
Package ‘RSelenium’
July 21, 2025

Type Package

Title R Bindings for 'Selenium WebDriver'

Version 1.7.9

Description Provides a set of R bindings for the 'Selenium 2.0 WebDriver'
(see <https://www.selenium.dev/documentation/>
for more information) using the 'JsonWireProtocol' (see
<https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol> for more
information). 'Selenium 2.0 WebDriver' allows driving a web browser
natively as a user would either locally or on a remote machine using
the Selenium server it marks a leap forward in terms of web browser
automation. Selenium automates web browsers (commonly referred to as
browsers). Using RSelenium you can automate browsers locally or
remotely.

License AGPL-3

URL https://docs.ropensci.org/RSelenium/

BugReports https://github.com/ropensci/RSelenium/issues

Depends R (>= 3.0.0)

Imports methods, caTools, utils, httr, wdman(>= 0.2.2)

Suggests binman, XML, testthat, knitr, covr, rmarkdown

VignetteBuilder knitr

Collate 'RSelenium.R' 'errorHandler.R' 'remoteDriver.R' 'rsDriver.R'
'selKeys-data.R' 'util.R' 'webElement.R'

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation no

Author John Harrison [aut] (original author),
Ju Yeong Kim [cre] (rOpenSci maintainer)

Maintainer Ju Yeong Kim <jkim2345@fredhutch.org>

Repository CRAN

Date/Publication 2022-09-02 08:10:11 UTC

1

https://www.selenium.dev/documentation/
https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol
https://docs.ropensci.org/RSelenium/
https://github.com/ropensci/RSelenium/issues

2 errorHandler-class

Contents

RSelenium-package . 2
errorHandler-class . 2
getChromeProfile . 4
getFirefoxProfile . 5
makeFirefoxProfile . 6
remoteDriver-class . 6
rsDriver . 13
selKeys . 15
webElement-class . 16

Index 18

RSelenium-package An R client for Selenium Remote Webdriver

Description

These are R bindings for the WebDriver API in Selenium 2. They use the JsonWireProtocol de-
fined at https://github.com/SeleniumHQ/selenium/wiki/JsonWireProtocol to communicate with a
Selenium RemoteWebDriver Server.

Author(s)

John Harrison

References

http://seleniumhq.org/projects/webdriver/

errorHandler-class CLASS errorHandler

Description

class to handle errors

Details

This class is an internal class used by remoteDriver and webElement. It describes how drivers may
respond. With a wide range of browsers etc the response can be variable.

errorHandler-class 3

Fields

statusCodes A list with status codes and their descriptions.

status A status code summarizing the result of the command. A non-zero value indicates that the
command failed. A value of one is not a failure but may indicate a problem.

statusclass Class associated with the java library underlying the server. For Example: org.openqa.selenium.remote.Response

sessionid An opaque handle used by the server to determine where to route session-specific com-
mands. This ID should be included in all future session-commands in place of the :sessionId
path segment variable.

hcode A list

value A list containing detailed information regarding possible errors:

message: A descriptive message for the command failure.
screen: string (Optional) If included, a screenshot of the current page as a base64 encoded

string.
class: string (Optional) If included, specifies the fully qualified class name for the exception

that was thrown when the command failed.
stackTrace: array (Optional) If included, specifies an array of JSON objects describing the

stack trace for the exception that was thrown when the command failed. The zeroth
element of the array represents the top of the stack.

responseheader There are two levels of error handling specified by the wire protocol: invalid
requests and failed commands. Invalid Requests will probably be indicted by a status of 1.
All invalid requests should result in the server returning a 4xx HTTP response. The response
Content-Type should be set to text/plain and the message body should be a descriptive error
message. The categories of invalid requests are as follows:

Unknown Commands: If the server receives a command request whose path is not mapped to a
resource in the REST service, it should respond with a 404 Not Found message.

Unimplemented Commands: Every server implementing the WebDriver wire protocol must
respond to every defined command. If an individual command has not been implemented
on the server, the server should respond with a 501 Not Implemented error message. Note
this is the only error in the Invalid Request category that does not return a 4xx status code.

Variable Resource Not Found: If a request path maps to a variable resource, but that re-
source does not exist, then the server should respond with a 404 Not Found. For example,
if ID my-session is not a valid session ID on the server, and a command is sent to GET
/session/my-session HTTP/1.1, then the server should gracefully return a 404.

Invalid Command Method: If a request path maps to a valid resource, but that resource does
not respond to the request method, the server should respond with a 405 Method Not
Allowed. The response must include an Allows header with a list of the allowed methods
for the requested resource.

Missing Command Parameters: If a POST/PUT command maps to a resource that expects a
set of JSON parameters, and the response body does not include one of those parameters,
the server should respond with a 400 Bad Request. The response body should list the
missing parameters.

debugheader Not currently implemented

4 getChromeProfile

Methods

checkStatus(resContent) An internal method to check the status returned by the server. If status
indicates an error an appropriate error message is thrown.

errorDetails(type = "value") Return error details. Type can one of c("value", "class", "status")

obscureUrlPassword(url) Replaces the username and password of url with ****

queryRD(ipAddr, method = "GET", qdata = NULL) A method to communicate with the remote
server implementing the JSON wire protocol.

getChromeProfile Get Chrome profile.

Description

getChromeProfile A utility function to get a Chrome profile.

Usage

getChromeProfile(dataDir, profileDir)

Arguments

dataDir Specifies the user data directory, which is where the browser will look for all of
its state.

profileDir Selects directory of profile to associate with the first browser launched.

Detail

A chrome profile directory is passed as an extraCapability. The data dir has a number of default
locations

Windows XP Google Chrome: C:/Documents and Settings/%USERNAME%/Local Settings/Application
Data/Google/Chrome/User Data

Windows 8 or 7 or Vista Google Chrome: C:/Users/%USERNAME%/AppData/Local/Google/Chrome/User
Data

Mac OS X Google Chrome: ~/Library/Application Support/Google/Chrome

Linux Google Chrome: ~/.config/google-chrome

The profile directory is contained in the user directory and by default is named "Default"

getFirefoxProfile 5

Examples

Not run:
example from windows using a profile directory "Profile 1"
cprof <- getChromeProfile(

"C:\\Users\\john\\AppData\\Local\\Google\\Chrome\\User Data",
"Profile 1"

)
remDr <- remoteDriver(browserName = "chrome", extraCapabilities = cprof)

End(Not run)

getFirefoxProfile Get Firefox profile.

Description

getFirefoxProfile A utility function to get a firefox profile.

Usage

getFirefoxProfile(profDir, useBase = TRUE)

Arguments

profDir The directory in which the firefox profile resides

useBase Logical indicating whether to attempt to use zip from utils package. Maybe
easier for Windows users.

Detail

A firefox profile directory is zipped and base64 encoded. It can then be passed to the selenium
server as a required capability with key firefox_profile

Examples

Not run:
fprof <- getFirefoxProfile("~/.mozilla/firefox/9qlj1ofd.testprofile")
remDr <- remoteDriver(extraCapabilities = fprof)
remDr$open()

End(Not run)

6 remoteDriver-class

makeFirefoxProfile Make Firefox profile.

Description

makeFirefoxProfile A utility function to make a firefox profile.

Usage

makeFirefoxProfile(opts)

Arguments

opts option list of firefox

Detail

A firefox profile directory is zipped and base64 encoded. It can then be passed to the selenium
server as a required capability with key firefox_profile

Note

Windows doesn’t come with command-line zip capability. Installing rtools https://CRAN.R-project.
org/bin/windows/Rtools/index.html is a straightforward way to gain this capability.

Examples

Not run:
fprof <- makeFirefoxProfile(list(browser.download.dir = "D:/temp"))
remDr <- remoteDriver(extraCapabilities = fprof)
remDr$open()

End(Not run)

remoteDriver-class CLASS remoteDriver

Description

remoteDriver Class uses the JsonWireProtocol to communicate with the Selenium Server. If an
error occurs while executing the command then the server sends back an HTTP error code with a
JSON encoded response that indicates the precise Response Error Code. The remoteDriver class
inherits from the errorHandler class. If no error occurred, then the subroutine called will return
the value sent back from the server (if a return value was sent). So a rule of thumb while invoking
methods on the driver is if the method did not return a status greater then zero when called, then
you can safely assume the command was successful even if nothing was returned by the method.

https://CRAN.R-project.org/bin/windows/Rtools/index.html
https://CRAN.R-project.org/bin/windows/Rtools/index.html

remoteDriver-class 7

Details

remoteDriver is a generator object. To define a new remoteDriver class method ‘new‘ is called. The
slots (default value) that are user defined are: remoteServerAddr(localhost), port(4444), browser-
Name(firefox), version(""), platform(ANY), javascript(TRUE). See examples for more information
on use.

Fields

remoteServerAddr Object of class "character", giving the ip of the remote server. Defaults to
localhost

port Object of class "numeric", the port of the remote server on which to connect

browserName Object of class "character". The name of the browser being used; should be one
of chrome|firefox|htmlunit| internet explorer|iphone.

path base URL path prefix for commands on the remote server. Defaults to "/wd/hub"

version Object of class "character". The browser version, or the empty string if unknown.

platform Object of class "character". A key specifying which platform the browser is running
on. This value should be one of WINDOWS|XP|VISTA|MAC|LINUX|UNIX. When request-
ing a new session, the client may specify ANY to indicate any available platform may be
used.

javascript Object of class "logical". Whether the session supports executing user supplied
JavaScript in the context of the current page.

nativeEvents Object of class "logical". Whether the session supports native events. n Web-
Driver advanced user interactions are provided by either simulating the Javascript events di-
rectly (i.e. synthetic events) or by letting the browser generate the Javascript events (i.e. native
events). Native events simulate the user interactions better.

serverURL Object of class "character". Url of the remote server which JSON requests are sent
to.

sessionInfo Object of class "list". A list containing information on sessions.

Methods

acceptAlert() Accepts the currently displayed alert dialog. Usually, this is equivalent to clicking
the ’OK’ button in the dialog.

addCookie(name, value, path = "/", domain = NULL, httpOnly = NULL, expiry = NULL, secure = FALSE)
Set a cookie on the domain. The inputs are required apart from those with default values.

buttondown(buttonId = 0) Click and hold the given mouse button (at the coordinates set by the
last moveto command). Note that the next mouse-related command that should follow is
buttondown . Any other mouse command (such as click or another call to buttondown) will
yield undefined behaviour. buttonId - any one of ’LEFT’/0 ’MIDDLE’/1 ’RIGHT’/2. Defaults
to ’LEFT’

buttonup(buttonId = 0) Releases the mouse button previously held (where the mouse is cur-
rently at). Must be called once for every buttondown command issued. See the note in click
and buttondown about implications of out-of-order commands. buttonId - any one of ’LEFT’/0
’MIDDLE’/1 ’RIGHT’/2. Defaults to ’LEFT’

8 remoteDriver-class

click(buttonId = 0) Click any mouse button (at the coordinates set by the last mouseMoveToLo-
cation() command). buttonId - any one of ’LEFT’/0 ’MIDDLE’/1 ’RIGHT’/2. Defaults to
’LEFT’

close() Close the current session.

closeServer() Closes the server in practice terminating the process. This is useful for linux
systems. On windows the java binary operates as a separate shell which the user can terminate.

closeWindow() Close the current window.

deleteAllCookies() Delete all cookies visible to the current page.

deleteCookieNamed(name) Delete the cookie with the given name. This command will be a no-
op if there is no such cookie visible to the current page.

dismissAlert() Dismisses the currently displayed alert dialog. For confirm() and prompt() di-
alogs, this is equivalent to clicking the ’Cancel’ button. For alert() dialogs, this is equivalent
to clicking the ’OK’ button.

doubleclick(buttonId = 0) Double-Click any mouse button (at the coordinates set by the last
mouseMoveToLocation() command). buttonId - any one of ’LEFT’/0 ’MIDDLE’/1 ’RIGHT’/2.
Defaults to ’LEFT’

executeAsyncScript(script, args = list()) Inject a snippet of JavaScript into the page for
execution in the context of the currently selected frame. The executed script is assumed to be
asynchronous and must signal that is done by invoking the provided callback, which is always
provided as the final argument to the function. The value to this callback will be returned to
the client. Asynchronous script commands may not span page loads. If an unload event is
fired while waiting for a script result, an error should be returned to the client.

executeScript(script, args = list("")) Inject a snippet of JavaScript into the page for exe-
cution in the context of the currently selected frame. The executed script is assumed to be
synchronous and the result of evaluating the script is returned to the client. The script argu-
ment defines the script to execute in the form of a function body. The value returned by that
function will be returned to the client. The function will be invoked with the provided args ar-
ray and the values may be accessed via the arguments object in the order specified. Arguments
may be any JSON-primitive, array, or JSON object. JSON objects that define a WebElement
reference will be converted to the corresponding DOM element. Likewise, any WebElements
in the script result will be returned to the client as WebElement JSON objects.

findElement(using = c("xpath", "css selector", "id", "name", "tag name", "class name", "link text", "partial link text"), value)
Search for an element on the page, starting from the document root. The located element will
be returned as an object of webElement class.The inputs are:

using: Locator scheme to use to search the element, available schemes: Defaults to ’xpath’.
Partial string matching is accepted.
"class name" : Returns an element whose class name contains the search value; com-

pound class names are not permitted.
"css selector" : Returns an element matching a CSS selector.
"id" : Returns an element whose ID attribute matches the search value.
"name" : Returns an element whose NAME attribute matches the search value.
"link text" : Returns an anchor element whose visible text matches the search value.
"partial link text" : Returns an anchor element whose visible text partially matches the

search value.

remoteDriver-class 9

"tag name" : Returns an element whose tag name matches the search value.
"xpath" : Returns an element matching an XPath expression.

value: The search target. See examples.

findElements(using = c("xpath", "css selector", "id", "name", "tag name", "class name", "link text", "partial link text"), value)
Search for multiple elements on the page, starting from the document root. The located ele-
ments will be returned as an list of objects of class WebElement. The inputs are:

using: Locator scheme to use to search the element, available schemes: "class name", "css
selector", "id", "name", "link text", "partial link text", "tag name", "xpath" . Defaults to
’xpath’. Partial string matching is accepted. See the findElement method for details

value: The search target. See examples.

getActiveElement() Get the element on the page that currently has focus. The located element
will be returned as a WebElement id.

getAlertText() Gets the text of the currently displayed JavaScript alert(), confirm() or prompt()
dialog.

getAllCookies() Retrieve all cookies visible to the current page. Each cookie will be returned as
a list with the following name and value types:

name: character
value: character
path: character
domain: character
secure: logical

getCurrentUrl() Retrieve the url of the current page.

getCurrentWindowHandle() Retrieve the current window handle.

getLogTypes() Get available log types. Common log types include ’client’ = Logs from the client,
’driver’ = Logs from the webdriver, ’browser’ = Logs from the browser, ’server’ = Logs from
the server. Other log types, for instance, for performance logging may also be available.
phantomjs for example returns a har log type which is a single-entry log, with the HAR (HTTP
Archive) of the current webpage, since the first load (it’s cleared at every unload event)

getPageSource(...) Get the current page source.

getSessions() Returns a list of the currently active sessions. Each session will be returned as a
list containing amongst other items:

id: The session ID
capabilities: An object describing session’s capabilities

getStatus() Query the server’s current status. All server implementations should return two basic
objects describing the server’s current platform and when the server was built.

getTitle(url) Get the current page title.

getWindowHandles() Retrieve the list of window handles used in the session.

getWindowPosition(windowId = "current") Retrieve the window position. ‘windowid‘ is op-
tional (default is ’current’ window). Can pass an appropriate ‘handle‘

getWindowSize(windowId = "current") Retrieve the window size. ‘windowid‘ is optional (de-
fault is ’current’ window). Can pass an appropriate ‘handle‘

goBack() Equivalent to hitting the back button on the browser.

10 remoteDriver-class

goForward() Equivalent to hitting the forward button on the browser.

log(type) Get the log for a given log type. Log buffer is reset after each request.

type: The log type. Typically ’client’, ’driver’, ’browser’, ’server’

maxWindowSize(winHand = "current") Set the size of the browser window to maximum. The
windows handle is optional. If not specified the current window in focus is used.

mouseMoveToLocation(x = NA_integer_, y = NA_integer_, webElement = NULL) Move the mouse
by an offset of the specified element. If no element is specified, the move is relative to the
current mouse cursor. If an element is provided but no offset, the mouse will be moved to the
center of the element. If the element is not visible, it will be scrolled into view.

navigate(url) Navigate to a given url.

open(silent = FALSE) Send a request to the remote server to instantiate the browser.

phantomExecute(script, args = list()) This API allows you to send a string of JavaScript via
’script’, written for PhantomJS, and be interpreted within the context of a WebDriver Page. In
other words, for the given script then this variable is initialized to be the current Page. See
https://github.com/ariya/phantomjs/wiki/API-Reference-WebPage and the example
in this help file. NOTE: Calling the PhantomJS API currently only works when PhantomJS is
driven directly via phantom

quit() Delete the session & close open browsers.

refresh() Reload the current page.

screenshot(display = FALSE, useViewer = TRUE, file = NULL) Take a screenshot of the cur-
rent page. The screenshot is returned as a base64 encoded PNG. If display is TRUE the
screenshot is displayed locally. If useViewer is TRUE and RStudio is in use the screenshot is
displayed in the RStudio viewer panel. If file is not NULL and display = FALSE the screenshot
is written to the file denoted by file.

sendKeysToActiveElement(sendKeys) Send a sequence of key strokes to the active element.
This command is similar to the send keys command in every aspect except the implicit termi-
nation: The modifiers are not released at the end of the call. Rather, the state of the modifier
keys is kept between calls, so mouse interactions can be performed while modifier keys are
depressed. The key strokes are sent as a list. Plain text is enter as an unnamed element of the
list. Keyboard entries are defined in ‘selKeys‘ and should be listed with name ‘key‘. See the
examples.

sendKeysToAlert(sendKeys) Sends keystrokes to a JavaScript prompt() or alert() dialog. The
key strokes are sent as a list. Plain text is enter as an unnamed element of the list. Keyboard
entries are defined in ‘selKeys‘ and should be listed with name ‘key‘. See the examples.

setAsyncScriptTimeout(milliseconds = 10000) Set the amount of time, in milliseconds, that
asynchronous scripts executed by execute_async_script() are permitted to run before they are
aborted and a |Timeout| error is returned to the client.

setImplicitWaitTimeout(milliseconds = 10000) Set the amount of time the driver should wait
when searching for elements. When searching for a single element, the driver will poll the
page until an element is found or the timeout expires, whichever occurs first. When searching
for multiple elements, the driver should poll the page until at least one element is found or the
timeout expires, at which point it will return an empty list. If this method is never called, the
driver will default to an implicit wait of 0ms.

https://github.com/ariya/phantomjs/wiki/API-Reference-WebPage

remoteDriver-class 11

setTimeout(type = "page load", milliseconds = 10000) Configure the amount of time that a
particular type of operation can execute for before they are aborted and a |Timeout| error is
returned to the client.

type: The type of operation to set the timeout for. Valid values are: "script" for script time-
outs, "implicit" for modifying the implicit wait timeout and "page load" for setting a page
load timeout. Defaults to "page load"

milliseconds: The amount of time, in milliseconds, that time-limited commands are per-
mitted to run. Defaults to 10000 milliseconds.

setWindowPosition(x, y, winHand = "current") Set the position (on screen) where you want
your browser to be displayed. The windows handle is optional. If not specified the current
window in focus is used.

setWindowSize(width, height, winHand = "current") Set the size of the browser window. The
windows handle is optional. If not specified the current window in focus is used.

switchToFrame(Id) Change focus to another frame on the page. Id can be string|number|null|WebElement
Object. If the Id is null, the server should switch to the page’s default content.

switchToWindow(windowId) Change focus to another window. The window to change focus to
may be specified by its server assigned window handle, or by the value of its name attribute.

Examples

Not run:
use default server initialisation values
remDr <- remoteDriver$new()

send request to server to initialise session
remDr$open()

navigate to R home page
remDr$navigate("http://www.r-project.org")

navigate to www.bbc.co.uk notice the need for http://
remDr$navigate("http://www.bbc.co.uk")

go backwards and forwards
remDr$goBack()

remDr$goForward()

remDr$goBack()

Examine the page source
frontPage <- remDr$getPageSource()

The R homepage contains frames
webElem <- remDr$findElements(value = "//frame")
sapply(webElem, function(x) {

x$getElementAttribute("name")
})

The homepage contains 3 frames: logo, contents and banner

12 remoteDriver-class

switch to the `contents` frame
webElem <- remDr$findElement(using = "name", value = "contents")
remDr$switchToFrame(webElem$elementId)

re-examine the page source

contentPage <- remDr$getPageSource()
identical(contentPage, frontPage) # false we hope!!

Find the link for the search page on R homepage. Use xpath as default.
webElem <- remDr$findElement(value = '//a[@href = "search.html"]')
webElem$getElementAttribute("href")
http://www.r-project.org/search.html

click the search link
webElem$clickElement()

FILL OUT A GOOGLE SEARCH FORM
remDr$navigate("http://www.google.com")

show different methods of accessing DOM components

webElem1 <- remDr$findElement(using = "name", value = "q")
webElem2 <- remDr$findElement(

using = "id",
value = webElem1$getElementAttribute("id")[[1]]

)
webElem3 <- remDr$findElement(

using = "xpath",
value = '//input[@name = "q"]'

)

Enter some text in the search box

webElem1$sendKeysToElement(list("RSelenium was here"))

clear the text previously entered

webElem1$clearElement()

show an example of sending a key press
webElem1$sendKeysToElement(list("R", key = "enter"))

Collate the results for the `R` search
googLinkText <- remDr$findElements(value = "//h3[@class = 'r']")
linkHeading <- sapply(googLinkText, function(x) x$getElementText())
googLinkDesc <- remDr$findElements(value = "//div[@class = 's']")
linkDescription <- sapply(googLinkDesc, function(x) x$getElementText())
googLinkHref <- remDr$findElements(value = "//h3[@class = 'r']/a")
linkHref <- sapply(

googLinkHref,
function(x) x$getElementAttribute("href")

)

rsDriver 13

data.frame(
heading = linkHeading,
description = linkDescription, href = linkHref

)

Example of javascript call
remDr$executeScript("return arguments[0] + arguments[1];", args = 1:2)
Example of javascript async call
jsscript <-

"arguments[arguments.length - 1](arguments[0] + arguments[1]);"
remDr$executeAsyncScript(jsscript, args = 1:2)

EXAMPLE INJECTING INTO PHANTOMJS using phantomExecute
require(RSelenium)
pJS <- wdman::phantomjs(port = 4932L)
remDr <- remoteDriver(browserName = "phantomjs", port = 4932L)
remDr$open(silent = TRUE)
remDr$navigate("http://ariya.github.com/js/random/")
returns a set of random numbers
remDr$findElement("id", "numbers")$getElementText()[[1]]
now try injecting a new Math,random function
result <- remDr$phantomExecute("var page = this;

page.onInitialized = function () {
page.evaluate(function () {
Math.random = function() {return 42/100}
})
}", list())

remDr$navigate("http://ariya.github.com/js/random/")
Math.random returns our custom function
remDr$findElement("id", "numbers")$getElementText()[[1]]
remDr$close()
pJS$stop()

End(Not run)

rsDriver Start a selenium server and browser

Description

Start a selenium server and browser

Usage

rsDriver(
port = 4567L,
browser = c("chrome", "firefox", "phantomjs", "internet explorer"),
version = "latest",

14 rsDriver

chromever = "latest",
geckover = "latest",
iedrver = NULL,
phantomver = "2.1.1",
verbose = TRUE,
check = TRUE,
...

)

Arguments

port Port to run on

browser Which browser to start

version what version of Selenium Server to run. Default = "latest" which runs the most
recent version. To see other version currently sourced run binman::list_versions("seleniumserver")

chromever what version of Chrome driver to run. Default = "latest" which runs the most re-
cent version. To see other version currently sourced run binman::list_versions("chromedriver"),
A value of NULL excludes adding the chrome browser to Selenium Server.

geckover what version of Gecko driver to run. Default = "latest" which runs the most re-
cent version. To see other version currently sourced run binman::list_versions("geckodriver"),
A value of NULL excludes adding the firefox browser to Selenium Server.

iedrver what version of IEDriverServer to run. Default = "latest" which runs the most re-
cent version. To see other version currently sourced run binman::list_versions("iedriverserver"),
A value of NULL excludes adding the internet explorer browser to Selenium
Server. NOTE this functionality is Windows OS only.

phantomver what version of PhantomJS to run. Default = "2.1.1" which runs the most recent
stable version. To see other version currently sourced run binman::list_versions("phantomjs"),
A value of NULL excludes adding the PhantomJS headless browser to Selenium
Server.

verbose If TRUE, include status messages (if any)

check If TRUE check the versions of selenium available and the versions of associ-
ated drivers (chromever, geckover, phantomver, iedrver). If new versions are
available they will be downloaded.

... Additional arguments to pass to remoteDriver

Details

This function is a wrapper around selenium. It provides a "shim" for the current issue running
firefox on Windows. For a more detailed set of functions for running binaries relating to the Se-
lenium/webdriver project see the wdman package. Both the client and server are closed using a
registered finalizer.

Value

A list containing a server and a client. The server is the object returned by selenium and the client
is an object of class remoteDriver

selKeys 15

Examples

Not run:
start a chrome browser
rD <- rsDriver()
remDr <- rD[["client"]]
remDr$navigate("http://www.google.com/ncr")
remDr$navigate("http://www.bbc.com")
remDr$close()
stop the selenium server
rD[["server"]]$stop()

if user forgets to stop server it will be garbage collected.
rD <- rsDriver()
rm(rD)
gc(rD)

End(Not run)

selKeys Selenium key mappings

Description

This data set contains a list of selenium key mappings. selKeys is used when a sendKeys variable
is needed. sendKeys is defined as a list. If an entry is needed from selKeys it is denoted by key.

Usage

selKeys

Format

A named list. The names are the descriptions of the keys. The values are the "UTF-8" character
representations.

Source

https://www.selenium.dev/documentation/legacy/json_wire_protocol/#sessionsessionidelementidvalue

16 webElement-class

webElement-class CLASS webElement

Description

Selenium Webdriver represents all the HTML elements as WebElements. This class provides a
mechanism to represent them as objects & perform various actions on the related elements. Typi-
cally, the findElement method in remoteDriver returns an object of class webElement.

Details

webElement is a generator object. To define a new webElement class method ‘new‘ is called.
When a webElement class is created an elementId should be given. Each webElement inherits from
a remoteDriver. webElement is not usually called by the end-user.

Fields

elementId Object of class "character", giving a character representation of the element id.

Methods

clearElement() Clear a TEXTAREA or text INPUT element’s value.

clickElement() Click the element.

compareElements(otherElem) Test if the current webElement and an other web element refer to
the same DOM element.

describeElement() Describe the identified element.

findChildElement(using = c("xpath", "css selector", "id", "name", "tag name", "class name", "link text", "partial link text"), value)
Search for an element on the page, starting from the node defined by the parent webElement.
The located element will be returned as an object of webElement class. The inputs are:

using: Locator scheme to use to search the element, available schemes: "class name", "css
selector", "id", "name", "link text", "partial link text", "tag name", "xpath" . Defaults to
’xpath’. Partial string matching is accepted.

value: The search target. See examples.

findChildElements(using = c("xpath", "css selector", "id", "name", "tag name", "class name", "link text", "partial link text"), value)
Search for multiple elements on the page, starting from the node defined by the parent webEle-
ment. The located elements will be returned as an list of objects of class WebElement. The
inputs are:

using: Locator scheme to use to search the element, available schemes: "class name", "css
selector", "id", "name", "link text", "partial link text", "tag name", "xpath" . Defaults to
’xpath’. Partial string matching is accepted.

value: The search target. See examples.

getElementAttribute(attrName) Get the value of an element’s attribute. See examples.

getElementLocation() Determine an element’s location on the page. The point (0, 0) refers to
the upper-left corner of the page.

webElement-class 17

getElementLocationInView() Determine an element’s location on the screen once it has been
scrolled into view. Note: This is considered an internal command and should only be used to
determine an element’s location for correctly generating native events.

getElementSize() Determine an element’s size in pixels. The size will be returned with width
and height properties.

getElementTagName() Query for an element’s tag name.

getElementText() Get the innerText of the element.

getElementValueOfCssProperty(propName) Query the value of an element’s computed CSS
property. The CSS property to query should be specified using the CSS property name, not
the JavaScript property name (e.g. background-color instead of backgroundColor).

highlightElement(wait = 75/1000) Utility function to highlight current Element. Wait denotes
the time in seconds between style changes on element.

isElementDisplayed() Determine if an element is currently displayed.

isElementEnabled() Determine if an element is currently enabled. Obviously to enable an ele-
ment just preform a click on it.

isElementSelected() Determine if an OPTION element, or an INPUT element of type checkbox
or radiobutton is currently selected.

selectTag() Utility function to return options from a select DOM node. The option nodes are
returned as webElements. The option text and the value of the option attribute ’value’ and
whether the option is selected are returned also. If this method is called on a webElement that
is not a select DOM node an error will result.

sendKeysToElement(sendKeys) Send a sequence of key strokes to an element. The key strokes
are sent as a list. Plain text is enter as an unnamed element of the list. Keyboard entries are
defined in ‘selKeys‘ and should be listed with name ‘key‘. See the examples.

setElementAttribute(attributeName, value) Utility function to set an elements attributes.

submitElement() Submit a FORM element. The submit command may also be applied to any
element that is a descendant of a FORM element.

Index

∗ datasets
selKeys, 15

errorHandler (errorHandler-class), 2
errorHandler-class, 2

getChromeProfile, 4
getFirefoxProfile, 5

makeFirefoxProfile, 6

phantom, 10

remoteDriver, 14, 16
remoteDriver (remoteDriver-class), 6
remoteDriver-class, 6
rsDriver, 13
RSelenium (RSelenium-package), 2
RSelenium-package, 2

selenium, 14
selKeys, 15

wdman, 14
webElement (webElement-class), 16
webElement-class, 16

18

	RSelenium-package
	errorHandler-class
	getChromeProfile
	getFirefoxProfile
	makeFirefoxProfile
	remoteDriver-class
	rsDriver
	selKeys
	webElement-class
	Index

