Title: | Empirical Small Telescopes Analysis |
Version: | 1.0.4 |
Description: | We provide functions to perform an empirical small telescopes analysis. This package contains 2 functions, SmallTelescopes() and EstimatePower(). Users only need to call SmallTelescopes() to conduct the analysis. For more information on small telescopes analysis see Uri Simonsohn (2015) <doi:10.1177/0956797614567341>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.1.1 |
NeedsCompilation: | no |
Packaged: | 2021-02-17 21:18:12 UTC; ruthec |
Author: | John Ruscio [aut, cre], Samantha Costigan [ctb] |
Maintainer: | John Ruscio <ruscio@tcnj.edu> |
Repository: | CRAN |
Date/Publication: | 2021-02-17 21:40:02 UTC |
Estimate Power
Description
Estimate statistical power of an effect size parameter by simulation using original sample size.
Usage
EstimatePower(data, n.original, B.power, analysis, n.rows, alpha)
Arguments
data |
Dataset (matrix). |
n.original |
The sample size of the original analysis (scalar). |
B.power |
The number of samples to be simulated (scalar). |
analysis |
Function to produce a p value and an effect size estimate. |
n.rows |
The number of rows per subject in the dataset (scalar) |
alpha |
Set alpha level for analysis (scalar) |
Value
Power estimate generated through simulation (scalar).
Examples
# create or import dataset
example.data <- matrix(rnorm(50), 25, 2)
# estimate statistical power
EstimatePower(
data = example.data,
n.original = 10,
analysis = function(data) {
corr <- cor.test(data[,1], data[,2])
return(list(effect.size = corr$estimate, p.value = corr$p.value))
},
B.power = 100,
n.rows = 1,
alpha = 0.05)
Small Telescopes
Description
Estimate statistical power for point estimate of effect size plus the lower and upper bounds of a confidence interval.
Usage
SmallTelescopes(
data,
analysis,
n.original,
B.CI = 10000,
CI.level = 0.9,
B.power = 10000,
alpha = 0.05,
n.rows = 1,
seed = 1
)
Arguments
data |
Dataset (matrix). |
analysis |
Function to produce a p value and an effect size estimate. |
n.original |
The sample size of the original analysis (scalar). |
B.CI |
The number of simulated samples used to construct CI (scalar); default = 10,000. |
CI.level |
The confidence level of the interval (scalar); default = .90. |
B.power |
The number of samples to be simulated (scalar); default = 10,000. |
alpha |
Set alpha level for analysis (scalar); default = 0.05. |
n.rows |
The number of rows per subject in the dataset (scalar); default = 1. |
seed |
Allows randomly generated numbers to be reproducible (scalar); default = 1. |
Value
Displays statistical power for point estimate of an effect size plus the lower and upper bounds of a confidence interval. List contains the following components:
n.replication |
The sample size of the replication analysis. |
n.original |
The sample size of the original analysis. |
B.CI |
The number of simulated samples used to construct CI. |
CI.level |
The confidence level of the interval. |
B.power |
The number of samples simulated. |
p.value |
The p value calculated from the replication data |
es.estimate |
Point estimate of effect size. |
es.power |
Estimated power for the point estimate of effect size. |
CI.lower.estimate |
Effect size estimate at the lower bound of the CI. |
CI.lower.power |
Estimated power for the lower bound of the CI. |
CI.upper.estimate |
Effect size estimate at the upper bound of the CI. |
CI.upper.power |
Estimated power for the upper bound of the CI. |
Examples
# create or import dataset
example.data <- matrix(rnorm(50), 25, 2)
# conduct empirical small telescopes analysis
SmallTelescopes(
data = example.data,
analysis = function(data) {
corr <- cor.test(data[,1], data[,2])
return(list(effect.size = corr$estimate, p.value = corr$p.value))
},
n.original = 10,
B.CI = 100,
B.power = 100)