Type: | Package |
Title: | R Commander Plug-in for University Level Applied Statistics |
Version: | 1.8.15 |
Date: | 2024-03-11 |
Author: | Kristian Hovde Liland [aut, cre], Solve Sæbø [aut] |
Maintainer: | Kristian Hovde Liland <kristian.liland@nmbu.no> |
Encoding: | UTF-8 |
URL: | https://github.com/khliland/RcmdrPlugin.NMBU/ |
BugReports: | https://github.com/khliland/RcmdrPlugin.NMBU/issues/ |
Depends: | R (≥ 3.0.0), mixlm (≥ 1.2.3), MASS, pls, xtable, phia |
Imports: | Rcmdr (≥ 2.1-7), tcltk, car |
Suggests: | lme4, leaps, mvtnorm, gmodels, abind, lattice, pbkrtest, vcd, multcomp, e1071, nnet |
Description: | An R Commander "plug-in" extending functionality of linear models and providing an interface to Partial Least Squares Regression and Linear and Quadratic Discriminant analysis. Several statistical summaries are extended, predictions are offered for additional types of analyses, and extra plots, tests and mixed models are available. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
LazyLoad: | yes |
RcmdrModels: | mvr, lda, qda, prcomp, mer, rsm, lmm |
RoxygenNote: | 7.3.1 |
NeedsCompilation: | no |
Packaged: | 2024-03-11 13:44:19 UTC; kristian |
Repository: | CRAN |
Date/Publication: | 2024-03-11 14:00:10 UTC |
R Commander Plug-in for University Level Applied Statistics
Description
This package provides an Rcmdr "plug-in" extending some functions of linear models and providing new and extended interfaces to PCA, PLS, LDA, QDA, clustering of variables, tests, plots, etc.
Details
Package: | RcmdrPlugin.NMBU |
License: | GPL version 2 or newer |
LazyLoad: | yes |
Run the plugin using the code library(RcmdrPlugin.NMBU)
or library(umb)
.
Statistical and summary functions included:
-
dummy(y)
-
PRESS(object=NULL) (default is current model)
-
PRESS.res(object=NULL) (default is current model)
-
R2_pred(object=NULL) (default is current model)
-
forward(model, alpha=0.2, full=FALSE)
-
backward(model, alpha=0.2, full=FALSE)
-
stepWise(model, alpha.enter=0.15, alpha.remove=0.15, full=FALSE)
-
stepWiseBack(model, alpha.remove=0.15, alpha.enter=0.15, full=FALSE)
-
best.subsets(model, nbest=5, nvmax)
-
confint.mvr(object, parm, level=0.95, ...)
-
confusion(true, predicted)
-
DA.scores(object=NULL) (default is current model)
-
plotDA(DAobject=NULL, regions=TRUE, contours=FALSE, resolution=100)
-
hclust.merge(object) (default is last clustering)
-
mixed.model(formula, random.effects=NULL, data, restrictedModel=FALSE, subset="")
-
summary.extra(object)
-
anova_reg(lm.object)
-
predict_CI_PI(model, data, level)
-
prop.test.ordinary(x, n, p = NULL, alternative = c("two.sided", "less", "greater"), conf.level = 0.95, correct = TRUE)
-
rmsep(object) (default is current model)
Utility functions included:
-
aovP()
-
clustP()
-
daP()
-
mixP()
-
pcaP()
-
plsP()
-
variablesP()
-
DA.coef()
-
hclust.list()
-
listHclustSolutions(envir=.GlobalEnv, ...)
-
make.colours(object)
-
confint.mvr(object, parm, level=0.95, ...)
-
dummy(y)
-
dummify(y,n,name)
-
Dummify(data, main.effects, response)
-
fparse(f)
-
if.R()
GUI Functions included:
-
anova_reg_GUI()
-
backwardDrop()
-
backwardForward()
-
bestSubsets()
-
coefNMBU()
-
contrastGUI()
-
contrastGUI2()
-
covarianceMatrix()
-
createSequence()
-
discriminantAnalysis()
-
discriminantPlot()
-
dotplotGUI()
-
enterTableNMBU()
-
fittedLinePlot()
-
wideForwardAdd()
-
forwardAdd()
-
forwardBackward()
-
hierarchicalClusterVariable()
-
linearModelANOVA()
-
meanCenter()
-
mixtureGUI()
-
plsRegressionModel()
-
postHocGUI()
-
predictRegressionModel()
-
PRESS.GUI()
-
principalComponentPlots()
-
principalComponentsStat()
-
proportionTest()
-
sortData()
-
twoSamplesTTest()
-
twoWayTableNMBU()
Graphical Functions included:
-
CIplot()
-
dotPlot()
-
dots()
-
mixture.contour()
-
panel.ci.plot()
-
plotDA()
Author(s)
Kristian Hovde Liland <kristian.liland@nmbu.no>
Examples
## Not run:
## This example shows alternative ways of starting
## package using the official plugin or an unofficial wrapper.
library(RcmdrPlugin.NMBU) # Starts up the R Commander including this plugin.
library(nmbu) # Simpler startup with automatic update hosted by NMBU (when available).
## End(Not run)
Extended summary from multinom
Description
Extended summary from multinom
Usage
extend.colnames(object, the.name)
Arguments
object |
object fitted with multinom. |
the.name |
name to be added to column names. |
Value
Returns object with new colnames.
Author(s)
Kristian Hovde Liland
Extended summary from multinom
Description
Extends the summary function of multinom object from nnet.
Usage
summaryMultinom(object)
Arguments
object |
Object fitted by multinom. |
Value
Only printing is performed, nothing is returned.
Author(s)
Kristian Hovde Liland
Extended summary from ordinal regression
Description
Extended summary from ordinal regression.
Usage
summaryOrdinal(object, digits = max(3, .Options$digits - 3), correlation = FALSE, ...)
Arguments
object |
fitted ordinal regression. |
digits |
number of digits in output. |
correlation |
use correlation. |
... |
additional arguments to pass on. |
Value
Only printing is performed, nothing is returned.
Author(s)
Kristian Hovde Liland