57
pwesim, 59
pwu, 61
qpwe, 16, 18, 22, 25, 28, 30, 32, 35, 37, 44, 46,
         51, 54, 56, 59, 61, 63, 72, 75
qpwu, 64
rmstcov, 65
rmsth, 67
rmstpower, 68
rmstpowerfindt, 71
rmstsim, 73
rmstutil, 76
```