
Package ‘RWeka’
July 21, 2025

Version 0.4-46

Title R/Weka Interface

Description An R interface to Weka (Version 3.9.3).
Weka is a collection of machine learning algorithms for data mining
tasks written in Java, containing tools for data pre-processing,
classification, regression, clustering, association rules, and
visualization. Package 'RWeka' contains the interface code, the
Weka jar is in a separate package 'RWekajars'. For more information
on Weka see <https://www.cs.waikato.ac.nz/ml/weka/>.

Depends R (>= 2.6.0)

Imports RWekajars (>= 3.9.3-1), rJava (>= 0.6-3), graphics, stats,
utils, grid

Suggests partykit (>= 0.8.0), mlbench, e1071

SystemRequirements Java (>= 8)

License GPL-2

NeedsCompilation no

Author Kurt Hornik [aut, cre] (ORCID: <https://orcid.org/0000-0003-4198-9911>),
Christian Buchta [ctb],
Torsten Hothorn [ctb],
Alexandros Karatzoglou [ctb],
David Meyer [ctb],
Achim Zeileis [ctb] (ORCID: <https://orcid.org/0000-0003-0918-3766>)

Maintainer Kurt Hornik <Kurt.Hornik@R-project.org>

Repository CRAN

Date/Publication 2023-03-07 14:18:59 UTC

Contents
dot . 2
evaluate_Weka_classifier . 3
predict_Weka_classifier . 4
predict_Weka_clusterer . 5

1

https://www.cs.waikato.ac.nz/ml/weka/
https://orcid.org/0000-0003-4198-9911
https://orcid.org/0000-0003-0918-3766

2 dot

read.arff . 6
Weka_associators . 7
Weka_attribute_evaluators . 8
Weka_classifiers . 9
Weka_classifier_functions . 10
Weka_classifier_lazy . 12
Weka_classifier_meta . 13
Weka_classifier_rules . 16
Weka_classifier_trees . 18
Weka_clusterers . 21
Weka_control . 23
Weka_converters . 24
Weka_filters . 25
Weka_interfaces . 26
Weka_stemmers . 28
Weka_tokenizers . 29
WOW . 29
WPM . 30
write.arff . 32

Index 33

dot Create DOT Representations

Description

Write a DOT language representation of an object for processing via Graphviz.

Usage

write_to_dot(x, con = stdout(), ...)
S3 method for class 'Weka_classifier'
write_to_dot(x, con = stdout(), ...)

Arguments

x an R object.

con a connection for writing the representation to.

... additional arguments to be passed from or to methods.

evaluate_Weka_classifier 3

Details

Graphviz (https://www.graphviz.org) is open source graph visualization software providing
several main graph layout programs, of which dot makes “hierarchical” or layered drawings of
directed graphs, and hence is typically most suitable for visualizing classification trees.

Using dot, the representation in file ‘foo.dot’ can be transformed to PostScript or other displayable
graphical formats using (a variant of) dot -Tps foo.dot >foo.ps.

Some Weka classifiers (e.g., tree learners such as J48 and M5P) implement a “Drawable” interface
providing DOT representations of the fitted models. For such classifiers, the write_to_dot method
writes the representation to the specified connection.

evaluate_Weka_classifier

Model Statistics for R/Weka Classifiers

Description

Compute model performance statistics for a fitted Weka classifier.

Usage

evaluate_Weka_classifier(object, newdata = NULL, cost = NULL,
numFolds = 0, complexity = FALSE,
class = FALSE, seed = NULL, ...)

Arguments

object a Weka_classifier object.

newdata an optional data frame in which to look for variables with which to evaluate. If
omitted or NULL, the training instances are used.

cost a square matrix of (mis)classification costs.

numFolds the number of folds to use in cross-validation.

complexity option to include entropy-based statistics.

class option to include class statistics.

seed optional seed for cross-validation.

... further arguments passed to other methods (see details).

Details

The function computes and extracts a non-redundant set of performance statistics that is suitable for
model interpretation. By default the statistics are computed on the training data.

Currently argument ... only supports the logical variable normalize which tells Weka to normalize
the cost matrix so that the cost of a correct classification is zero.

Note that if the class variable is numeric only a subset of the statistics are available. Arguments
complexity and class are then not applicable and therefore ignored.

https://www.graphviz.org

4 predict_Weka_classifier

Value

An object of class Weka_classifier_evaluation, a list of the following components:

string character, concatenation of the string representations of the performance statis-
tics.

details vector, base statistics, e.g., the percentage of instances correctly classified, etc.
detailsComplexity

vector, entropy-based statistics (if selected).

detailsClass matrix, class statistics, e.g., the true positive rate, etc., for each level of the
response variable (if selected).

confusionMatrix

table, cross-classification of true and predicted classes.

References

I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques.
2nd Edition, Morgan Kaufmann, San Francisco.

Examples

Use some example data.
w <- read.arff(system.file("arff","weather.nominal.arff",

package = "RWeka"))

Identify a decision tree.
m <- J48(play~., data = w)
m

Use 10 fold cross-validation.
e <- evaluate_Weka_classifier(m,

cost = matrix(c(0,2,1,0), ncol = 2),
numFolds = 10, complexity = TRUE,
seed = 123, class = TRUE)

e
summary(e)
e$details

predict_Weka_classifier

Model Predictions for R/Weka Classifiers

Description

Predicted values based on fitted Weka classifier models.

predict_Weka_clusterer 5

Usage

S3 method for class 'Weka_classifier'
predict(object, newdata = NULL,

type = c("class", "probability"), ...)

Arguments

object an object of class inheriting from Weka_classifier.

newdata an optional data frame in which to look for variables with which to predict. If
omitted or NULL, the training instances are used.

type character string determining whether classes should be predicted (numeric for
regression, factor for classification) or class probabilities (only available for
classification). May be abbreviated.

... further arguments passed to or from other methods.

Value

Either a vector with classes or a matrix with the posterior class probabilities, with rows correspond-
ing to instances and columns to classes.

predict_Weka_clusterer

Class Predictions for R/Weka Clusterers

Description

Predict class ids or memberships based on fitted Weka clusterers.

Usage

S3 method for class 'Weka_clusterer'
predict(object, newdata = NULL,

type = c("class_ids", "memberships"), ...)

Arguments

object an object of class inheriting from Weka_clusterer.

newdata an optional data set for predictions are sought. This must be given for predict-
ing class memberships. If omitted or NULL, the training instances are used for
predicting class ids.

type a character string indicating whether class ids or memberships should be re-
turned. May be abbreviated.

... further arguments passed to or from other methods.

6 read.arff

Details

It is only possible to predict class memberships if the Weka clusterer provides a distributionForInstance
method.

read.arff Read Data from ARFF Files

Description

Reads data from Weka Attribute-Relation File Format (ARFF) files.

Usage

read.arff(file)

Arguments

file a character string with the name of the ARFF file to read from, or a connection
which will be opened if necessary, and if so closed at the end of the function
call.

Value

A data frame containing the data from the ARFF file.

References

Attribute-Relation File Format https://waikato.github.io/weka-wiki/formats_and_processing/
arff/

See Also

write.arff

Examples

read.arff(system.file("arff", "contact-lenses.arff",
package = "RWeka"))

https://waikato.github.io/weka-wiki/formats_and_processing/arff/
https://waikato.github.io/weka-wiki/formats_and_processing/arff/

Weka_associators 7

Weka_associators R/Weka Associators

Description

R interfaces to Weka association rule learning algorithms.

Usage

Apriori(x, control = NULL)
Tertius(x, control = NULL)

Arguments

x an R object with the data to be associated.

control an object of class Weka_control, or a character vector of control options, or
NULL (default). Available options can be obtained on-line using the Weka Option
Wizard WOW, or the Weka documentation.

Details

Apriori implements an Apriori-type algorithm, which iteratively reduces the minimum support
until it finds the required number of rules with the given minimum confidence.

Tertius implements a Tertius-type algorithm.

See the references for more information on these algorithms.

Value

A list inheriting from class Weka_associators with components including

associator a reference (of class jobjRef) to a Java object obtained by applying the Weka
buildAssociations method to the training instances using the given control
options.

Note

Tertius requires Weka package tertius to be installed.

References

R. Agrawal and R. Srikant (1994). Fast algorithms for mining association rules in large databases.
Proceedings of the International Conference on Very Large Databases, 478–499. Santiago, Chile:
Morgan Kaufmann, Los Altos, CA.

P. A. Flach and N. Lachiche (1999). Confirmation-guided discovery of first-order rules with Tertius.
Machine Learning, 42, 61–95. doi:10.1023/A:1007656703224.

I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques.
2nd Edition, Morgan Kaufmann, San Francisco.

https://doi.org/10.1023/A%3A1007656703224

8 Weka_attribute_evaluators

Examples

x <- read.arff(system.file("arff", "contact-lenses.arff",
package = "RWeka"))

Apriori with defaults.
Apriori(x)
Some options: set required number of rules to 20.
Apriori(x, Weka_control(N = 20))

Not run:
Requires Weka package 'tertius' to be installed.
Tertius with defaults.
Tertius(x)
Some options: only classification rules (single item in the RHS).
Tertius(x, Weka_control(S = TRUE))

End(Not run)

Weka_attribute_evaluators

R/Weka Attribute Evaluators

Description

R interfaces to Weka attribute evaluators.

Usage

GainRatioAttributeEval(formula, data, subset, na.action, control = NULL)
InfoGainAttributeEval(formula, data, subset, na.action, control = NULL)

Arguments

formula a symbolic description of a model. Note that for unsupervised filters the re-
sponse can be omitted.

data an optional data frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. See
model.frame for details.

control an object of class Weka_control, or a character vector of control options, or
NULL (default). Available options can be obtained on-line using the Weka Option
Wizard WOW, or the Weka documentation.

Weka_classifiers 9

Details

GainRatioAttributeEval evaluates the worth of an attribute by measuring the gain ratio with
respect to the class.

InfoGainAttributeEval evaluates the worth of an attribute by measuring the information gain
with respect to the class.

Currently, only interfaces to classes which evaluate single attributes (as opposed to subsets, techni-
cally, which implement the Weka AttributeEvaluator interface) are possible.

Value

A numeric vector with the figures of merit for the attributes specified by the right hand side of
formula.

Examples

InfoGainAttributeEval(Species ~ . , data = iris)

Weka_classifiers R/Weka Classifiers

Description

R interfaces to Weka classifiers.

Details

Supervised learners, i.e., algorithms for classification and regression, are termed “classifiers” by
Weka. (Numeric prediction, i.e., regression, is interpreted as prediction of a continuous class.)

R interface functions to Weka classifiers are created by make_Weka_classifier, and have formals
formula, data, subset, na.action, and control (default: none), where the first four have the
“usual” meanings for statistical modeling functions in R, and the last again specifies the control
options to be employed by the Weka learner.

By default, the model formulae should only use the ‘+’ and ‘-’ operators to indicate the variables to
be included or not used, respectively.

See model.frame for details on how na.action is used.

Objects created by these interfaces always inherit from class Weka_classifier, and have at least
suitable print, summary (via evaluate_Weka_classifier), and predict methods.

See Also

Available “standard” interface functions are documented in Weka_classifier_functions (regression
and classification function learners), Weka_classifier_lazy (lazy learners), Weka_classifier_meta
(meta learners), Weka_classifier_rules (rule learners), and Weka_classifier_trees (regression and
classification tree learners).

10 Weka_classifier_functions

Weka_classifier_functions

R/Weka Classifier Functions

Description

R interfaces to Weka regression and classification function learners.

Usage

LinearRegression(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

Logistic(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

SMO(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. See
model.frame for details.

control an object of class Weka_control giving options to be passed to the Weka learner.
Available options can be obtained on-line using the Weka Option Wizard WOW,
or the Weka documentation.

options a named list of further options, or NULL (default). See Details.

Details

There are a predict method for predicting from the fitted models, and a summary method based on
evaluate_Weka_classifier.

LinearRegression builds suitable linear regression models, using the Akaike criterion for model
selection.

Logistic builds multinomial logistic regression models based on ridge estimation (le Cessie and
van Houwelingen, 1992).

SMO implements John C. Platt’s sequential minimal optimization algorithm for training a support
vector classifier using polynomial or RBF kernels. Multi-class problems are solved using pairwise
classification.

The model formulae should only use the ‘+’ and ‘-’ operators to indicate the variables to be included
or not used, respectively.

Weka_classifier_functions 11

Argument options allows further customization. Currently, options model and instances (or
partial matches for these) are used: if set to TRUE, the model frame or the corresponding Weka
instances, respectively, are included in the fitted model object, possibly speeding up subsequent
computations on the object. By default, neither is included.

Value

A list inheriting from classes Weka_functions and Weka_classifiers with components including

classifier a reference (of class jobjRef) to a Java object obtained by applying the Weka
buildClassifier method to build the specified model using the given control
options.

predictions a numeric vector or factor with the model predictions for the training instances
(the results of calling the Weka classifyInstance method for the built classi-
fier and each instance).

call the matched call.

References

J. C. Platt (1998). Fast training of Support Vector Machines using Sequential Minimal Optimization.
In B. Schoelkopf, C. Burges, and A. Smola (eds.), Advances in Kernel Methods — Support Vector
Learning. MIT Press.

I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques.
2nd Edition, Morgan Kaufmann, San Francisco.

See Also

Weka_classifiers

Examples

Linear regression:
Using standard data set 'mtcars'.
LinearRegression(mpg ~ ., data = mtcars)
Compare to R:
step(lm(mpg ~ ., data = mtcars), trace = 0)

Using standard data set 'chickwts'.
LinearRegression(weight ~ feed, data = chickwts)
(Note the interactions!)

Logistic regression:
Using standard data set 'infert'.
STATUS <- factor(infert$case, labels = c("control", "case"))
Logistic(STATUS ~ spontaneous + induced, data = infert)
Compare to R:
glm(STATUS ~ spontaneous + induced, data = infert, family = binomial())

Sequential minimal optimization algorithm for training a support
vector classifier, using am RBF kernel with a non-default gamma

12 Weka_classifier_lazy

parameter (argument '-G') instead of the default polynomial kernel
(from a question on r-help):
SMO(Species ~ ., data = iris,

control = Weka_control(K =
list("weka.classifiers.functions.supportVector.RBFKernel", G = 2)))

In fact, by some hidden magic it also "works" to give the "base" name
of the Weka kernel class:
SMO(Species ~ ., data = iris,

control = Weka_control(K = list("RBFKernel", G = 2)))

Weka_classifier_lazy R/Weka Lazy Learners

Description

R interfaces to Weka lazy learners.

Usage

IBk(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

LBR(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. See
model.frame for details.

control an object of class Weka_control giving options to be passed to the Weka learner.
Available options can be obtained on-line using the Weka Option Wizard WOW,
or the Weka documentation.

options a named list of further options, or NULL (default). See Details.

Details

There are a predict method for predicting from the fitted models, and a summary method based on
evaluate_Weka_classifier.

IBk provides a k-nearest neighbors classifier, see Aha & Kibler (1991).

LBR (“Lazy Bayesian Rules”) implements a lazy learning approach to lessening the attribute-independence
assumption of naive Bayes as suggested by Zheng & Webb (2000).

The model formulae should only use the ‘+’ and ‘-’ operators to indicate the variables to be included
or not used, respectively.

Weka_classifier_meta 13

Argument options allows further customization. Currently, options model and instances (or
partial matches for these) are used: if set to TRUE, the model frame or the corresponding Weka
instances, respectively, are included in the fitted model object, possibly speeding up subsequent
computations on the object. By default, neither is included.

Value

A list inheriting from classes Weka_lazy and Weka_classifiers with components including

classifier a reference (of class jobjRef) to a Java object obtained by applying the Weka
buildClassifier method to build the specified model using the given control
options.

predictions a numeric vector or factor with the model predictions for the training instances
(the results of calling the Weka classifyInstance method for the built classi-
fier and each instance).

call the matched call.

Note

LBR requires Weka package lazyBayesianRules to be installed.

References

D. Aha and D. Kibler (1991). Instance-based learning algorithms. Machine Learning, 6, 37–66.
doi:10.1007/BF00153759.

Z. Zheng and G. Webb (2000). Lazy learning of Bayesian rules. Machine Learning, 41/1, 53–84.
doi:10.1023/A:1007613203719.

See Also

Weka_classifiers

Weka_classifier_meta R/Weka Meta Learners

Description

R interfaces to Weka meta learners.

Usage

AdaBoostM1(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

Bagging(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

LogitBoost(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

https://doi.org/10.1007/BF00153759
https://doi.org/10.1023/A%3A1007613203719

14 Weka_classifier_meta

MultiBoostAB(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

Stacking(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

CostSensitiveClassifier(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. See
model.frame for details.

control an object of class Weka_control giving options to be passed to the Weka learner.
Available options can be obtained on-line using the Weka Option Wizard WOW,
or the Weka documentation. Base classifiers with an available R/Weka inter-
face (see list_Weka_interfaces), can be specified (using the ‘W’ option) via
their “base name” as shown in the interface registry (see the examples), or their
interface function.

options a named list of further options, or NULL (default). See Details.

Details

There are a predict method for predicting from the fitted models, and a summary method based on
evaluate_Weka_classifier.

AdaBoostM1 implements the AdaBoost M1 method of Freund and Schapire (1996).

Bagging provides bagging (Breiman, 1996).

LogitBoost performs boosting via additive logistic regression (Friedman, Hastie and Tibshirani,
2000).

MultiBoostAB implements MultiBoosting (Webb, 2000), an extension to the AdaBoost technique
for forming decision committees which can be viewed as a combination of AdaBoost and “wag-
ging”.

Stacking provides stacking (Wolpert, 1992).

CostSensitiveClassifier makes its base classifier cost-sensitive.

The model formulae should only use the ‘+’ and ‘-’ operators to indicate the variables to be included
or not used, respectively.

Argument options allows further customization. Currently, options model and instances (or
partial matches for these) are used: if set to TRUE, the model frame or the corresponding Weka
instances, respectively, are included in the fitted model object, possibly speeding up subsequent
computations on the object. By default, neither is included.

Weka_classifier_meta 15

Value

A list inheriting from classes Weka_meta and Weka_classifiers with components including

classifier a reference (of class jobjRef) to a Java object obtained by applying the Weka
buildClassifier method to build the specified model using the given control
options.

predictions a numeric vector or factor with the model predictions for the training instances
(the results of calling the Weka classifyInstance method for the built classi-
fier and each instance).

call the matched call.

Note

multiBoostAB requires Weka package multiBoostAB to be installed.

References

L. Breiman (1996). Bagging predictors. Machine Learning, 24/2, 123–140. doi:10.1023/A:1018054314350.

Y. Freund and R. E. Schapire (1996). Experiments with a new boosting algorithm. In Proceedings
of the International Conference on Machine Learning, pages 148–156. Morgan Kaufmann: San
Francisco.

J. H. Friedman, T. Hastie, and R. Tibshirani (2000). Additive logistic regression: A statistical view
of boosting. Annals of Statistics, 28/2, 337–374. doi:10.1214/aos/1016218223.

G. I. Webb (2000). MultiBoosting: A technique for combining boosting and wagging. Machine
Learning, 40/2, 159–196. doi:10.1023/A:1007659514849.

I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques.
2nd Edition, Morgan Kaufmann, San Francisco.

D. H. Wolpert (1992). Stacked generalization. Neural Networks, 5, 241–259. doi:10.1016/S0893-
6080(05)800231.

See Also

Weka_classifiers

Examples

Use AdaBoostM1 with decision stumps.
m1 <- AdaBoostM1(Species ~ ., data = iris,

control = Weka_control(W = "DecisionStump"))
table(predict(m1), iris$Species)

summary(m1) # uses evaluate_Weka_classifier()

Control options for the base classifiers employed by the meta
learners (apart from Stacking) can be given as follows:
m2 <- AdaBoostM1(Species ~ ., data = iris,

control = Weka_control(W = list(J48, M = 30)))

https://doi.org/10.1023/A%3A1018054314350
https://doi.org/10.1214/aos/1016218223
https://doi.org/10.1023/A%3A1007659514849
https://doi.org/10.1016/S0893-6080%2805%2980023-1
https://doi.org/10.1016/S0893-6080%2805%2980023-1

16 Weka_classifier_rules

Weka_classifier_rules R/Weka Rule Learners

Description

R interfaces to Weka rule learners.

Usage

JRip(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

M5Rules(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

OneR(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

PART(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. See
model.frame for details.

control an object of class Weka_control giving options to be passed to the Weka learner.
Available options can be obtained on-line using the Weka Option Wizard WOW,
or the Weka documentation.

options a named list of further options, or NULL (default). See Details.

Details

There are a predict method for predicting from the fitted models, and a summary method based on
evaluate_Weka_classifier.

JRip implements a propositional rule learner, “Repeated Incremental Pruning to Produce Error
Reduction” (RIPPER), as proposed by Cohen (1995).

M5Rules generates a decision list for regression problems using separate-and-conquer. In each
iteration it builds an model tree using M5 and makes the “best” leaf into a rule. See Hall, Holmes
and Frank (1999) for more information.

OneR builds a simple 1-R classifier, see Holte (1993).

PART generates PART decision lists using the approach of Frank and Witten (1998).

The model formulae should only use the ‘+’ and ‘-’ operators to indicate the variables to be included
or not used, respectively.

Weka_classifier_rules 17

Argument options allows further customization. Currently, options model and instances (or
partial matches for these) are used: if set to TRUE, the model frame or the corresponding Weka
instances, respectively, are included in the fitted model object, possibly speeding up subsequent
computations on the object. By default, neither is included.

Value

A list inheriting from classes Weka_rules and Weka_classifiers with components including

classifier a reference (of class jobjRef) to a Java object obtained by applying the Weka
buildClassifier method to build the specified model using the given control
options.

predictions a numeric vector or factor with the model predictions for the training instances
(the results of calling the Weka classifyInstance method for the built classi-
fier and each instance).

call the matched call.

References

W. W. Cohen (1995). Fast effective rule induction. In A. Prieditis and S. Russell (eds.), Proceedings
of the 12th International Conference on Machine Learning, pages 115–123. Morgan Kaufmann.
ISBN 1-55860-377-8. doi:10.1016/B9781558603776.500232.

E. Frank and I. H. Witten (1998). Generating accurate rule sets without global optimization. In
J. Shavlik (ed.), Machine Learning: Proceedings of the Fifteenth International Conference. Mor-
gan Kaufmann Publishers: San Francisco, CA. https://www.cs.waikato.ac.nz/~eibe/pubs/
ML98-57.ps.gz

M. Hall, G. Holmes, and E. Frank (1999). Generating rule sets from model trees. Proceedings of
the Twelfth Australian Joint Conference on Artificial Intelligence, Sydney, Australia, pages 1–12.
Springer-Verlag. https://www.cs.waikato.ac.nz/~eibe/pubs/ajc.pdf

R. C. Holte (1993). Very simple classification rules perform well on most commonly used datasets.
Machine Learning, 11, 63–91. doi:10.1023/A:1022631118932.

I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques.
2nd Edition, Morgan Kaufmann, San Francisco.

See Also

Weka_classifiers

Examples

M5Rules(mpg ~ ., data = mtcars)

m <- PART(Species ~ ., data = iris)
m
summary(m)

https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://www.cs.waikato.ac.nz/~eibe/pubs/ML98-57.ps.gz
https://www.cs.waikato.ac.nz/~eibe/pubs/ML98-57.ps.gz
https://www.cs.waikato.ac.nz/~eibe/pubs/ajc.pdf
https://doi.org/10.1023/A%3A1022631118932

18 Weka_classifier_trees

Weka_classifier_trees R/Weka Classifier Trees

Description

R interfaces to Weka regression and classification tree learners.

Usage

J48(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

LMT(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

M5P(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

DecisionStump(formula, data, subset, na.action,
control = Weka_control(), options = NULL)

Arguments

formula a symbolic description of the model to be fit.

data an optional data frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. See
model.frame for details.

control an object of class Weka_control giving options to be passed to the Weka learner.
Available options can be obtained on-line using the Weka Option Wizard WOW,
or the Weka documentation.

options a named list of further options, or NULL (default). See Details.

Details

There are a predict method for predicting from the fitted models, and a summary method based on
evaluate_Weka_classifier.

There is also a plot method for fitted binary Weka_trees via the facilities provided by package
partykit. This converts the Weka_tree to a party object and then simply calls the plot method of
this class (see plot.party).

Provided the Weka classification tree learner implements the “Drawable” interface (i.e., provides a
graph method), write_to_dot can be used to create a DOT representation of the tree for visual-
ization via Graphviz or the Rgraphviz package.

J48 generates unpruned or pruned C4.5 decision trees (Quinlan, 1993).

LMT implements “Logistic Model Trees” (Landwehr, 2003; Landwehr et al., 2005).

Weka_classifier_trees 19

M5P (where the ‘P’ stands for ‘prime’) generates M5 model trees using the M5’ algorithm, which
was introduced in Wang & Witten (1997) and enhances the original M5 algorithm by Quinlan
(1992).

DecisionStump implements decision stumps (trees with a single split only), which are frequently
used as base learners for meta learners such as Boosting.

The model formulae should only use the ‘+’ and ‘-’ operators to indicate the variables to be included
or not used, respectively.

Argument options allows further customization. Currently, options model and instances (or
partial matches for these) are used: if set to TRUE, the model frame or the corresponding Weka
instances, respectively, are included in the fitted model object, possibly speeding up subsequent
computations on the object. By default, neither is included.

parse_Weka_digraph can parse the graph associated with a Weka tree classifier (and obtained by
invoking its graph() method in Weka), returning a simple list with nodes and edges.

Value

A list inheriting from classes Weka_tree and Weka_classifiers with components including

classifier a reference (of class jobjRef) to a Java object obtained by applying the Weka
buildClassifier method to build the specified model using the given control
options.

predictions a numeric vector or factor with the model predictions for the training instances
(the results of calling the Weka classifyInstance method for the built classi-
fier and each instance).

call the matched call.

References

N. Landwehr (2003). Logistic Model Trees. Master’s thesis, Institute for Computer Science, Univer-
sity of Freiburg, Germany. https://www.cs.uni-potsdam.de/ml/landwehr/diploma_thesis.
pdf

N. Landwehr, M. Hall, and E. Frank (2005). Logistic Model Trees. Machine Learning, 59, 161–
205. doi:10.1007/s1099400504663.

R. Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo, CA.

R. Quinlan (1992). Learning with continuous classes. Proceedings of the Australian Joint Confer-
ence on Artificial Intelligence, 343–348. World Scientific, Singapore.

Y. Wang and I. H. Witten (1997). Induction of model trees for predicting continuous classes. Pro-
ceedings of the European Conference on Machine Learning. University of Economics, Faculty of
Informatics and Statistics, Prague.

I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques.
2nd Edition, Morgan Kaufmann, San Francisco.

See Also

Weka_classifiers

https://www.cs.uni-potsdam.de/ml/landwehr/diploma_thesis.pdf
https://www.cs.uni-potsdam.de/ml/landwehr/diploma_thesis.pdf
https://doi.org/10.1007/s10994-005-0466-3

20 Weka_classifier_trees

Examples

m1 <- J48(Species ~ ., data = iris)

print and summary
m1
summary(m1) # calls evaluate_Weka_classifier()
table(iris$Species, predict(m1)) # by hand

visualization
use partykit package
if(require("partykit", quietly = TRUE)) plot(m1)
or Graphviz
write_to_dot(m1)
or Rgraphviz
Not run:
library("Rgraphviz")
ff <- tempfile()
write_to_dot(m1, ff)
plot(agread(ff))

End(Not run)

Using some Weka data sets ...

J48
DF2 <- read.arff(system.file("arff", "contact-lenses.arff",

package = "RWeka"))
m2 <- J48(`contact-lenses` ~ ., data = DF2)
m2
table(DF2$`contact-lenses`, predict(m2))
if(require("partykit", quietly = TRUE)) plot(m2)

M5P
DF3 <- read.arff(system.file("arff", "cpu.arff", package = "RWeka"))
m3 <- M5P(class ~ ., data = DF3)
m3
if(require("partykit", quietly = TRUE)) plot(m3)

Logistic Model Tree.
DF4 <- read.arff(system.file("arff", "weather.arff", package = "RWeka"))
m4 <- LMT(play ~ ., data = DF4)
m4
table(DF4$play, predict(m4))

Larger scale example.
if(require("mlbench", quietly = TRUE)

&& require("partykit", quietly = TRUE)) {
Predict diabetes status for Pima Indian women
data("PimaIndiansDiabetes", package = "mlbench")
Fit J48 tree with reduced error pruning
m5 <- J48(diabetes ~ ., data = PimaIndiansDiabetes,

control = Weka_control(R = TRUE))

Weka_clusterers 21

plot(m5)
(Make sure that the plotting device is big enough for the tree.)

}

Weka_clusterers R/Weka Clusterers

Description

R interfaces to Weka clustering algorithms.

Usage

Cobweb(x, control = NULL)
FarthestFirst(x, control = NULL)
SimpleKMeans(x, control = NULL)
XMeans(x, control = NULL)
DBScan(x, control = NULL)

Arguments

x an R object with the data to be clustered.

control an object of class Weka_control, or a character vector of control options, or
NULL (default). Available options can be obtained on-line using the Weka Option
Wizard WOW, or the Weka documentation.

Details

There is a predict method for predicting class ids or memberships from the fitted clusterers.

Cobweb implements the Cobweb (Fisher, 1987) and Classit (Gennari et al., 1989) clustering algo-
rithms.

FarthestFirst provides the “farthest first traversal algorithm” by Hochbaum and Shmoys, which
works as a fast simple approximate clusterer modeled after simple k-means.

SimpleKMeans provides clustering with the k-means algorithm.

XMeans provides k-means extended by an “Improve-Structure part” and automatically determines
the number of clusters.

DBScan provides the “density-based clustering algorithm” by Ester, Kriegel, Sander, and Xu. Note
that noise points are assigned to NA.

Value

A list inheriting from class Weka_clusterers with components including

clusterer a reference (of class jobjRef) to a Java object obtained by applying the Weka
buildClusterer method to the training instances using the given control op-
tions.

22 Weka_clusterers

class_ids a vector of integers indicating the class to which each training instance is allo-
cated (the results of calling the Weka clusterInstance method for the built
clusterer and each instance).

Note

XMeans requires Weka package XMeans to be installed.

DBScan requires Weka package optics_dbScan to be installed.

References

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu (1996). A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. Proceedings of the Second International Confer-
ence on Knowledge Discovery and Data Mining (KDD’96), Portland, OR, 226–231. AAAI Press.

D. H. Fisher (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learn-
ing, 2/2, 139–172. doi:10.1023/A:1022852608280.

J. Gennari, P. Langley, and D. H. Fisher (1989). Models of incremental concept formation. Artificial
Intelligence, 40, 11–62.

D. S. Hochbaum and D. B. Shmoys (1985). A best possible heuristic for the k-center problem,
Mathematics of Operations Research, 10(2), 180–184. doi:10.1287/moor.10.2.180.

D. Pelleg and A. W. Moore (2006). X-means: Extending K-means with Efficient Estimation of
the Number of Clusters. In: Seventeenth International Conference on Machine Learning, 727–734.
Morgan Kaufmann.

I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques.
2nd Edition, Morgan Kaufmann, San Francisco.

Examples

cl1 <- SimpleKMeans(iris[, -5], Weka_control(N = 3))
cl1
table(predict(cl1), iris$Species)

Not run:
Requires Weka package 'XMeans' to be installed.
Use XMeans with a KDTree.
cl2 <- XMeans(iris[, -5],

c("-L", 3, "-H", 7, "-use-kdtree",
"-K", "weka.core.neighboursearch.KDTree -P"))

cl2
table(predict(cl2), iris$Species)

End(Not run)

https://doi.org/10.1023/A%3A1022852608280
https://doi.org/10.1287/moor.10.2.180

Weka_control 23

Weka_control Control Weka Options

Description

Set control options for Weka learners.

Usage

Weka_control(...)

Arguments

... named arguments of control options, see the details and examples.

Details

The available options for a Weka learner, foo() say, can be queried by WOW(foo) and then conve-
niently set by Weka_control(). See below for an example.

One can use lists for options taking multiple arguments, see the documentation for SMO for an
example.

Value

A list of class Weka_control which can be coerced to character for passing it to Weka.

See Also

WOW

Examples

Query J4.8 options:
WOW("J48")
Learn J4.8 tree on iris data with default settings:
J48(Species ~ ., data = iris)
Learn J4.8 tree with reduced error pruning (-R) and
minimum number of instances set to 5 (-M 5):
J48(Species ~ ., data = iris, control = Weka_control(R = TRUE, M = 5))

24 Weka_converters

Weka_converters R/Weka File Loaders and Savers

Description

R interfaces to Weka file loaders and savers.

Usage

C45Loader(file)
XRFFLoader(file)
C45Saver(x, file, control = NULL)
XRFFSaver(x, file, control = NULL)

Arguments

file a non-empty character string naming a file to read from or write to.

x the data to be written, preferably a matrix or data frame. If not, coercion to a
data frame is attempted.

control an object of class Weka_control, or a character vector of control options, or
NULL (default). Available options can be obtained on-line using the Weka Option
Wizard WOW, or the Weka documentation.

Details

C45Loader and C45Saver use the format employed by the C4.5 algorithm/software, where data is
stored in two separate ‘.names’ and ‘.data’ files.

XRFFLoader and XRFFSaver handle XRFF (eXtensible attribute-Relation File Format, an XML-based
extension of Weka’s native Attribute-Relation File Format) files.

Value

Invisibly NULL for the savers.

A data frame containing the data from the given file for the loaders.

See Also

read.arff, write.arff.

Weka_filters 25

Weka_filters R/Weka Filters

Description

R interfaces to Weka filters.

Usage

Normalize(formula, data, subset, na.action, control = NULL)
Discretize(formula, data, subset, na.action, control = NULL)

Arguments

formula a symbolic description of a model. Note that for unsupervised filters the re-
sponse can be omitted.

data an optional data frame containing the variables in the model.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. See
model.frame for details.

control an object of class Weka_control, or a character vector of control options, or
NULL (default). Available options can be obtained on-line using the Weka Option
Wizard WOW, or the Weka documentation.

Details

Normalize implements an unsupervised filter that normalizes all instances of a dataset to have a
given norm. Only numeric values are considered, and the class attribute is ignored.

Discretize implements a supervised instance filter that discretizes a range of numeric attributes in
the dataset into nominal attributes. Discretization is by Fayyad & Irani’s MDL method (the default).

Note that these methods ignore nominal attributes, i.e., variables of class factor.

Value

A data frame.

References

U. M. Fayyad and K. B. Irani (1993). Multi-interval discretization of continuous-valued attributes
for classification learning. Thirteenth International Joint Conference on Artificial Intelligence,
1022–1027. Morgan Kaufmann.

I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques.
2nd Edition, Morgan Kaufmann, San Francisco.

26 Weka_interfaces

Examples

Using a Weka data set ...
w <- read.arff(system.file("arff","weather.arff",

package = "RWeka"))

Normalize (response irrelevant)
m1 <- Normalize(~., data = w)
m1

Discretize
m2 <- Discretize(play ~., data = w)
m2

Weka_interfaces R/Weka interfaces

Description

Create an R interface to an existing Weka learner, attribute evaluator or filter, or show the available
interfaces.

Usage

make_Weka_associator(name, class = NULL,
init = NULL, package = NULL)

make_Weka_attribute_evaluator(name, class = NULL,
init = NULL, package = NULL)

make_Weka_classifier(name, class = NULL, handlers = list(),
init = NULL, package = NULL)

make_Weka_clusterer(name, class = NULL,
init = NULL, package = NULL)

make_Weka_filter(name, class = NULL,
init = NULL, package = NULL)

list_Weka_interfaces()
make_Weka_package_loader(p)

Arguments

name a character string giving the fully qualified name of a Weka learner/filter class
in JNI notation.

class NULL (default), or a character vector giving the names of R classes the objects
returned by the interface function should inherit from in addition to the default
ones (for representing associators, classifiers, and clusterers).

handlers a named list of special handler functions, see Details.

init NULL, or a function with no arguments to be called when the interface is used
for building the learner/filter, or queried for available options via WOW. Typically,
this is used for loading Weka packages when interfacing functionality in these.

Weka_interfaces 27

package NULL (default), or a character string giving the name of the external Weka pack-
age providing the learner/filter class specified by name.

p a character string naming a Weka package to be loaded via WPM.

Details

make_Weka_associator and make_Weka_clusterer create an R function providing an interface
to a Weka association learner or a Weka clusterer, respectively. This interface function has formals
x and control = NULL, representing the training instances and control options to be employed.
Objects created by these interface functions always inherit from classes Weka_associator and
Weka_clusterer, respectively, and have at least suitable print methods. Fitted clusterers also
have a predict method.

make_Weka_classifier creates an interface function for a Weka classifier, with formals formula,
data, subset, na.action, and control (default: none), where the first four have the “usual”
meanings for statistical modeling functions in R, and the last again specifies the control options to
be employed by the Weka learner. Objects created by these interfaces always inherit from class
Weka_classifier, and have at least suitable print and predict methods.

make_Weka_filter creates an interface function for a Weka filter, with formals formula, data,
subset, na.action, and control = NULL, where the first four have the “usual” meanings for sta-
tistical modeling functions in R, and the last again specifies the control options to be employed by
the Weka filter. Note that the response variable can be omitted from formula if the filter is “unsu-
pervised”. Objects created by these interface functions are (currently) always of class data.frame.

make_Weka_attribute_evaluator creates an interface function for a Weka attribute evaluation
class which implements the AttributeEvaluator interface, with formals as for the classifier inter-
face functions.

Certain aspects of the interface function can be customized by providing handlers. Currently, only
control handlers (functions given as the control component of the list of handlers) are used for
processing the given control arguments before passing them to the Weka classifier. This is used,
e.g., by the meta learners to allow the specification of registered base learners by their “base names”
(rather their full Weka/Java class names).

In addition to creating interface functions, the interfaces are registered (under the name of the Weka
class interfaced), which in particular allows the Weka Option Wizard (WOW) to conveniently give
on-line information about available control options for the interfaces.

list_Weka_interfaces lists the available interfaces.

Finally, make_Weka_package_loader generates init hooks for loading required and already in-
stalled Weka packages.

It is straightforward to register new interfaces in addition to the ones package RWeka provides by
default.

References

K. Hornik, C. Buchta, and A. Zeileis (2009). Open-source machine learning: R meets Weka. Com-
putational Statistics, 24/2, 225–232. doi:10.1007/s0018000801197.

https://doi.org/10.1007/s00180-008-0119-7

28 Weka_stemmers

Examples

Create an interface to Weka's Naive Bayes classifier.
NB <- make_Weka_classifier("weka/classifiers/bayes/NaiveBayes")
Note that this has a very useful print method:
NB
And we can use the Weka Option Wizard for finding out more:
WOW(NB)
And actually use the interface ...
if(require("e1071", quietly = TRUE) &&

require("mlbench", quietly = TRUE)) {
data("HouseVotes84", package = "mlbench")
model <- NB(Class ~ ., data = HouseVotes84)
predict(model, HouseVotes84[1:10, -1])
predict(model, HouseVotes84[1:10, -1], type = "prob")

}
(Compare this to David Meyer's naiveBayes() in package 'e1071'.)

Weka_stemmers R/Weka Stemmers

Description

R interfaces to Weka stemmers.

Usage

IteratedLovinsStemmer(x, control = NULL)
LovinsStemmer(x, control = NULL)

Arguments

x a character vector with words to be stemmed.

control an object of class Weka_control, or a character vector of control options, or
NULL (default). Available options can be obtained on-line using the Weka Option
Wizard WOW, or the Weka documentation.

Value

A character vector with the stemmed words.

References

J. B. Lovins (1968), Development of a stemming algorithm. Mechanical Translation and Compu-
tational Linguistics, 11, 22–31.

Weka_tokenizers 29

Weka_tokenizers R/Weka Tokenizers

Description

R interfaces to Weka tokenizers.

Usage

AlphabeticTokenizer(x, control = NULL)
NGramTokenizer(x, control = NULL)
WordTokenizer(x, control = NULL)

Arguments

x a character vector with strings to be tokenized.

control an object of class Weka_control, or a character vector of control options, or
NULL (default). Available options can be obtained on-line using the Weka Option
Wizard WOW, or the Weka documentation.

Details

AlphabeticTokenizer is an alphabetic string tokenizer, where tokens are to be formed only from
contiguous alphabetic sequences.

NGramTokenizer splits strings into n-grams with given minimal and maximal numbers of grams.

WordTokenizer is a simple word tokenizer.

Value

A character vector with the tokenized strings.

WOW Weka Option Wizard

Description

Give on-line information about available control options for Weka learners or filters and their R
interfaces.

Usage

WOW(x)

30 WPM

Arguments

x a character string giving either the fully qualified name of a Weka learner or filter
class in JNI notation, or the name of an available R interface, or an object ob-
tained from applying these interfaces to build an associator, classifier, clusterer,
or filter.

Details

See list_Weka_interfaces for the available interface functions.

References

K. Hornik, C. Buchta, and A. Zeileis (2009). Open-source machine learning: R meets Weka. Com-
putational Statistics, 24/2, 225–232. doi:10.1007/s0018000801197.

Examples

The name of an "existing" (registered) interface.
WOW("J48")
The name of some Weka class (not necessarily in the interface
registry):
WOW("weka/classifiers/bayes/NaiveBayes")

WPM Weka Package Manager

Description

Manage Weka packages.

Usage

WPM(cmd, ...)

Arguments

cmd a character string specifying the action to be performed. Must be one of "refresh-cache",
"list-packages", "package-info", "install-package", "remove-package",
"toggle-load-status" or "load-packages" (or a unique abbreviation thereof).

... character strings giving further arguments required for the action to be per-
formed. See Details.

https://doi.org/10.1007/s00180-008-0119-7

WPM 31

Details

Available actions and respective additional arguments are as follows.

"refresh-cache" Refresh the cached copy of the package meta data from the central package
repository.

"list-packages" print information (version numbers and short descriptions) about packages as
specified by an additional keyword which must be one of "all" (all packages the system
knows about), "installed" (all packages installed locally), or ("available" (all known
packages not installed locally), or a unique abbreviation thereof.

"package-info" print information (metadata) about a package. Requires two additional char-
acter string arguments: a keyword and the package name. The keyword must be one of
"repository" (print info from the repository) or "installed" (print info on the installed
version), or a unique abbreviation thereof.

"install-package" install a package as specified by an additional character string giving its
name. (In principle, one could also provide a file path or URL to a zip file.)

"remove-package" remove a given (installed) package.

"toggle-load-status" toggle the load status of the given (installed) packages.

"load-packages" load all installed packages with active load status.

Note

Weka stores packages and their information in the Weka home directory, as given by the value of
the environment variable WEKA_HOME; if this is not set, the ‘wekafiles’ subdirectory of the user’s
home directory is used. If this Weka home directory was not created yet, WPM() will instead use
a temporary directory in the R session directory: to achieve persistence, users need to create the
Weka home directory before using WPM().

Examples

Not run:
Start by building/refreshing the cache.
WPM("refresh-cache")
Show the packages installed locally.
WPM("list-packages", "installed")
Show the packages available from the central Weka package
repository and not installed locally.
WPM("list-packages", "available")
Show repository information about package XMeans.
WPM("package-info", "repository", "XMeans")

End(Not run)

32 write.arff

write.arff Write Data into ARFF Files

Description

Writes data into Weka Attribute-Relation File Format (ARFF) files.

Usage

write.arff(x, file, eol = "\n")

Arguments

x the data to be written, preferably a matrix or data frame. If not, coercion to a
data frame is attempted.

file either a character string naming a file, or a connection. "" indicates output to
the standard output connection.

eol the character(s) to print at the end of each line (row).

References

Attribute-Relation File Format https://waikato.github.io/weka-wiki/formats_and_processing/
arff/

See Also

read.arff

Examples

write.arff(iris, file = "")

https://waikato.github.io/weka-wiki/formats_and_processing/arff/
https://waikato.github.io/weka-wiki/formats_and_processing/arff/

Index

∗ character
Weka_stemmers, 28
Weka_tokenizers, 29

∗ classif
Weka_classifier_functions, 10
Weka_classifier_lazy, 12
Weka_classifier_meta, 13
Weka_classifier_rules, 16
Weka_classifier_trees, 18
Weka_classifiers, 9
Weka_filters, 25

∗ cluster
predict_Weka_clusterer, 5
Weka_clusterers, 21

∗ connection
read.arff, 6

∗ documentation
Weka_control, 23
WOW, 29

∗ file
read.arff, 6
Weka_converters, 24
write.arff, 32

∗ graphs
dot, 2

∗ interface
Weka_interfaces, 26

∗ models
evaluate_Weka_classifier, 3
predict_Weka_classifier, 4
Weka_associators, 7
Weka_attribute_evaluators, 8
Weka_classifier_functions, 10
Weka_classifier_lazy, 12
Weka_classifier_meta, 13
Weka_classifier_rules, 16
Weka_classifier_trees, 18
Weka_classifiers, 9
Weka_filters, 25

Weka_interfaces, 26
∗ print

write.arff, 32
∗ regression

Weka_classifier_functions, 10
Weka_classifier_lazy, 12
Weka_classifier_meta, 13
Weka_classifier_rules, 16
Weka_classifier_trees, 18
Weka_classifiers, 9

∗ tree
Weka_classifier_trees, 18

AdaBoostM1 (Weka_classifier_meta), 13
AlphabeticTokenizer (Weka_tokenizers),

29
Apriori (Weka_associators), 7
as.character.Weka_control

(Weka_control), 23

Bagging (Weka_classifier_meta), 13

C45Loader (Weka_converters), 24
C45Saver (Weka_converters), 24
Cobweb (Weka_clusterers), 21
connection, 2, 6
CostSensitiveClassifier

(Weka_classifier_meta), 13

data.frame, 27
DBScan (Weka_clusterers), 21
DecisionStump (Weka_classifier_trees),

18
Discretize (Weka_filters), 25
dot, 2

evaluate_Weka_classifier, 3, 9, 10, 12, 14,
16, 18

FarthestFirst (Weka_clusterers), 21

33

34 INDEX

fitted.Weka_classifier
(predict_Weka_classifier), 4

GainRatioAttributeEval
(Weka_attribute_evaluators), 8

IBk (Weka_classifier_lazy), 12
InfoGainAttributeEval

(Weka_attribute_evaluators), 8
IteratedLovinsStemmer (Weka_stemmers),

28

J48 (Weka_classifier_trees), 18
jobjRef, 7, 11, 13, 15, 17, 19, 21
JRip (Weka_classifier_rules), 16

LBR (Weka_classifier_lazy), 12
LinearRegression

(Weka_classifier_functions), 10
list_Weka_interfaces, 14, 30
list_Weka_interfaces (Weka_interfaces),

26
LMT (Weka_classifier_trees), 18
Logistic (Weka_classifier_functions), 10
LogitBoost (Weka_classifier_meta), 13
LovinsStemmer (Weka_stemmers), 28

M5P (Weka_classifier_trees), 18
M5Rules (Weka_classifier_rules), 16
make_Weka_associator (Weka_interfaces),

26
make_Weka_attribute_evaluator

(Weka_interfaces), 26
make_Weka_classifier, 9
make_Weka_classifier (Weka_interfaces),

26
make_Weka_clusterer (Weka_interfaces),

26
make_Weka_filter (Weka_interfaces), 26
make_Weka_package_loader

(Weka_interfaces), 26
model.frame, 8–10, 12, 14, 16, 18, 25
MultiBoostAB (Weka_classifier_meta), 13

NGramTokenizer (Weka_tokenizers), 29
Normalize (Weka_filters), 25

OneR (Weka_classifier_rules), 16

parse_Weka_digraph
(Weka_classifier_trees), 18

PART (Weka_classifier_rules), 16
plot.party, 18
plot.Weka_tree (Weka_classifier_trees),

18
predict, 9, 10, 12, 14, 16, 18, 21, 27
predict.Weka_classifier

(predict_Weka_classifier), 4
predict.Weka_clusterer

(predict_Weka_clusterer), 5
predict_Weka_classifier, 4
predict_Weka_clusterer, 5
print.Weka_control (Weka_control), 23

read.arff, 6, 24, 32

SimpleKMeans (Weka_clusterers), 21
SMO, 23
SMO (Weka_classifier_functions), 10
Stacking (Weka_classifier_meta), 13

Tertius (Weka_associators), 7

Weka_associators, 7
Weka_attribute_evaluators, 8
Weka_classifier_functions, 9, 10
Weka_classifier_lazy, 9, 12
Weka_classifier_meta, 9, 13
Weka_classifier_rules, 9, 16
Weka_classifier_trees, 9, 18
Weka_classifiers, 9, 11, 13, 15, 17, 19
Weka_clusterers, 21
Weka_control, 7, 8, 10, 12, 14, 16, 18, 21, 23,

24, 25, 28, 29
Weka_converters, 24
Weka_filters, 25
Weka_interfaces, 26
Weka_stemmers, 28
Weka_tokenizers, 29
WordTokenizer (Weka_tokenizers), 29
WOW, 7, 8, 10, 12, 14, 16, 18, 21, 23–29, 29
WPM, 27, 30
write.arff, 6, 24, 32
write_to_dot, 18
write_to_dot (dot), 2

XMeans (Weka_clusterers), 21
XRFFLoader (Weka_converters), 24
XRFFSaver (Weka_converters), 24

	dot
	evaluate_Weka_classifier
	predict_Weka_classifier
	predict_Weka_clusterer
	read.arff
	Weka_associators
	Weka_attribute_evaluators
	Weka_classifiers
	Weka_classifier_functions
	Weka_classifier_lazy
	Weka_classifier_meta
	Weka_classifier_rules
	Weka_classifier_trees
	Weka_clusterers
	Weka_control
	Weka_converters
	Weka_filters
	Weka_interfaces
	Weka_stemmers
	Weka_tokenizers
	WOW
	WPM
	write.arff
	Index

