Type: | Package |
Version: | 5.0.4 |
Date: | 2024-05-31 |
Title: | Fuzzy Measure Tools |
Author: | Gleb Beliakov [aut, cre], Quan Vu [ctb], Andrei Kelarev [ctb], Michel Berkelaar [ctb], Kjell Eikland [ctb], Samuel E. Buttrey [ctb], Stefan I. Larimore [ctb], Timothy A. Davis [ctb], John Gilbert [ctb], Esmond Ng [ctb], Peter Notebaert [ctb], Richard Stallman [ctb], Jeroen Dirks [ctb], Daniela L. Calderon [ctb] |
Maintainer: | Gleb Beliakov <gleb@deakin.edu.au> |
Depends: | R (≥ 2.9.2), Rcpp |
LinkingTo: | Rcpp |
Description: | Various tools for handling fuzzy measures, calculating Shapley value and interaction index, Choquet and Sugeno integrals, as well as fitting fuzzy measures to empirical data are provided. Construction of fuzzy measures from empirical data is done by solving a linear programming problem by using 'lpsolve' package, whose source in C adapted to the R environment is included. The description of the basic theory of fuzzy measures is in the manual in the Doc folder in this package. Please refer to the following: [1] https://personal-sites.deakin.edu.au/~gleb/fmtools.html [2] G. Beliakov, H. Bustince, T. Calvo, 'A Practical Guide to Averaging', Springer, (2016, ISBN: 978-3-319-24753-3). [3] G. Beliakov, S. James, J-Z. Wu, 'Discrete Fuzzy Measures', Springer, (2020, ISBN: 978-3-030-15305-2). |
License: | LGPL-3 |
NeedsCompilation: | yes |
Copyright: | Gleb Beliakov. The 'lpsolve' library and its parts are copyright to various holders, including Kjell Eikland, Michel Berkelaar, University of Florida, National Institute of Standards and Technology, Free Software Foundation, Inc. |
Packaged: | 2024-06-02 03:14:09 UTC; gleb |
Repository: | CRAN |
Date/Publication: | 2024-06-02 23:20:20 UTC |
Rfmtool package
Description
This function shows a list of function included in this toolbox
Usage
fm()
Details
The following functions involve the parameters v (the array containing the fuzzy measure in standard representation) or Mob (in Mobius representation), n - the dimension and m = 2^n. The values of the fuzzy measure always obey the binary ordering.
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
fm()
Banzhaf value computation function
Description
Calculates the Banzhaf indices of input criteria from general fuzzy measure.
Usage
fm.Banzhaf(v,env=NULL)
Arguments
v |
Fuzzy measure in general representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size n, which contain Banzhaf indices of input criteria. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.Banzhaf(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
env<-fm.Free(env)
Function for calculating Banzhaf values of 2-additive fuzzy measure in Mobius representation
Description
Calculate the Banzhaf values of a 2-additive fuzzy measure for n inputs given in Mobius representation. The results are in arrays.
Usage
fm.Banzhaf2addMob(n, Mob)
Arguments
n |
Number of inputs |
Mob |
Fuzzy measure value in Mobius representation |
Value
output |
The output is an array of size n, which contain Banzhaf indices of input criteria. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
Banzhaf <- fm.Banzhaf2addMob(3, c(0.2, 0.3, 0.5, -0.2, 0.4, 0.1))
Banzhaf value computation function in Mobius representation
Description
Calculates the Banzhaf indices of input criteria from general fuzzy measure in Mobius representation.
Usage
fm.BanzhafMob(Mob,env=NULL)
Arguments
Mob |
Fuzzy measure in Mobius representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size n, which contain Banzhaf indices of input criteria. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.BanzhafMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
env<-fm.Free(env)
Banzhaf values computation function in sparse representation
Description
Calculates Banzhaf values vectors of size n of a sparse fuzzy measure
Usage
fm.BanzhafMob_sparse(n, envsp=NULL)
Arguments
n |
The size of values vectors |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is Banzhaf values vectors of size n of a sparse fuzzy measure. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp);
fm.BanzhafMob_sparse(3, envsp)
envsp <- fm.FreeSparseFM(envsp)
Bipartition interaction index computation function
Description
Calculates the Bipartition interaction indices of input criteria from general fuzzy measure.
Usage
fm.Bipartition(v,env=NULL)
Arguments
v |
Fuzzy measure in general representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size 2^n, which contain bipartition interaction indices of input criteria coalitions. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.Bipartition(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
env<-fm.Free(env)
Bipartition Banhzaf interaction index computation function
Description
Calculates the Banzhaf Bipartition interaction indices of input criteria from general fuzzy measure.
Usage
fm.BipartitionBanzhaf(v,env=NULL)
Arguments
v |
Fuzzy measure in general representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size 2^n, which contain Banzhaf bipartition interaction indices of input criteria coalitions. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.BipartitionBanzhaf(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
env<-fm.Free(env)
Choquet integral computation function
Description
Calculates the value of a discrete Choquet integral of input x, with fuzzy measure in general representation.
Usage
fm.Choquet(x, v, env=NULL)
Arguments
x |
Input vector of size n, containing utility value of input criteria. x is in [0,1]. |
v |
The general fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The ouput is a single value of the computed Choquet integral. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.Choquet(c(0.6, 0.3, 0.8), c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
env<-fm.Free(env)
Function for calculating Choquet integral value for 2-additive fuzzy measure in Mobius representation
Description
Calculates the Choquet integral value of a 2-additive fuzzy measure for n inputs given in Mobius representation.
Usage
fm.Choquet2addMob(n, x, Mob)
Arguments
n |
Number of inputs |
x |
Input vector of size n, containing utility value of input criteria. x is in [0,1]. |
Mob |
The Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
Value
output |
The output is the Choquet integral value in Mobius representation. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
Choquet <- fm.Choquet2addMob(3, c(0.2,0.5,0.4), c(0.2, 0.3, 0.5, -0.2, 0.4, 0.1))
function for calculating Choquet integral value with respect to dual k-interactive fuzzy measure in Mobius representation
Description
Calculates the Choquet integral of x with respect to dual k-interactive fuzzy measure in Mobius representation.
Usage
fm.ChoquetCoMobKInter(x, Mob, kadd, env=NULL)
Arguments
x |
Input vector of size n, containing utility value of input criteria. x is in [0,1]. |
Mob |
The Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data |
kadd |
is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. kadd is k in k-additive f-measure, 1 < kadd < n+1; if kdd=n - f.m. is unrestricted. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is the Choquet integral value in Mobius representation. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env <-fm.Init(4)
step <- 0.0001
Fn <- NULL
fuzzymeasures <- fm.generate_fm_kinteractivedualconvex(1, 4, 2, 1000, step, Fn, env)
fuzzymeasures
env
fm.ChoquetCoMobKInter(c(0.2,0.5,0.4,0.1), fuzzymeasures$V, 2, env)
env<-fm.Free(env)
Choquet integral value computation function in standard representation wrt k-interactive fuzzy measure
Description
This is an alternative calculation of the Choquet integral from the fuzzy measure in Mobius representation.
Usage
fm.ChoquetKinter(x, v, kint, env)
Arguments
x |
Input vector of size n, containing utility value of input criteria. x is in [0,1]. |
v |
The fuzzy measure of size less than m=2^n. Its values can be provided by users, or by estimating from empirical data. |
kint |
the k-interactivity parameter, must be smaller than n. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The ouput is a single value of the computed Choquet integral. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.ChoquetKinter(c(0.6,0.3,0.8),c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),2,env)
env<-fm.Free(env)
Choquet integral value computation function in Mobius representation
Description
This is an alternative calculation of the Choquet integral from the fuzzy measure in Mobius representation.
Usage
fm.ChoquetMob(x, Mob, env=NULL)
Arguments
x |
Input vector of size n, containing utility value of input criteria. x is in [0,1]. |
Mob |
The Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The ouput is a single value of the computed Choquet integral. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.ChoquetMob(c(0.2,0.5,0.4), c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
Choquet integral computation function in sparse representation
Description
Calculates the Choquet integral in Mobius sparse representation.
Usage
fm.ChoquetMob_sparse(x, envsp=NULL)
Arguments
x |
Input vector of size n, containing utility value of input criteria. x is in [0,1]. |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is the Choquet integral in Mobius sparse representation. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp);
ChoquetMobsparse <- fm.ChoquetMob_sparse(c(0.1,0.05,0.2),envsp)
ChoquetMobsparse
envsp <- fm.FreeSparseFM(envsp)
Function for Constructing Lambda
Description
Finds the value of lambda and calculates the rest of the values of the fuzzy measure, given its values at singletons; singletons is an array of size n. The outputs are lambda and v, v is in standard representation and binary ordering.
Usage
fm.ConstructLambdaMeasure(singletons,env)
Arguments
singletons |
Singletons is an array of n. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The ouput is the list (lambda, measure), where measure is a fuzzy measure in standard representation. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
w <- fm.ConstructLambdaMeasure(c(0, 0.3, 0.5),env)
Function for Constructing Lambda in Mobius representation
Description
Finds the value of lambda and calculates the rest of the values of the fuzzy measure, given its values at singletons; singletons is an array of size n. The outputs are lambda and measure, measure is in Mobius representation.
Usage
fm.ConstructLambdaMeasureMob(singletons,env)
Arguments
singletons |
Singletons is an array of n. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The ouput is the list (lambda, measure), where measure is a fuzzy measure in Mobius representation. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
w <- fm.ConstructLambdaMeasureMob(c(0, 0.3, 0.5),env)
w$measure
fm.Free(env)
Function for dual k-interactive fuzzy measure from Mobius to standard representation
Description
Converts dual k-interactive fuzzy measure from Mobius to standard representation.
Usage
fm.ConvertCoMob2Kinter(Mob,kadd, fullmu, env=NULL)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from emperical data. |
kadd |
is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. kadd is k in k-additive f-measure, 1 < kadd < n+1; if kdd=n - f.m. is unrestricted. |
fullmu |
Integer flag. is 1 then all 2n are allocated, otherwise a more compact representation fo rk-interactive fuzzy measures is used. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is k-interactive fuzzy measure standard representation |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env <-fm.Init(4)
fullmu <- 0
step<-0.001
Fn <- NULL
fuzzymeasures <- fm.generate_fm_kinteractivedualconvex(1, 4, 2, 1000,
step, Fn, env)
fm.ConvertCoMob2Kinter(fuzzymeasures$V, 2, fullmu, env )
Entropy of fuzzy measure
Description
Calculates entropy value of the Choquet integral for the fuzzy measure v in general representation
Usage
fm.EntropyChoquet(v,env)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The ouput is the entropy value of the Choquet integral for the fuzzy measure. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.EntropyChoquet(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1))
Entropy Choquet computation function in Mobius representation
Description
Calculates entropy value of the Choquet integral for the fuzzy measure v in Mobius representation
Usage
fm.EntropyChoquetMob(Mob,env)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The ouput is entropy value of the Choquet integral for the fuzzy measure. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.EntropyChoquetMob(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),env)
FreeSparseFM function
Description
Frees the memory previously allocated in env.
Usage
fm.Free(env)
Arguments
env |
Structure required for auxiliary data. It is obtained from fm.Init(n). |
Value
output |
Frees the memory previously allocated in envsp. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n<-3
env <- fm.Init(n)
env<-fm.Free(env)
env
FreeSparseFM function
Description
Frees the memory previously allocated in envsp.
Usage
fm.FreeSparseFM(envsp)
Arguments
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
Frees the memory previously allocated in envsp. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.FreeSparseFM(envsp)
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
envsp <- fm.FreeSparseFM(envsp)
envsp
Fuzzy Measure Fitting function.
Description
Estimate values of the fuzzy measures from empirical data. The result is an array containing the values of a standard fuzzy measure in binary ordering. kadd defines the complexity of fuzzy measure. If kadd is not provided, its default value is equal to the number of inputs.
Usage
fm.FuzzyMeasureFitLP(data, env=NULL, kadd="NA",
options=0, indexlow=(NULL), indexhigh=(NULL) , option1=0, orness=(NULL))
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector contains utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria,the column n + 1 store the observed aggregating value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. kadd is k in k-additive f-measure, 1 < kadd < n+1; if kdd=n - f.m. is unrestricted |
options |
Options default value is 0. 1 - lower bounds on Shapley values supplied in indexlow, 2 - upper bounds on Shapley values supplied in indexhigh, 3 - lower and upper bounds on Shapley values supplied in indexlow and indexhigh, 4 - lower bounds on all interaction indices supplied in indexlow, 5 - upper bounds on all interaction indices supplied in indexhigh, 6 - lower and upper bounds on all interaction indices supplied inindexlow and indexhigh. All these value will be treated as additional constraints in the LP. |
indexlow |
Array of size n (options =1,2,3) or m (options=4,5,6) containing the lower bounds on the Shapley values or interaction indices |
indexhigh |
Array of size n (options =1,2,3) or m (options=4,5,6) containing the upper bounds on the Shapley values or interaction indices |
option1 |
If the value is 1, the interval of orness values will be fitted (and the desired low and high orness values should be provided). If 0, no additional orness constraints. |
orness |
Array of size 2, for example c(0.1,1) |
Value
output |
The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering. |
Note
The fit might not be perfect, and not all the constraints can be fully met.
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
env<-fm.Init(3)
fm.FuzzyMeasureFitLP(d,env)
indexlow=c(0.1,0.1,0.2);
indexhigh=c(0.9,0.9,0.5);
fm.FuzzyMeasureFitLP(d,env, kadd=2, indexlow, indexhigh,
options=3, option1=1, orness=c(0.1,0.7))
Mobius Fuzzy Measure Fitting function, R wrapper for FuzzyMeasureFitLP() in fuzzymeasurefit.cpp
Description
Estimate values of the Mobius fuzzy measures from empirical data. The result is an array containing the values of the fuzzy measure in Mobius, ordered according to set cardinalities. kadd defines the complexity of fuzzy measure. if kadd is not provided, its default value is equal to the number of inputs.
Usage
fm.FuzzyMeasureFitLPMob(data, env=NULL, kadd="NA",
options=0, indexlow=(NULL), indexhigh=(NULL) , option1=0, orness=(NULL))
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector contains utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 store the observed aggregating value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. kadd is k in k-additive f-measure, 1 < kadd < n+1; if kdd=n - f.m. is unrestricted |
options |
Options default value is 0. 1 - lower bounds on Shapley values supplied in indexlow, 2 - upper bounds on Shapley values supplied in indexhigh, 3 - lower and upper bounds on Shapley values supplied in indexlow and indexhigh, 4 - lower bounds on all interaction indices supplied in indexlow, 5 - upper bounds on all interaction indices supplied in indexhigh, 6 - lower and upper bounds on all interaction indices supplied inindexlow and indexhigh. All these value will be treated as additional constraints in the LP. |
indexlow |
Array of size n (options =1,2,3) or m (options=4,5,6) containing the lower bounds on the Shapley values or interaction indices |
indexhigh |
Array of size n (options =1,2,3) or m (options=4,5,6) containing the upper bounds on the Shapley values or interaction indices |
option1 |
If the value is 1, the interval of orness values will be fitted (and the desired low and high orness values should be provided). If 0, no additional orness constraints. |
orness |
Array of size 2, for example c(0.1,1) |
Value
output |
The output is an array of size 2^n containing estimated Mobius fuzzy measure in binary ordering. |
Note
The fit might not be perfect, and not all the constraints can be fully met.
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
env<-fm.Init(3)
fm.FuzzyMeasureFitLPMob(d,env)
indexlow=c(0.1,0.1,0.2);
indexhigh=c(0.9,0.9,0.5);
fm.FuzzyMeasureFitLPMob(d,env, kadd=2, indexlow, indexhigh,
options=3, option1=1, orness=c(0.1,0.7))
Initialisation function
Description
This function initialises the internal structures which makes computations faster. The structures are saved in the output environment variable, which should be subsequently passed to other functions. Several environment variables (for different dimensions) can be initialised at the same time.
Usage
fm.Init(n1)
Arguments
n1 |
The number of variables. |
Value
output |
The ouput is the enviromnet variable containing the internal structures. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
Interaction Index computation function
Description
Calculates all the interaction indices of input criteria for standard fuzzy measure.
Usage
fm.Interaction(v,env)
Arguments
v |
Fuzzy measure value in standard representation |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is a matrix, whose first column stores the interaction index values, and the second column stores the indices of criteria in coalitions. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.Interaction(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
Banzhaf Interaction Index computation function
Description
Calculates all the Banzhaf Interaction indices of input criteria for a standard fuzzy measure.
Usage
fm.InteractionB(v,env)
Arguments
v |
Fuzzy measure value in standard representation |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is a matrix, whose first column stores the Banzhaf Interaction index values, and the second column stores the indices of criteria in coalitions. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.InteractionB(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
Banzhaf InteractionB Index computation function in Mobius representation
Description
Calculates all the Banzhaf InteractionB indices of input criteria for a Mobius fuzzy measure.
Usage
fm.InteractionBMob(Mob,env)
Arguments
Mob |
Fuzzy measure value in Mobius representation |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is a matrix, whose first column stores the Banzhaf Interaction index values, and the second column stores the indices of criteria in coalitions. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.InteractionBMob(c( 0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
Interaction Index computation function for Mobius fuzzy measure
Description
Calculates all the interaction indices of input criteria for a Mobius fuzzy measure.
Usage
fm.InteractionMob(Mob,env )
Arguments
Mob |
Fuzzy measure value in Mobius representation |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is a matrix, whose first column stores the interaction index values, and the second column stores the indices of criteria in coalitions. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.InteractionMob(c( 0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
IsMeasureAdditive function
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.
Usage
fm.IsMeasureAdditive(v,env)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureAdditive(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
IsMeasureAdditive function in Mobius representation
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in Mobius representation.
Usage
fm.IsMeasureAdditiveMob(Mob,env)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureAdditiveMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
IsMeasureBalanced function
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.
Usage
fm.IsMeasureBalanced(v,env)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureBalanced(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
IsMeasureBalanced function in Mobius representation
Description
Returns 1 if yes, 0 if no; Mob is a fuzzy measure in Mobius representation.
Usage
fm.IsMeasureBalancedMob(Mob,env)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from emperical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureBalancedMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
IsMeasureKmaxitive function
Description
Returns k; v is a fuzzy measure in standard representation.
Usage
fm.IsMeasureKmaxitive(v,env=NULL)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is k. If k=n then not k-maxitive |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureKmaxitive(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
IsMeasureKmaxitive function in Mobius representation
Description
Returns k; mob is a fuzzy measure in Mobius representation.
Usage
fm.IsMeasureKmaxitiveMob(Mob,env=NULL)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from emperical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is k. If k=n then not k-maxitive |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureKmaxitiveMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
IsMeasureSelfdual function
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.
Usage
fm.IsMeasureSelfdual(v,env)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSelfdual(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
IsMeasureSelfdual function in Mobius representation
Description
Returns 1 if yes, 0 if no; Mob is a fuzzy measure in Mobius representation.
Usage
fm.IsMeasureSelfdualMob(Mob,env)
Arguments
Mob |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSelfdualMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
IsMeasureSub additive function
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.
Usage
fm.IsMeasureSubadditive(v,env)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSubadditive(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
IsMeasureSub additive function in Mobius representation
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in Mobius representation.
Usage
fm.IsMeasureSubadditiveMob(Mob,env)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSubadditiveMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
IsMeasureSub modular function
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.
Usage
fm.IsMeasureSubmodular(v,env=NULL)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSubmodular(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
IsMeasureSubmodular function in Mobius representation
Description
Returns 1 if yes, 0 if no; Mob is a fuzzy measure in Mobius representation.
Usage
fm.IsMeasureSubmodularMob(Mob,env=NULL)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSubmodularMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
IsMeasureSuperadditive function
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.
Usage
fm.IsMeasureSuperadditive(v,env=NULL)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSuperadditive(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
IsMeasureSuperadditive function in Mobius representation
Description
Returns 1 if yes, 0 if no; Mob is a fuzzy measure in Mobius representation.
Usage
fm.IsMeasureSuperadditiveMob(Mob,env=NULL)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSuperadditiveMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
IsMeasureSupermodular function
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.
Usage
fm.IsMeasureSupermodular(v,env=NULL)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSupermodular(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
IsMeasureSupermodular function in Mobius representation
Description
Returns 1 if yes, 0 if no; Mob is a fuzzy measure in Mobius representation.
Usage
fm.IsMeasureSupermodularMob(Mob,env=NULL)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSupermodularMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
IsMeasureSymmetric function
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in standard representation.
Usage
fm.IsMeasureSymmetric(v,env=NULL)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSymmetric(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
IsMeasureSymmetric function in Mobius representation
Description
Returns 1 if yes, 0 if no; v is a fuzzy measure in Mobius representation.
Usage
fm.IsMeasureSymmetricMob(Mob,env=NULL)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 if yes, 0 if no. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.IsMeasureSymmetricMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
Mobius transform function
Description
Calculates Mobius representation of general fuzzy measure, the input and output is an array of size 2^n=m in binary ordering.
Usage
fm.Mobius(v,env=NULL)
Arguments
v |
Fuzzy measure value in standard representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is the fuzzy measure in Mobius representation. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.Mobius(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
Nonadditivity index computation function
Description
Calculate the nonadditivity indices of input criteria from general fuzzy measure.
Usage
fm.NonadditivityIndex(v,env=NULL)
Arguments
v |
Fuzzy measure in general representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size 2^n, which contain nonadditivity indices of input criteria coalitions. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.NonadditivityIndex(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
Nonadditivity index computation function in Mobius representation
Description
Calculate the nonadditivity indices of input criteria from general fuzzy measure in Mobius representation.
Usage
fm.NonadditivityIndexMob(Mob,env=NULL)
Arguments
Mob |
Fuzzy measure in Mobius representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size 2^n, which contain nonadditivity indices of input criteria coalitions. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
NonadditivityIndex <- fm.NonadditivityIndexMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
Nonmodularity index computation function
Description
Calculate all the m = 2^n nonmodularity indices of fuzzy measure v given in standard representation
Usage
fm.NonmodularityIndex(v, env = NULL)
Arguments
v |
Fuzzy measure in general representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size m |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
Nonmodularityindex <- fm.NonmodularityIndex(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),env)
NonmodularityIndexKinteractive computation function
Description
Calculate all the m = 2^n nonmodularity indices of k-interactive fuzzy measure v given in standard representation (in cardinality ordering)
Usage
fm.NonmodularityIndexKinteractive(v, env = NULL, kadd = "NA")
Arguments
v |
Fuzzy measure in general representation. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted |
Value
output |
The output is an array of size m. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.NonmodularityIndexKinteractive(c(0,0.3,0.5,0.6,0.4,0.8,0.7,1),env,2)
Nonmodularityindex computation function in Mobius representation
Description
Calculates all the nonmodularity indices of fuzzy measure in Mobius representation representation
Usage
fm.NonmodularityIndexMob(Mob, env = NULL)
Arguments
Mob |
Fuzzy measure in Mobius representation of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size m |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.NonmodularityIndexMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
Function for calculating all Nonmodularity indices of k-additive in Mobius representation
Description
Calculate all the m = 2^n nonmodularity indices of k-additive in Mobius representation(in cardinality ordering)
Usage
fm.NonmodularityIndexMobkadditive(Mob, env = NULL, kadd = "NA")
Arguments
Mob |
Fuzzy measure in Mobius representation of size m=2^n. Its values can be provided by users, or by estimating from empirical data |
env |
Environment variable obtained from fm.Init(n). |
kadd |
kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted. |
Value
output |
The output is an array of size m. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.NonmodularityIndexMobkadditive(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),env,2)
Nonmodularity index computation function in sparse representation
Description
Calculate all 2^n nonmodularity indices using Mobius transform of a fuzzy measure of lenght 2^n=m, using sparse representation
Usage
fm.NonmodularityIndex_sparse( n, envsp=NULL)
Arguments
n |
Number of inputs |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is all 2^n nonmodularity indice. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp);
fm.NonmodularityIndex_sparse(3,envsp)
envsp <- fm.FreeSparseFM(envsp)
OrnessChoquet function
Description
Calculate Orness value of the Choquet integral of the fuzzy measure, where v is a standard representation.
Usage
fm.OrnessChoquet(v,env=NULL)
Arguments
v |
Standard fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is the Orness the Choquet integral for the fuzzy measure. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.OrnessChoquet(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
OrnessChoquet function in Mobius representation
Description
Calculate Orness value of the Choquet integral of the fuzzy measure, where Mob is the Mobius representation.
Usage
fm.OrnessChoquetMob(Mob,env=NULL)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is the Orness the Choquet integral for the fuzzy measure. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.OrnessChoquetMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
PrepareSparseFM preparation function
Description
This function initialises Sparse representation structure. It is used to allocate storage and later populate these values
Usage
fm.PrepareSparseFM(n, tups, tupsidx)
Arguments
n |
Number of inputs |
tups |
Tuples to be added (can be null vector) |
tupsidx |
Cardinalities and indices (1-based) of the elements of tuples (can be null vector) |
Value
output |
The output allocate storage and later populate these values. envsp |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.FreeSparseFM(envsp)
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
envsp
envsp <- fm.FreeSparseFM(envsp)
Shapley value computation function
Description
Calculates the Shapley values of input criteria from general fuzzy measure,
Usage
fm.Shapley(v,env=NULL)
Arguments
v |
Fuzzy measure in general representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size n, which contain Shapley values of input criteria. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.Shapley(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
Function for calculating Shapley values of 2-additive fuzzy measure in Mobius representation
Description
Calculate the Shapley values of a 2-additive fuzzy measure for n inputs given in Mobius representation. The results are in arrays.
Usage
fm.Shapley2addMob(n, Mob)
Arguments
n |
Number of inputs |
Mob |
Fuzzy measure value in Mobius representation |
Value
output |
The output is an array of size n, which contain Shapley indices of input criteria. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
Shapley <- fm.Shapley2addMob(3, c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1))
Shapley value computation function in Mobius representation
Description
Calculate the Shapley indices of input criteria from general fuzzy measure in Mobius representation.
Usage
fm.ShapleyMob(Mob,env=NULL)
Arguments
Mob |
Fuzzy measure in Mobius representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size n, which contain Shapley values of input criteria. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.ShapleyMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
Shapley values computation function in sparse representation
Description
Calculate Shapley values vectors of size n of a sparse fuzzy measure
Usage
fm.ShapleyMob_sparse(n, envsp=NULL)
Arguments
n |
Size of values vectors |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is Shapley values vectors of size n of a sparse fuzzy measure. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
fm.ShapleyMob_sparse(3, envsp)
envsp <- fm.FreeSparseFM(envsp)
Show Coalitions function
Description
Return the decimal expression for the subsets A. In binary and in cardinality ordering respectively.
Usage
fm.ShowCoalitions(env = NULL)
Arguments
env |
Environment variable obtained from fm.Init(n). |
Value
output |
is the array of integers which show the decimal expressions for all 2^n coalitions. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
ShowCoalitions <- fm.ShowCoalitions(env)
ShowCoalitions
Show CoalitionsCard function
Description
Return the decimal expression for the subsets A. In binary and in cardinality ordering respectively.
Usage
fm.ShowCoalitionsCard(env = NULL)
Arguments
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output the decimal expression for the subsets A. It is the array of integers containing the decimal expressions for all 2^n coalitions. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
CoalitionsCard <- fm.ShowCoalitionsCard(env)
CoalitionsCard
Sugeno computation function
Description
Calculate the value of a Sugeno integral of input x, with fuzzy measure in standard representation
Usage
fm.Sugeno(x, v,env=NULL)
Arguments
x |
Input vector of size n, containing utility value of input criteria. x is in [0,1]. |
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is a single value of the computed Sugeno integral. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.Sugeno(c(0.6, 0.3, 0.8), c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
Sugeno function in Mobius representation
Description
Calculate the value of a Sugeno integral of input x, with fuzzy measure in mobius representation
Usage
fm.SugenoMob(x, Mob,env=NULL)
Arguments
x |
Input vector of size n, containing utility value of input criteria. x is in [0,1]. |
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is a single value of the computed Sugeno integral. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.SugenoMob(c(0.6, 0.3, 0.8), c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
Zeta transform function
Description
Calculate the general fuzzy measure from Mobius representation. The input and output is an array of size 2^n=m in binary ordering. This is the inverse of the Mobius function.
Usage
fm.Zeta(Mob,env)
Arguments
Mob |
Fuzzy measure value in Mobius representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is the fuzzy measure in general representation. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.Zeta(c(0.0,0.3,0.5,-0.2,0.4,0.1,-0.2,0.1),env)
Function for adding a pair to the sparse fuzzy measure
Description
This is used for populating capacities which Add a pair v_ij to the structure, their Indices are 1-based.
Usage
fm.add_pair_sparse( i, j, v, envsp = NULL)
Arguments
i |
One of the indices which are 1-based |
j |
One of the indices which are 1-based |
v |
The value to be added. |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n) |
Value
output |
The output is an added pair v_ij to the structure. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <-fm.add_pair_sparse(1,2, 0.4, envsp)
envsp <-fm.add_pair_sparse(1,3, 0.3, envsp)
envsp
envsp <- fm.FreeSparseFM(envsp)
Function for adding singletons to the sparse fuzzy measure
Description
This is used for adding singletons to the structure.
Usage
fm.add_singletons_sparse(v, envsp=NULL)
Arguments
v |
The vector of singletons of size n. |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is added singletons to the structure. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.add_singletons_sparse(c(0, 0.3, 0.5),envsp)
Function for adding singletons to the sparse fuzzy measure
Description
This is used for populating capacities which Add a tuple of size tupsize to the structure whose Indices are 1-based in tuple.
For populating capacities, adds a whose 1-based indices are in tuple
Usage
fm.add_tuple_sparse( tuple, v, envsp=NULL)
Arguments
tuple |
Collection of objects. It is a list of cardinalities of the nonzero tuples (cardinality, tuple composition) |
v |
The value of the tuple to be added |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is adding a tuple of size tupsize |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 4
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.2,envsp)
envsp <- fm.add_tuple_sparse(c(1,3,4),0.3,envsp)
Function for checking supermodularity of the set function v in Mobius representation
Description
Checks supermodularity of the set function v in Mobius representation using stan- dard check.
Usage
fm.check_convexity_monotonicity_mob(v, len, env=NULL)
Arguments
v |
matrix v stores fuzzy measurements consecutively in cardinal order v. |
len |
this is the length of array Mob (this array is usually smaller than 2^n), and is computed by fm.fm_arraysize_kadd(N, Kadd). |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 or 0 to check for monotonicity. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
step <- 0.001
Fn <- NULL
Option<- 3
fuzzymeasures <- fm.generate_fm_randomwalk(1, 3, 2, 1000, Option, step, Fn, env)
len <- fuzzymeasures$length
check <- fm.check_convexity_monotonicity_mob(fuzzymeasures$V, len, env)
Function for checking monotonicity of the set function v
Description
Checks monotonicity of the set function v in standard representation using insert sort.
Usage
fm.check_monotonicity(v, env=NULL)
Arguments
v |
matrix v stores fuzzy measurements consecutively in cardinal order. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 or 0 to check for monotonicity. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
v <- fm.generate_fm_sorting(1, 1000, 0, env)
monotonicity <- fm.check_monotonicity(v, env)
Function for checking monotonicity of the set function v in Mobius representation.
Description
Checks monotonicity of the set function v in Mobius representation using standard check.
Usage
fm.check_monotonicity_mob(v, len, env=NULL)
Arguments
v |
matrix v stores fuzzy measurements consecutively in cardinal order. |
len |
this is the length of array Mob (this array is usually smaller than 2^n), and is computed by fm_arraysize_kadd(N, Kadd) |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is 1 or 0 to check for monotonicity |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
step <- 100
Fn <- NULL
Option<- 3
fuzzymeasures <- fm.generate_fm_randomwalk(1, 3, 2, 1000, Option, step, Fn, env)
len <- fuzzymeasures$length
check <- fm.check_monotonicity_mob(fuzzymeasures$V, len, env)
check
Function for checking the monotonicity of the 2-additive set function v in Mobius representation.
Description
Check the monotonicity of the 2-additive set function v in Mobius representation using fast check.
Usage
fm.check_monotonicity_mob_2additive(v, n, temp=NULL)
Arguments
v |
Random 2-additive fuzzy measure in Mobius representation. |
n |
Number of inputs |
temp |
Auxiliary array of length n^2 (e.g: array(0.0,n*n)). It may or may not be specified (if speed matters, then preallocate it). |
Value
output |
The output is 1 or 0 to check for monotonicity. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
v <- fm.generate_fm_2additive(1, 10)
n <- 10
v$len
v$V
check <- fm.check_monotonicity_mob_2additive(v$V, n)
check
temp <- array(0.0,10*10);
check <- fm.check_monotonicity_mob_2additive(v$V, n, temp)
check
Function for checking monotonicity of the set function v
Description
Checks monotonicity of the set function v in standard representation using insert sort.
Usage
fm.check_monotonicity_sort_insert(v, indices, env=NULL)
Arguments
v |
matrix v stores fuzzy measurements consecutively in cardinal order. |
indices |
The indices can be used at subsequent steps of monotonicity verification. This function is called after merge sort, so the indices are already precomputed. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is a list of components (True/False, indices, values). The indices and values can be used at subsequent steps of monotonicity verification (e.g., values slightly perturbed) |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
v <- fm.generate_fm_sorting(1, 1000, 0, env)
out <- fm.check_monotonicity_sort_merge(v, NULL, env)
out$V[1] = out$V[1] *1.1
out<- fm.check_monotonicity_sort_insert(out$V, out$index, env)
out$out
Function for checking monotonicity of the set function v
Description
Checks monotonicity of the set function v in standard representation using merge sort.
Usage
fm.check_monotonicity_sort_merge(v, indices=NULL, env=NULL)
Arguments
v |
matrix v stores fuzzy measurements consecutively in cardinal order. |
indices |
The indices can be used at subsequent steps of monotonicity verification. Initially indices need not be specified |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is a list of components (True/False, indices, values). The indices and values can be used at subsequent steps of monotonicity verification (e.g., values slightly perturbed) |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
v <- fm.generate_fm_sorting(1, 1000, 0, env)
v
measure <- fm.check_monotonicity_sort_merge(v,NULL, env)
print(measure$out)
measure$V[1] = measure$V[1] *1.1
measure <- fm.check_monotonicity_sort_merge(measure$V, measure$index, env)
Function for calculating dual of k-additive fuzzy measure in Mobius representation
Description
Calculates the dual of a k-additive fuzzy measures for n inputs.
Usage
fm.dualMobKadd(Mob, env = NULL, kadd = "NA")
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from empirical data. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. It is defined as an optional argument |
Value
output |
The output is the dual of a k-additive fuzzy measures for n inputs |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
dualMob_Kadd <- fm.dualMobKadd(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1), env,2)
Function for calculating dual of fuzzy measure
Description
Calculates the dual of fuzzy measure v, returns it as value of the function (array of size m).
Usage
fm.dualm(v, env=NULL)
Arguments
v |
General fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from emperical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The ouput is an array of size m with the dual of fuzzy measure v. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
w <- fm.dualm(c(0, 0.3, 0.5, 0.6, 0.4, 0.8, 0.7, 1),env)
Dualm computation function in Mobius representation
Description
Calculates the dual of fuzzy measure v, returns it as value of the function (array of size m).
Usage
fm.dualmMob(Mob,env=NULL)
Arguments
Mob |
Mobius fuzzy measure of size m=2^n. Its values can be provided by users, or by estimating from emperical data. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The ouput is an array of size m with the dual of fuzzy measure. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
w <- fm.dualmMob(c(0.0, 0.3, 0.5, -0.2, 0.4, 0.1, -0.2, 0.1),env)
Basic error check
Description
This function checks that the enviromnemt variable is internally consistent.
Usage
fm.errorcheck(env)
Arguments
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The ouput is TRUE or FALSE. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fm.errorcheck(env)
Function for exporting full representation of 2-additive capacity
Description
From sparse to full representation of 2-additive capacity (singletons and pairs, augmented with 0s).
Usage
fm.expand_2add_full(n, envsp=NULL)
Arguments
n |
Number of inputs |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is a sparse to full representation of 2-additive capacity (singletons and pairs, augmented with 0s) |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp);
cap2add <- fm.expand_2add_full(n,envsp)
cap2add
envsp <- fm.FreeSparseFM(envsp)
Function for exporting full capacity from sparse representation
Description
Exports from sparse to full capacity.
Usage
fm.expand_sparse_full(n, envsp=NULL)
Arguments
n |
Number of inputs. |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
Exports from sparse to full capacity. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n<-3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_pair_sparse(1,2,0.4,envsp);
cap <- fm.expand_sparse_full(n, envsp)
cap
envsp <- fm.FreeSparseFM(envsp)
Function for exporting maximal chains
Description
Returns in mc the arrays of maximal chains (there are n! such arrays) of a fuzzy measure v. Each maximal chain corresponds to the coefficients of a linea. function on the respective simplex
Usage
fm.export_maximal_chains(v, env = NULL)
Arguments
v |
Fuzzy measure in general representation. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is mc the arrays of maximal chains |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
exportmaximalchains <- fm.export_maximal_chains(
c(0, 0.00224, 0.0649, 0.510, 0.00965, 0.374,0.154, 1),env)
Fuzzy Measure Fitting function
Description
Estimate values of the fuzzy measures from empirical data.
Usage
fm.fitting(data, env=NULL, kadd="NA")
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in,y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
The value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. |
Value
output |
The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fitting(d,env)
Fuzzy Measure Fitting function
Description
Estimate values of the fuzzy measures from empirical data tailored 2-additive standard fuzzy measure.
Usage
fm.fitting2additive(data, options=0, indexlow, indexhigh , option1=0, orness)
Arguments
data |
is the empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector contains utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 store the observed aggregating value y. |
options |
options (default value is 0) 1 - lower bounds on Shapley values supplied in indexlow, 2 - upper bounds on Shapley values supplied in indexhigh, 3 - lower and upper bounds on Shapley values supplied in indexlow and indexhigh, 4 - lower bounds on all interaction indices supplied in indexlow, 5 - upper bounds on all interaction indices supplied in indexhigh, 6 - lower and upper bounds on all interaction indices supplied inindexlow and indexhigh. All these value will be treated as additional constraints in the LP. |
indexlow |
optional array of size n (options =1,2,3) or m (options=4,5,6) containing the lower bounds on the Shapley values or interaction indices |
indexhigh |
optional array of size n (options =1,2,3) or m (options=4,5,6) containing the upper bounds on the Shapley values or interaction indices |
option1 |
if the value is 1, the interval of orness values will be fitted (and the desired low and high orness values should be provided). If 0, no additional orness constraints. |
orness |
optional array of size 2, for example c(0.1,1) |
Value
output |
The output is an array containing the values of a standard fuzzy measure in binary ordering. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
indexlow=c(0.1,0.1,0.2);
indexhigh=c(0.9,0.9,0.5);
fm.fitting2additive(d, options=3, indexlow, indexhigh, option1=0, orness=c(0.1,0.7))
Fuzzy Measure Fitting function
Description
Estimate values of the k-interacive fuzzy measures from empirical data.
Usage
fm.fittingKinteractive(data, env=NULL, kadd="NA", K="NA")
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2. |
K |
Value of FM value for sets of cardinality kadd+1, its default value is K = 0.5. |
Value
output |
The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingKinteractive(d,env,2,0.8)
Fuzzy Measure Fitting function of the k-interactive
Description
Estimate values of the k-interacive fuzzy measures from empirical data.
Usage
fm.fittingKinteractiveAuto(data, env=NULL, kadd="NA")
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2. The constant K the value of FM value for sets of cardinality kadd+1 is computed from data. |
Value
output |
The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingKinteractiveAuto(d,env,2)
Fuzzy Measure Fitting function of the k-interactive using maximal chains method
Description
Estimate values of the k-interacive fuzzy measures from empirical data using maximal chains method.
Usage
fm.fittingKinteractiveMC(data, env=NULL, kadd="NA", K="NA")
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x(i2,...,x_in), y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2. |
K |
The constant K the value of FM value for sets of cardinality kadd+1 is computed from data, default 0.5. |
Value
output |
The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingKinteractiveMC(d,env,2,0.6)
Fuzzy Measure Fitting function of the k-interactive using marginal representation
Description
Estimate values of the k-interacive fuzzy measures from empirical data using marginal representation.
Usage
fm.fittingKinteractiveMarginal(data, env=NULL, kadd="NA", K="NA", submod ="NA")
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2. |
K |
The constant K, the value of FM value for sets of cardinality kadd+1 is computed from data, default 0.5. |
submod |
-1 indicates supermodular FM is needed, +1 indicates submodular, 0 otherwise. Should be consistent with K and n, see manual |
Value
output |
The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingKinteractiveMarginal(d,env,2,0.6, 0)
Fuzzy Measure Fitting function of the k-interactive using marginal representation and maximal chains method
Description
Estimate values of the k-interacive fuzzy measures from empirical data using marginal representation and maximal chains method.
Usage
fm.fittingKinteractiveMarginalMC(data, env=NULL, kadd="NA", K="NA", submod ="NA")
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-interactivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = 2. |
K |
The constant K the value of FM value for sets of cardinality kadd+1 is computed from data, default 0.5. |
submod |
-1 indicates supermodular FM is needed, +1 indicates submodular, 0 otherwise. Should be consistent with K and n, see manual |
Value
output |
The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingKinteractiveMarginalMC(d,env,2,0.6,0)
Fuzzy Measure Fitting function of the k-maxitive
Description
Estimate values of the k-maxitive fuzzy measures from empirical data.
Usage
fm.fittingKmaxitive(data, env=NULL, kadd="NA")
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-maxitivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. |
Value
output |
The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingKmaxitive(d,env,2)
Fuzzy Measure Fitting function of the k-tolerant
Description
Estimate values of the k-tolerant fuzzy measures from empirical data.
Usage
fm.fittingKtolerant(data, env=NULL, kadd="NA")
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
Value of k-tolerance, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its default value is kadd = n. |
Value
output |
The output is an array of size 2^n containing estimated standard fuzzy measure in binary ordering. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingKtolerant(d,env,2)
Mobius Fuzzy Measure Fitting function
Description
Estimate values of the Mobius fuzzy measures from empirical data.
Usage
fm.fittingMob(data, env=NULL ,kadd="NA")
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 store the observed aggregating value y. |
env |
Environment variable obtained from fm.Init(n). |
kadd |
value of k-additivity, which is used for reducing the complexity of fuzzy measures. kadd is defined as an optional argument, its defaultvalue is kadd = n. |
Value
output |
The output is an array of size 2^n containing estimated Mobius fuzzy measure in binary ordering. |
Note
The fit might not be perfect, and not all the constraints can be fully met.
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
env<-fm.Init(3)
fm.fittingMob(d,env)
Symmetric Fuzzy Measure Fitting function
Description
Estimate values of the symmetric fuzzy measures from empirical data. The resulting Choquet integral is the OWA function.
Usage
fm.fittingOWA(data, env=NULL)
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in, y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size n containing estimated OWA coefficients. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingOWA(d,env)
Additive Fuzzy Measure Fitting function
Description
Estimate values of an additive fuzzy measure from empirical data. In this case the Choquet integral is the weighted arithmetic mean WAM.
Usage
fm.fittingWAM(data, env=NULL)
Arguments
data |
Empirical data set in pairs (x_1,y_1),(x_2,y_2),...,(x_d,y_d) where x_i in [0,1]^n is a vector containing utility values of n input criteria x_i1,x_i2,...,x_in,y_i in [0,1] is a single aggregated value given by decision makers. The data is stored as a matrix of M by n+1 elements, where M is the number of data instances, and n is the number of input criteria, the column n + 1 stores the observed aggregated value y. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is an array of size n containing estimated weighting vector of WAM. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
d <- matrix( c( 0.00125122, 0.563568, 0.193298, 0.164338,
0.808716, 0.584991, 0.479858, 0.544309,
0.350281, 0.895935, 0.822815, 0.625868,
0.746582, 0.174103, 0.858917, 0.480347,
0.71048, 0.513519, 0.303986, 0.387631,
0.0149841, 0.0914001, 0.364441, 0.134229,
0.147308, 0.165894, 0.988495, 0.388044,
0.445679, 0.11908, 0.00466919, 0.0897714,
0.00891113, 0.377869, 0.531647, 0.258585,
0.571167, 0.601746, 0.607147, 0.589803,
0.166229, 0.663025, 0.450775, 0.357412,
0.352112, 0.0570374, 0.607666, 0.270228,
0.783295, 0.802582, 0.519867, 0.583348,
0.301941, 0.875946, 0.726654, 0.562174,
0.955872, 0.92569, 0.539337, 0.633631,
0.142334, 0.462067, 0.235321, 0.228419,
0.862213, 0.209595, 0.779633, 0.498077,
0.843628, 0.996765, 0.999664, 0.930197,
0.611481, 0.92426, 0.266205, 0.334666,
0.297272, 0.840118, 0.0237427, 0.168081),
nrow=20,
ncol=4,byrow=TRUE);
fm.fittingWAM(d,env)
Function for returning the length of the array
Description
Returns the length of the array of values of k-interactive fuzzy measures. Useful for reserving memory.
Usage
fm.fm_arraysize(env = NULL, kint = "NA")
Arguments
env |
Environment variable obtained from fm.Init(n). |
kint |
Interactive fuzzy measure. 0 < kint <= n |
Value
output |
The outputs is the length of the array of values of k-interactive fuzzy measures |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
arraylength <- fm.fm_arraysize(env,1)
Function for generating one antibuoyant random fuzzy measure
Description
Generates one antibuoyant random fuzzy measure in standard representation.
Usage
fm.generate_antibuoyant(env = NULL)
Arguments
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is one antibuoyant random fuzzy measure. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fuzzymeasures <- fm.generate_antibuoyant(env)
fuzzymeasures
Function for random generation of balanced fuzzy measures in standard representation
Description
Generate several balanced random fuzzy measures in standard representation.
Usage
fm.generate_balanced(num, env=NULL)
Arguments
num |
Generates num random fuzzy measures stored in an array v of length num * 2n. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output are several random fuzzy measures containing in an array v of length num * 2n |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fuzzymeasures <- fm.generate_balanced(2, env)
fuzzymeasures
Function for random generation of belief fuzzy measures in standard representation
Description
Generate several random k-additive belief measures in Mobius representation.
Usage
fm.generate_belief(num, kadd, env=NULL)
Arguments
num |
Generates num random belief measures stored in an array Mob of length num * fm_arraysize_kadd(n, kadd). |
kadd |
k-additivity |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output are several random belief measures containing in an array v of length num * fm_a |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(5)
belief <- fm.generate_belief(2, 3, env)
# 2 3-additive measures with n=5
belief
Function for generating 2-additive fuzzy measures in Mobius representation
Description
Generates num random 2-additive fuzzy measures in Mobius representation.
Usage
fm.generate_fm_2additive(num, n)
Arguments
num |
Generates num random fuzzy measures stored consecutively in cardinality ordering in the array v. |
n |
Number of inputs |
Value
output |
The output are random fuzzy measures, it contains singletons and pairs but no emptyset |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
num <- 2
n <- 5
fuzzymeasures <- fm.generate_fm_2additive(num,n)
fuzzymeasures$V
fuzzymeasures$len
Function for generating 2additive concave fuzzy measures.
Description
Generates num 2-additive concave (supermodular) fuzzy measures for n inputs.
Usage
fm.generate_fm_2additive_concave(num, n)
Arguments
num |
Generated num concave random fuzzy measures stored consecutively in cardinality ordering in the array v |
n |
Number of inputs |
Value
output |
The output is the length of the part of the array v allocated for each fuzzy measure, and the array with singletons and pairs in Mobius representation |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
fuzzymeasures <- fm.generate_fm_2additive_concave(10,20)
Function for generating 2-additive convex fuzzy measures
Description
Generates num 2-additive convex (supermodular) fuzzy measures for n inputs.
Usage
fm.generate_fm_2additive_convex(num, n)
Arguments
num |
Generates num convex random fuzzy measures stored consecutively in cardinality ordering in the array v |
n |
Number of inputs |
Value
output |
The output is the length of the part of the array v allocated for each fuzzy measure, and the array with singletons and pairs in Mobius representation |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
addconvex <- fm.generate_fm_2additive_convex(5,20)
Function for generating 2additive convex numbers in sparse representation
Description
Generates a random 2-additive supermodular fuzzy measure in sparse representation.
Usage
fm.generate_fm_2additive_convex_sparse(n, envsp = NULL)
Arguments
n |
Number of inputs |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output are 2-additive supermodular fuzzy measure in sparse representation |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 5
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.generate_fm_2additive_convex_sparse(n, envsp)
envsp
envsp <- fm.FreeSparseFM(envsp)
Function for generating 2additive convex fuzzy measures with some independent inputs
Description
Generates num 2-additive convex (supermodular) fuzzy measures for n inputs. Some of the interaction indices are set to 0 (independence).
Usage
fm.generate_fm_2additive_convex_withsomeindependent(num, n)
Arguments
num |
Generates num convex random fuzzy measures stored consecutively in cardinality ordering in the array |
n |
Number of inputs |
Value
output |
The output is the length of the part of the array v allocated for each fuzzy measure, and the array with singletons and pairs in Mobius representation |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
addconvex <- fm.generate_fm_2additive_convex_withsomeindependent(5,20)
Function for generating random 2-additive fuzzy measures in Mobius representation by using random walk.
Description
Generate a random 2-additive fuzzy measures in Mobius representation by using random walk.
Usage
fm.generate_fm_2additive_randomwalk2(num, n, markov, option, step, Fn)
Arguments
num |
Generated num random fuzzy measures stored consecutively in cardinality ordering in the array v. |
n |
Number of inputs. |
markov |
Number of Markov steps to take, the randomness increases with that number. |
option |
Not used, reserved for future use. |
step |
The maximum size of random steps (with respect to each value). The actual step is a random value up to Step. |
Fn |
The callback function to verify any additional conditions on generated FM. Provided by the user or NULL. |
Value
output |
The output are random 2-additive fuzzy measure, it contains singletons and pairs but no emptyset. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
num <- 10
n <- 5
fuzzymeasures <- fm.generate_fm_2additive_randomwalk2(num, n, 1000, 0, 0.001, NULL)
Generate kadditive convex sparse fuzzy measures
Description
Generates a random k-additive Belief fuzzy measure in sparse representation
Usage
fm.generate_fm_kadditive_convex_sparse(n, kadd, nonzero, envsp = NULL)
Arguments
n |
Inputs length. (n inputs) |
kadd |
kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted |
nonzero |
Values stored and indexed in the respective arrays which are part of the structure |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is k-additive Belief fuzzy measure in sparse representation |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 5
tups<-vector()
tupsidx<-vector()
envsp <- fm.PrepareSparseFM(n, tups,tupsidx)
envsp <- fm.generate_fm_kadditive_convex_sparse(n,4,10, envsp)
envsp
envsp <- fm.FreeSparseFM(envsp)
Function for generating k-interactive dual concave fuzzy measures in Mobius representation
Description
Generates num k-interactive dual concave fuzzy measures in Mobius representation using random walk of length markov of stepsize step
Usage
fm.generate_fm_kinteractivedualconcave(num, n, kadd, markov, step, Fn, env)
Arguments
num |
Generated num random fuzzy measures stored consecutively in cardinality ordering in the array v. |
n |
Number of inputs. |
kadd |
kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted. |
markov |
Number of Markov steps to take, the randomness increases with that number. |
step |
The maximum size of random steps (with respect to each value). The actual step is a random value up to Step. |
Fn |
The callback function to verify any additional conditions on generated FM. Provided by the user. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output are k-interactive dual concave fuzzy measures in Mobius representation |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(4)
step <- 0.001
Fn <- NULL
fuzzymeasures <- fm.generate_fm_kinteractivedualconcave(10, 4, 2, 1000, step, Fn, env)
fuzzymeasures
Function for generating several k-interactive dual convex fuzzy measures in Mobius representation
Description
Generates num k-interactive dual convex fuzzy measures in Mobius representation using random walk of length markov of stepsize step.
Usage
fm.generate_fm_kinteractivedualconvex(num, n, kadd, markov, step, Fn, env)
Arguments
num |
Generated num random fuzzy measures stored consecutively in cardinality ordering in the array v. |
n |
Number of inputs. |
kadd |
kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted. |
markov |
Number of Markov steps to take, the randomness increases with that number. |
step |
The maximum size of random steps (with respect to each value). The actual step is a random value up to Step. |
Fn |
The callback function to verify any additional conditions on generated FM. Provided by the user. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output are several k-interactive dual convex fuzzy measures in Mobius representation |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(4)
step <- 0.0001
Fn <- NULL
fuzzymeasures <- fm.generate_fm_kinteractivedualconvex(10, 4, 2, 1000, step, Fn, env)
fuzzymeasures
env<-fm.Free(env)
Generate randomly fuzzy measures
Description
Generate several random fuzzy measures (num is their number) stored in cardinality ordering in the array v using minimals_plus method.
Usage
fm.generate_fm_minplus(num, kint, markov, option, K, env = NULL)
Arguments
num |
Generated num random fuzzy measures stored consecutively in cardinality ordering in the array |
kint |
Interactive fuzzy measure. 0 < kint <= n |
markov |
Number of Markov steps to take, the randomness increases with that number |
option |
Option = 1 employs internal rejection method to improve uniformity, but for n > 5 is is not essential |
K |
K is the constant in k-interactive fuzzy measures |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is generate several random fuzzy measures |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fuzzymeasures <- fm.generate_fm_minplus(10,3,1000,0,0.7, env)
fuzzymeasures
Function for generating several k-additive fuzzy measure
Description
Generates num k-additive fuzzy measures in the standard or Mobius representation using random walk of length markov of stepsize step.
Usage
fm.generate_fm_randomwalk(num, n, kadd, markov, option, step, Fn, env)
Arguments
num |
Generated num random fuzzy measures stored consecutively in standard or cardinality ordering in the array v. |
n |
Number of inputs |
kadd |
kadd is the value of k-additivity, which is used for reducing the complexity of fuzzy measures. default value is kadd = n. 1 < kadd < n+1; if kdd=n - f.m. is unrestricted. The parameter kadd only matters for options 3 and 5 |
markov |
Number of Markov steps to take, the randomness increases with that number. |
option |
Option = 0 - normal, 1 convex (supermodular), 2 antibuoyant, 3 kadditive , 4 belief measure, 5 kadditive convex. The measure generated is in standard representation fo all options except 3,5. The parameter kadd only matters for options 3 and 5. In that case the measure is in more compact Mobius representation. |
step |
The maximum size of random steps (with respect to each value). The actual step is a random value up to Step. |
Fn |
The callback function to verify any additional conditions on generated FM. Provided by the user. if not NULL, is a callback function to perform additional check at every Markov step of the current set function, i.e., any extra conditions |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is named list with the first element v being the fuzzy measure and the second being the length of the array containing it |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
Fn <- function(n,v){
out <- 0.0
for(i in 1:n) out<- out+v[i];
if(out>1) {
return(0)
} else
return(1)
}
env<-fm.Init(3)
step <- 0.0010
Option <- 3
n <- 3
fuzzymeasures <- fm.generate_fm_randomwalk(2, 3, 2, 1000, Option, step, Fn, env)
print(fuzzymeasures)
print(fuzzymeasures$length)
Function for random generation of fuzzy measures in standard representation
Description
Generate several random fuzzy measures in standard representation
Usage
fm.generate_fm_sorting(num, markov, option, env = NULL)
Arguments
num |
Generates num random fuzzy measures stored in an array v of length num * 2n. |
markov |
Number of Markov steps to take, the randomness increases with that number. |
option |
Option = 1 employs internal rejection method to improve uniformity, but for n > 5 is not essential. |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output are several random fuzzy measures containing in an array v of length num * 2n |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
markovsteps <- 100
fuzzymeasures <- fm.generate_fm_sorting(5, markovsteps, 0, env)
fuzzymeasures
Function for random generation of fuzzy measures
Description
Generate several random fuzzy measures (num is their number) stored in cardinality ordering in the array v using topological sort.
Usage
fm.generate_fm_tsort(num, kint, markov, option, K, env = NULL)
Arguments
num |
Generated num random fuzzy measures stored consecutively in cardinality ordering in the array |
kint |
Interactive fuzzy measure. 0 < kint <= n |
markov |
Number of Markov steps to take, the randomness increases with that number |
option |
Option = 1 employs internal rejection method to improve uniformity, but for n > 5 is is not essential |
K |
K is the constant in k-interactive fuzzy measures |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is generate several random fuzzy measures |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fuzzymeasures <- fm.generate_fm_tsort(10,3,1000,0,0.7, env)
fuzzymeasures
Function for generating convex fuzzy measures
Description
Generates num convex random fuzzy measures stored consecutively in cardinality ordering in the output array.
Usage
fm.generate_fmconvex_tsort(num, kint, markov, option, K, env = NULL)
Arguments
num |
Several random fuzzy measures stored in cardinality ordering in the array v (num is their number) |
kint |
Interactive fuzzy measure. 0 < kint <= n |
markov |
Number of Markov steps to take, the randomness increases with that number |
option |
Option = 1 employs internal rejection method to improve uniformity, but for n > 5 is is not essential |
K |
K is the constant in k-interactive fuzzy measures |
env |
Environment variable obtained from fm.Init(n). |
Value
output |
The output is the generation of num convex random fuzzy measures stored consecutively in cardinality ordering in the array v |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
env<-fm.Init(3)
fuzzymeasures <- fm.generate_fmconvex_tsort(1,3,1000,0,1, env)
Function for exporting number of tuples
Description
Returns the number of tuples.
Usage
fm.get_num_tuples(envsp=NULL)
Arguments
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is the number of tuples. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);
fm.get_num_tuples(envsp)
envsp <-fm.FreeSparseFM(envsp)
Function for exporting the size of the array of tuples
Description
Returns the length of the array of tuples.
Usage
fm.get_sizearray_tuples(envsp=NULL)
Arguments
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is the length of the array of tuples. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);
fm.get_sizearray_tuples(envsp)
envsp <- fm.FreeSparseFM(envsp)
Function for checking if i belongs to the tuple A
Description
Checks if element i (1-based) belongs to the tuple indexed A (whose cardinality can be 1,2, other (automatically determined)).
Usage
fm.is_inset_sparse(A, card, i, envsp=NULL)
Arguments
A |
Tuple indexed. |
card |
Whose cardinality can be 1,2, other (automatically determined) |
i |
Element (1-based) |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is a logical value. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);
fm.is_inset_sparse(0,3,1,envsp)
fm.is_inset_sparse(0,3,4,envsp)
envsp <- fm.FreeSparseFM(envsp)
Function for checking if tuple B is subset of tuple A
Description
Checks if tuple B is a subset of tuple A, The cardinalities of both tuples need to be supplied.
Usage
fm.is_subset_sparse(A, cardA, B, cardB, envsp = NULL)
Arguments
A |
Tuple |
cardA |
Whose cardinality can be 1,2, other (automatically determined) |
B |
Tuple, tup=0 |
cardB |
Whose cardinality can be 1,2, other (automatically determined) |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is a logical value. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);
envsp <- fm.add_pair_sparse(1,2,0.2,envsp);
envsp <- fm.add_pair_sparse(1,3,0.3,envsp);
fm.is_subset_sparse(0,3,0,2,envsp) #is 0th pair a subset of the 0th tuple?
fm.is_subset_sparse(0,3,1,2,envsp) #is 1th pair a subset of the 0th tuple?
envsp<-fm.FreeSparseFM(envsp)
Maximun of x computation function in sparse representation
Description
Calculates maximum of x with the indices belonging to tuple indexed as S
Usage
fm.max_subset_sparse(x, S, cardS, envsp=NULL)
Arguments
x |
Input vector of size n, containing utility value of input criteria. x is in [0,1]. |
S |
Indices belonging to tuple indexed |
cardS |
Cardinality cardS |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is the maximum of x with the indices belonging to tuple indexed as S |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);
fm.max_subset_sparse(c(0.1,0.05,0.2),0,3,envsp)
envsp <- fm.FreeSparseFM(envsp)
Minimun of x computation function in sparse representation
Description
Calculates minimum of x with the indices belonging to tuple indexed as S
Usage
fm.min_subset_sparse(x, S, cardS, envsp=NULL)
Arguments
x |
Input vector of size n, containing utility value of input criteria. x is in [0,1]. |
S |
Indices belonging to tuple indexed |
cardS |
Cardinality cardS |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is the minimum of x with the indices belonging to tuple indexed as S |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.add_singletons_sparse(c(0.2,0.1,0.2),envsp)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.4,envsp);
fm.min_subset_sparse(c(0.1,0.05,0.2),0,3,envsp)
envsp <- fm.FreeSparseFM(envsp)
Function for populating 2-additive sparse capacity
Description
Populate 2-additive sparse capacity with nonzero values using the singletons and two arrays of indices (of size numpairs).
Usage
fm.populate_fm_2add_sparse(singletons, numpairs, pairs, indicesp1, indicesp2, envsp)
Arguments
singletons |
Singletons 0-based. |
numpairs |
Size numpairs. |
pairs |
Array 0-based. |
indicesp1 |
Array of indices of Size numpairs.need to be 1-based. |
indicesp2 |
Array of indices of Size numpairs.need to be 1-based. |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is Populate 2-additive sparse capacity with nonzero values using the singletons and two arrays of indices (of size numpairs) |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.populate_fm_2add_sparse(c(0.1,0.2,0.3), 3,
c(0.4,0.5,0.6), c(1,1,2), c(2,3,3), envsp)
envsp
envsp <- fm.FreeSparseFM(envsp)
Function for populating 2-additive sparse capacity from 2-additive capacity
Description
Given 2-additive capacity singletons+pairs in one array v , selects nonzero pairs and populates sparse capacity envsp
Usage
fm.populate_fm_2add_sparse_from2add(n, v, envsp=NULL)
Arguments
n |
Number of inputs |
v |
Pairs in one array v |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is a nonzero pairs and populates sparse capacity envsp |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, vector(), vector())
envsp <- fm.populate_fm_2add_sparse_from2add(3,c(0.4,0.5,0.6, 0, 0, 0.1),envsp)
envsp
envsp <- fm.FreeSparseFM(envsp)
Get pairs computation function in sparse representation
Description
Export the internal arrays of the sparse capacity as arrays of singletons, pairs and tuples.
Usage
fm.sparse_get_pairs( envsp=NULL)
Arguments
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is the array of pairs and their number. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n)
envsp <-fm.add_pair_sparse(1,2, 0.4, envsp)
envsp <-fm.add_pair_sparse(1,3, 0.3, envsp)
pairs <- fm.sparse_get_pairs(envsp)
pairs
envsp <- fm.FreeSparseFM(envsp)
Get singletons of sparse fuzzy measure
Description
Export the internal arrays of the sparse capacity as arrays of singletons, pairs and tuples.
Usage
fm.sparse_get_singletons(envsp=NULL)
Arguments
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is the numbers of pairs and tuples. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n)
envsp <- fm.add_singletons_sparse(c(0, 0.3, 0.5),envsp)
singletons <- fm.sparse_get_singletons(envsp)
singletons
envsp <- fm.FreeSparseFM(envsp)
Get tuples of a sparse fuzzy measure
Description
Export the internal arrays of the sparse capacity as arrays of singletons, pairs and tuples.
Usage
fm.sparse_get_tuples(envsp=NULL)
Arguments
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is the numbers of pairs and tuples. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n)
envsp <- fm.add_tuple_sparse(c(1,2,3),0.2,envsp)
envsp <- fm.add_tuple_sparse(c(1,3,4),0.3,envsp)
tuples <- fm.sparse_get_tuples(envsp)
tuples
envsp <- fm.FreeSparseFM(envsp)
Test function
Description
This function provide some examples of how fuzzy measure operation in this toolbox are used. It can be used to test if the toolbox has been installed successfully or not.
Usage
fm.test()
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
fm.test()
Tuple cardinality
Description
Returns the cardinality of the tuple numbered i in the list of tuples.
Usage
fm.tuple_cardinality_sparse(i, envsp = NULL)
Arguments
i |
In the list of tuples. |
envsp |
Structure required for sparse representation which stores the relevant values (k-tuples). It is obtained from fm.PrepareSparseFM(n). |
Value
output |
The output is the cardinality of the tuple numbered i in the list of tuple. |
Author(s)
Gleb Beliakov, Andrei Kelarev, Quan Vu, Daniela L. Calderon, Deakin University
Examples
n <- 3
envsp <- fm.PrepareSparseFM(n, c(0.2,0.4,0.1), c(2,1,2,2,1,3,3,1,2,3))
fm.tuple_cardinality_sparse(0,envsp)
envsp <- fm.FreeSparseFM(envsp)