Package 'RSADBE'

July 21, 2025

Title Data related to the book ``R Statistical Application Development

Type Package

by Example"
Version 1.0
Date 2013-05-13
Author Prabhanjan Tattar
Maintainer Prabhanjan Tattar <prabhanjannt@gmail.com></prabhanjannt@gmail.com>
Description The package contains all the data sets related to the book written by the maintainer of the package.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2013-06-04 09:00:58
Contents
RSADBE-package
CT
employ
Gasoline
IO_Time

2 RSADBE-package

RSAD	BE-package	Data Sets Book	s for the	"R Sta	atistica	l Applicai	ion Developn	nent by Example	e"
Index									22
	VD								21
	TheWALL						. .		20
	SQ								
	SPD								
	simpledata								
	Severity_Counts .								
	SCV_Usual								
	SCV								
	sat								
	Samplez								

Description

The RSADBE package contains all the data sets used in the book "R Statistical Application Development by Example". Data sets have been collected from various sources and an attempt has been made to ensure that all the right credits are given. If some omissions are there, kindly accept the current work as a compliment for your work.

Details

Package: RSADBE Type: Package Version: 1.0

Date: 2013-05-13 License: GPL-2

This package is aimed to complement the book. Any data set required in the book may simply loaded using data(GC) as an example.

Author(s)

Prabhanian

Maintainer: Prabhanjan Tattar <prabhanjannt@gmail.com>

References

Tattar, P.N. (2013). R Statistical Application Development by Example. Packt Publication.

Examples

data(GC)

Bug_Metrics_Software Bug Metrics Data

Description

A data set which reports the 5 different type of bugs for 5 software. The count frequencies are available for pre- and post- release of the data.

Usage

```
data(Bug_Metrics_Software)
```

Format

A three dimensional array on the bug counts of 5 software at 5 severity levels.

Source

http://www.eclipse.org/jdt/core/index.php

Examples

```
data(Bug_Metrics_Software)
```

CART_Dummy

A cooked-data set for illustration of the partitions of CART concept

Description

Partitions play a very important aspect of CART methodology. This data set has been cooked to translate the intuitions into partitions!

Usage

```
data(CART_Dummy)
```

Format

A data frame with 54 observations on the following 3 variables.

X1 Input variable 1

X2 Input variable 2

Y category of the output

References

Berk, R. A. (2008). Statistical Learning from a Regression Perspective. Springer.

4

Examples

```
data(CART_Dummy)
CART_Dummy$Y = as.factor(CART_Dummy$Y)
par(mfrow=c(1,2))
plot(c(0,12),c(0,10),type="n",xlab="X1",ylab="X2")
points(CART_Dummy$X1[CART_Dummy$Y==0],CART_Dummy$X2[CART_Dummy$Y==0],pch=15,col="red")
points(CART_Dummy$X1[CART_Dummy$Y==1],CART_Dummy$X2[CART_Dummy$Y==1],pch=19,col="green")
title(main="A Difficult Classification Problem")
plot(c(0,12),c(0,10),type="n",xlab="X1",ylab="X2")
points(CART_Dummy$X1[CART_Dummy$Y==0],CART_Dummy$X2[CART_Dummy$Y==0],pch=15,col="red")
points(CART_Dummy$X1[CART_Dummy$Y==1],CART_Dummy$X2[CART_Dummy$Y==1],pch=19,col="green")
segments(x0=c(0,0,6,6),y0=c(3.75,6.25,2.25,5),x1=c(6,6,12,12),y1=c(3.75,6.25,2.25,5),lwd=2)
abline(v=6,lwd=2)
title(main="Looks a Solvable Problem Under Partitions")
```

CT

The Cow Temperature Data

Description

The data set is adapted from Velleman and Hoaglin (1984). The body temperature of a cow is measured at 6:30am on 75 consecutive days. We use this data set with the intent of explaining the concept of "data smooting". The data appears on page 165 where we have 30 days body temperature.

Usage

data(CT)

Format

A data frame with 30 observations on the following 2 variables.

Day day number

Temperature temperature at 6:30am

Source

The entire classic book of Velleman and Hoaglin is available at http://dspace.library.cornell.edu/bitstream/1813/78/2/A-B-C_of_EDA_040127.pdf

References

Velleman, P.F., and Hoaglin, D. (1984). Applications, Basics, and Computing of Exploratory Data Analysis.

```
data(CT)
plot.ts(CT$Temperature,col="red",pch=1)
```

DCD 5

DCD

Understanding Drain Current Vs Ground-to-Source Voltage

Description

The data pertains to an experiment where the drain current is measured against the ground-to-source voltage. We use this data set for understanding of a simple scatterplot.

Usage

```
data(DCD)
```

Format

A data frame with 10 observations on the following 2 variables.

```
GTS_Voltage The voltage
Drain_Current Drain in the current
```

References

Montgomery, D. C., and Runger, G. C. (2007). Applied Statistics and Probability for Engineers, (With CD). J.Wiley.

Examples

data(DCD)
plot(DCD)

employ

A data set used for understanding the very basic steps in R

Description

The data set is used to simply understand the working of read.table, View, class and sapply R functions

Usage

```
data(employ)
```

Format

A data frame with 60 observations on the following 3 variables.

Trade a numeric vector Food a numeric vector Metals a numeric vector 6 galton

Examples

```
data(employ)
```

galton

The famous Galton data set

Description

Sir Francis Galton used this data set for understanding the (linear) relationship between the height of parent and its effect on the height of child.

Usage

```
data(galton)
```

Format

A data frame with 928 observations on the following 2 variables.

```
child children's height parent parent's height
```

Details

A scatter plot may be used for preliminary investigation of the kind of relationship between parent's height and their children. A simple linear regression model may also be built for quantifying the relationship.

References

http://en.wikipedia.org/wiki/Francis_Galton

```
data(galton)
plot(galton)
```

Gasoline 7

Gasoline

Car Mileage Dataset

Description

This data set has been used primarily for understanding a multivariate data set. Multiple regression model is also introduced and discussed completely through this example.

Usage

```
data(Gasoline)
```

Format

A data frame with 25 observations on the following 12 variables.

- y Miles per gallon
- x1 Displacement (cubic inches)
- x2 Horsepower (foot-pounds)
- x3 Torque (foot-pounds)
- x4 Compression ratio
- x5 Rear axle ratio
- x6 Carburetor (barrels)
- x7 Number of transmission speeds
- x8 Overall length (inches)
- x9 Width (inches)
- x10 Weight (pounds)
- x11 Type of transmission (A-automatic, M-manual)

References

Montgomery, D. C., Peck, E.A., and Vining, G.G. (2012). Introduction to linear regression analysis. Wiley.

```
data(Gasoline)
```

8 GC

GC

German Credit Screening Data

Description

Loans are an assest for the banks! However, not all the loans are promptly returned and it is thus important for a bank to build a classification model which can identify the loan defaulters from those who complete the loan tenure.

Usage

data(GC)

Format

```
A data frame with 1000 observations on the following 21 variables.
checking Status of existing checking account
duration Duration in month
history Credit history
purpose Purpose of loan
amount Credit amount
savings Savings account or bonds
employed Present employment since
installp Installment rate in percentage of disposable income
marital Personal status and sex
coapp Other debtors or guarantors
resident Present residence since
property Property
age Age in years
other Other installment plans
housing Housing
exister Number of existing credits at this bank
job Job
depends Number of people being liable to provide maintenance for
telephon Telephone
foreign foreign worker
good_bad Loan Defaulter
```

Source

http://www.stat.auckland.ac.nz/~reilly/credit-g.arff and http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data

IO_Time 9

References

cran.r-project.org/doc/contrib/Sharma-CreditScoring.pdf

Examples

```
data(GC)
```

IO_Time

CPU Time and IO Processes Relationship

Description

The CPU is known to depend on the number of active IO processes. This data set will be used for the purposes of understanding scatterplots, resistant lines, and simple linear regression model.

Usage

```
data(IO_Time)
```

Format

A data frame with 10 observations on the following 2 variables.

```
No_of_IO Number of IO Processes
CPU_Time The CPU time
```

Source

http://www.cs.gmu.edu/~menasce/cs700/files/SimpleRegression.pdf

```
data(IO_Time)
plot(IO_Time)
```

10 lowbwt

lowbwt

Low Birth Weight

Description

A consolidation of the concepts learnt the later half of the book is worked trough using this example.

Usage

```
data(lowbwt)
```

Format

A data frame with 189 observations on the following 10 variables.

LOW indicator of birth weight less than 2.5kg

AGE mother's age in years

LWT mother's weight in pounds at last menstrual period

RACE mothers race ("white", "black", "other")

SMOKE smoking status during pregnancy

PTL number of previous premature labours

HT history of hypertension

UI presence of uterine irritability

FTV number of physician visits during the first trimester

BWT birth weight in grams

Source

http://www.statlab.uni-heidelberg.de/data/linmod/birthweight.html

References

Hosmer, D.W. and Lemeshow, S. (2001). Applied Logistic Regression. New York: Wiley.

```
data(lowbwt)
plot(lowbwt)
```

MDR 11

MDR Male Death Rates

Description

The problem is to understand the effect of the average amount of tobacco smoked and the cause of death on the male death rates per 1000.

Usage

data(MDR)

Format

A data frame with 15 observations on the following 5 variables.

X Death Causes

G0 No smoking

G14 Between 1-14 grams

G24 Between 15-24 grams

G25 More than 25 grams

Source

http://dspace.library.cornell.edu/bitstream/1813/78/2/A-B-C_of_EDA_040127.pdf

References

Velleman, Paul F., and David C. Hoaglin. Applications, basics, and computing of exploratory data analysis. Vol. 142. Boston: Duxbury Press, 1981.

Examples

data(MDR)
boxplot(MDR)

12 OF

octane

Octane Rating Data set

Description

An experiment is conducted where the octane rating of gasoline blends can be obtained using two methods. Two samples are available for testing each type of blend, and Snee (1981) obtains 32 different blends over an appropriate spectrum of the target octane ratings.

Usage

```
data(octane)
```

Format

A data frame with 32 observations on the following 2 variables.

```
Method_1 Ratings under Method 1
Method_2 Ratings under Method 2
```

References

Vining, G.G., and Kowalski, S.M. (2011). Statistical Methods for Engineers, 3e. Brooks/Cole.

Examples

```
data(octane)
par(mfrow=c(1,2))
hist(octane$Method_1)
hist(octane$Method_2)
## maybe str(octane) ; plot(octane) ...
```

0F

Understanding the Overfitting Problem

Description

This is a data set cooked up by the author to highlight the problem of overfitting. The variables have no physical meaning.

Usage

```
data(OF)
```

PW_Illus 13

Format

A data frame with 10 observations on the following 2 variables.

- X Just another covariate
- Y Just another output

Examples

```
data(OF)
plot(OF)
```

PW_Illus

A data set for illustrating "Piecewise Linear Regression Model"

Description

As with the "OF" data set, this data set has been created by the author to build up the ideas leading up to piecewise linear regression model.

Usage

```
data(PW_Illus)
```

Format

A data frame with 100 observations on the following 2 variables.

X an input vector

Y an output vector

```
data(PW_Illus)
plot(PW_Illus)
```

Samplez Samplez

resistivity

Resistivity of wires

Description

The resistivity of wires is known to depend on its manufacturing process. The data set is used primarily to understand the boxplot.

Usage

```
data(resistivity)
```

Format

A data frame with 8 observations on the following 2 variables.

Process 1 Resistivity of wires under process 1

Process . 2 Resistivity of wires under process 2

References

Gunst, R. F. (2002). Finding confidence in statistical significance. Quality Progress, 35 (10), 107-108

Examples

```
data(resistivity)
boxplot(resistivity)
```

Samplez

A hypothetical data set

Description

This data set shows that data may also have skewness inherent in them!

Usage

```
data(Samplez)
```

Format

A data frame with 2000 observations on the following 2 variables.

```
Sample_1 a numeric vector
```

Sample_2 a numeric vector

sat 15

Examples

```
data(Samplez)
hist(Samplez$Sample_1)
hist(Samplez$Sample_2)
```

sat

SAT-M marks and its impact on the final exams of a course

Description

The final completion of a stat course is believed to depend on the marks scored by the student during his qualifying SAT-M marks. This data set is used to setup the motivation for binary regression models such as probit and logistic regressino models.

Usage

```
data(sat)
```

Format

A data frame with 30 observations on the following 5 variables.

```
Student.No Student number
Grade Grade of the student
Pass Pass-Fail indicator in the final exam
Sat The SAT-M marks
GPP The GPP group
```

References

Johnson, Valen E., and James H. Albert. Ordinal data modeling. Springer, 1999.

```
data(sat)
```

SCV_Modified

SCV

An illustrative data set where the "Response" depends on four variables A-D and a fifth categorical variable

Description

This data set is primarily used to illustrate some basic R functions.

Usage

data(SCV)

Format

A data frame with 16 observations on the following 6 variables.

Response an output vector

- A variable A
- B variable B
- C Variable C
- D variable D
- E a factor with two levels Modified Usual

Examples

data(SCV)

SCV_Modified

SCV data set by category "Modified"

Description

This data set is a part of the SCV dataset.

Usage

```
data(SCV_Modified)
```

SCV_Usual 17

Format

A data frame with 8 observations on the following 6 variables.

Response an output vector

- A variable A
- B variable B
- C Variable C
- D variable D
- E a factor with two levels Modified

Examples

```
data(SCV_Modified)
```

SCV_Usual

SCV data set with caterogy "Usual"

Description

This data set is part of the SCV data set.

Usage

```
data(SCV_Usual)
```

Format

A data frame with 8 observations on the following 6 variables.

Response an output vector

- A variable A
- B variable B
- C Variable C
- D variable D
- E a factor with two levels Usual

```
data(SCV_Usual)
```

18 simpledata

Severity_Counts

Severity counts for the JDT software

Description

The software system Eclipse JDT Core has 997 different class environments related to the development. The bug identified on each occasion is classified by its severity as Bugs, NonTrivial, Major, Critical, and High. We need to understand the bug counts before- and after- software release.

Usage

```
data(Severity_Counts)
```

Format

Before and after release bug counts at five severity levels for the JDT software.

Source

http://www.eclipse.org/jdt/core/index.php

Examples

```
data(Severity_Counts)
barplot(Severity_Counts,xlab="Bug Count",xlim=c(0,12000), col=rep(c(2,3),5))
```

simpledata

A simulated data set for illustrating the ROC concept

Description

ROC is an important tool for comparing different models for the same classification problem. This data set comes with barebones infrastructure and is simply complementary in nature towards setting up a clear understanding the ROC construction.

Usage

```
data(simpledata)
```

Format

A data frame with 200 observations on the following 2 variables.

Predictions Predicted probabilities Label True class of the observations

```
data(simpledata)
```

SPD 19

SPD

The supervisor performance data

Description

This data is used to check your understanding of the multiple linear regression model.

Usage

```
data(SPD)
```

Format

A data frame with 30 observations on the following 7 variables.

Y Supervisors performance

X1 Aspect 1

X2 Aspect 2

X3 Aspect 3

X4 Aspect 4

X5 Aspect 5

X6 Aspect 6

References

"Regression analysis by example" by Samprit Chatterjee and Ali S. Hadi, Wiley

Examples

```
data(SPD)
pairs(SPD)
```

SQ

Sample Questionnaire Data

Description

The sample questionnaire data is simply used to familiarize the reader with data and statistical terminologies.

Usage

```
data(SQ)
```

20 TheWALL

Format

A data frame with 20 observations on the following 12 variables.

Customer_ID Customer ID

Questionnaire_ID Questionnaire ID

Name Customers Name

Gender Customers gender Female Male

Age Age of the customer

Car_Model Car Model's name

Car_Manufacture_Year Month and year of car's manufacturing

Minor_Problems Minor problems were fixed by the workshop center indicator No Yes

Major_Problems Major problems were fixed by the workshop center indicator No Yes Yes

Mileage The overall mileage of the car (kms/litre)

Odometer The overall kilometers travelled by the car

Satisfaction_Rating How satisfied was the customer Very Poor < Poor < Average < Good < Very Good

Examples

data(SQ)

TheWALL

Test centuries of Rahul Dravid

Description

Rahul Dravid has been a modern arthictet of Indian test cricket team. His resilent centuries and holding the wicket at one end of the cricket pitch has earned him the name "The Wall". We analyze his centuries at "Home" and "Away" test matches.

Usage

data(TheWALL)

Format

A data frame with 36 observations on the following 11 variables.

S1_No An indicator

Score The century scores

Not_Out_Indicator Indicates whether Dravid remained unbeaten at the end of the team innings

Against The teams against whom Dravid scored the century

Position Dravid's batting position, out of 11

VD 21

Innings An indicator of the first to fourth innings

Test Test number

Venue Venue of the test match

HA_Ind Match was in home country or away

Date Date on the which the test began

Result Did India won the match?

Examples

```
data(TheWALL)
```

۷D

Voltage Drop Dataset

Description

The voltage is known to drop in a guided missile after a certain time. The data has been to illustrate certain cubic spline models.

Usage

data(VD)

Format

A data frame with 41 observations on the following 2 variables.

Time Time of missile

Voltage_Drop Drop in the voltage

References

Montgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey Vining. Introduction to linear regression analysis. Wiley, 2012.

Examples

data(VD)

Index

* Bar plot	SCV, 16			
Bug_Metrics_Software, 3	SCV_Modified, 16			
* Basic Tools	SCV_Usual, 17			
employ, 5	Severity_Counts, 18			
* Box Plot	simpledata, 18			
resistivity, 14	TheWALL, 20			
* Box plot	* smoothing, hanning			
MDR, 11	CT, 4			
* CART, partitions	<pre>Bug_Metrics_Software, 3</pre>			
CART_Dummy, 3	bug_neti ics_sortware, s			
* Histogram, Stem-and-leaf plots	CART_Dummy, 3			
octane, 12	CT, 4			
* Linear multiple regression model	, -			
Gasoline, 7	DCD, 5			
* Logistic Regression, Credit data				
GC, 8	employ, 5			
* Logistic Regression				
sat, 15	galton, 6			
* Logistic regression	Gasoline, 7			
lowbwt, 10	GC, 8			
* Multiple linear regression	IO Time O			
SPD, 19	IO_Time, 9			
* Overfitting	lowbwt, 10			
0F, 12	1000000, 10			
* Piece-wise Linear Regression	MDR, 11			
PW_Illus, 13				
* Piecewise linear regression model	octane, 12			
VD, 21	OF, 12			
* RSADBE				
RSADBE-package, 2	PW_Illus, 13			
* Sample Data				
SQ, 19	resistivity, 14			
* Scatter plot	RSADBE (RSADBE-package), 2			
DCD, 5	RSADBE-package, 2			
* Simple regression model Samplez, 14				
IO_Time, 9	sat, 15			
* datasets	SCV, 16			
galton, 6	SCV_Modified, 16			
Samplez, 14	SCV_Usual, 17			
Jumpiez, 17	JCUJUAI, 1/			

INDEX 23

```
Severity_Counts, 18
simpledata, 18
SPD, 19
SQ, 19
TheWALL, 20
VD, 21
```