Package 'SCGLR'

July 21, 2025

Type Package

```
Title Supervised Component Generalized Linear Regression
Description An extension of the Fisher Scoring Algorithm to combine PLS regression with GLM
      estimation in the multivariate context. Covariates can also be grouped in themes.
Version 3.1.0
Date 2025-03-24
License CeCILL-2 | GPL-2
URL https://scnext.github.io/SCGLR/, https://github.com/scnext/SCGLR,
      https://cran.r-project.org/package=SCGLR
BugReports https://github.com/SCnext/SCGLR/issues
Depends R (>= 3.0.0)
Imports Matrix, Formula, graphics, ggplot2 (>= 3.0.0), grid,pROC (>=
      1.9), ade4, rlang, pls
Suggests future, future.apply, progressr
LazyData yes
RoxygenNote 7.3.2
Encoding UTF-8
NeedsCompilation no
Author Guillaume Cornu [aut, cre] (ORCID:
       <https://orcid.org/0000-0002-7523-5176>),
      Frederic Mortier [aut] (ORCID: <a href="https://orcid.org/0000-0001-5473-709X">https://orcid.org/0000-0001-5473-709X</a>),
      Catherine Trottier [aut],
      Xavier Bry [aut],
      Jocelyn Chauvet [aut] (ORCID: <a href="https://orcid.org/0000-0002-4466-6483">https://orcid.org/0000-0002-4466-6483</a>),
      Sylvie Gourlet-Fleury [dtc] (ORCID:
       <a href="https://orcid.org/0000-0002-1136-4307">https://orcid.org/0000-0002-1136-4307</a>, Projet CoForChange
       <https://coforchange.cirad.fr>),
      Claude Garcia [dtc] (ORCID: <a href="https://orcid.org/0000-0002-7351-0226">https://orcid.org/0000-0002-7351-0226</a>,
       Projet CoForTips <https://www.cofortips.org>),
      GAMBAS [fnd] (<https://gambas.cirad.fr>)
```

2 critConvergence

Maintainer Guillaume Cornu <gcornu@cirad.fr>

Repository CRAN

Date/Publication 2025-03-26 16:00:01 UTC

Contents

crit	Convergence Auxiliary function for controlling SCGLR fitting	
Index		23
	screepiot.scolkTriw	22
	screeplot.SCGLR	
	scglrThemeBackward	
	scglrTheme	
	scglrCrossVal	
	scglr	
	plot.SCGLRTHM	
	plot.SCGLR	
	pairs.SCGLR	10
	multivariateFormula	9
	methodSR	8
	kCompRand	7
	genus2	6
	genus	5
	dataGen	4
	customize	3
	critConvergence	- 2

Description

Auxiliary function for scglr fitting used to construct a convergence control argument.

Usage

```
critConvergence(tol = 1e-06, maxit = 50)
```

Arguments

tol positive convergence threshold.

maxit integer, maximum number of iterations.

Value

a list containing elements named as the arguments.

customize 3

customize	Plot customization	

Description

Parameters used to choose what to plot and how. These parameters are given to plot.SCGLR and pairs.SCGLR.

Details

Parameter name can be abbreviated (e.g. pred.col will be understood as predictors.color). Options can be set globally using options ("plot.SCGLR"). It will then provide default values that can be further overriden by giving explicit parameter value.

parameter name	type (default value). Description.
title	string (NULL). Main title of plot (override built-in).
labels.auto	logical (TRUE). Should covariate or predictor labels be aligned with arrows.
labels.offset	numeric (0.01). Offset by which labels should be moved from tip of arrows.
labels.size	numeric (1). Relative size for labels. Use it to globally alter label size.
expand	numeric (1). Expand factor for windows size. Use it for example to make room for clipped lab
threshold	numeric. All covariates and/or predictors whose sum of square correlations with the two comp
observations	logical (FALSE). Should we draw observations.
observations.size	numeric (1). Point size.
observations.color	character ("black"). Point color.
observations.alpha	numeric (1). Point transparency.
observations.factor	logical (FALSE). Paint observations according to factor (specify factor).
predictors	logical or array of characters or comma separated string (FALSE). Should we draw predictors
predictors.color	string ("red"). Base color used to draw predictors.
predictors.alpha	numeric (1). Overall transparency for predictors (0 is transparent, 1 is opaque).
predictors.arrows	logical (TRUE). Should we draw arrows for predictors.
predictors.arrows.color	string (predictors.color). Specific color for predictor arrows.
predictors.arrows.alpha	numeric (predictors.alpha). Transparency for predictor arrows.
predictors.labels	logical (TRUE). Should we draw labels for predictors.
predictors.labels.color	string (predictors.color). Specific color for predictor labels.
predictors.labels.alpha	numeric (predictors.alpha). Transparency for predictor labels.
predictors.labels.size	numeric (labels.size). Specific size for predictor labels.
predictors.labels.auto	logical (labels.auto). Should predictor labels be aligned with arrows.
covariates	logical or array of characters or comma separated string (TRUE). Should we draw covariates a
covariates.color	string ("black"). Base color used to draw covariates.
covariates.alpha	numeric (1). Overall transparency for covariates (0 is transparent, 1 is opaque).
covariates.arrows	logical (TRUE). Should we draw arrows for covariates.
covariates.arrows.color	string (covariates.color). Specific color for covariate arrows.
covariates.arrows.alpha	numeric (covariates.alpha). Transparency for covariate arrows.
covariates.labels	logical (TRUE). Should we draw labels for predictors.
covariates.labels.color	string (covariates.color). Specific color for predictor labels.
covariates.labels.alpha	numeric (covariates.alpha). Transparency for covariate labels.

covariates.labels.size numeric (labels.size). Specific size for covariate labels.

4 dataGen

```
covariates.labels.auto
                              logical (labels.auto). Should covariate labels be aligned with arrows.
                              logical or character (FALSE). Should we draw a factor chosen among additionnal variables (T.
factor
factor.points
                              logical (TRUE). Should symbol be drawn for factors.
factor.points.size
                              numeric (4). Symbol size.
factor.points.shape
                              numeric (13). Point shape.
factor.labels
                              logical (TRUE). Should factor labels be drawn.
factor.labels.color
                              string ("black"). Color used to draw labels.
factor.labels.size
                              numeric (labels.size). Specific size for factor labels.
```

Examples

```
## Not run:
# setting parameters
plot(genus.scglr)
plot(genus.scglr, covariates=c("evi_1","pluvio_11"))
plot(genus.scglr, covariates="evi_1,pluvio_11")
plot(genus.scglr, predictors=TRUE)
plot(genus.scglr, predictors=TRUE, pred.arrows=FALSE)

# setting global style
options(plot.SCGLR=list(predictors=TRUE, pred.arrows=FALSE))
plot(genus.scglr)

# setting custom style
myStyle <- list(predictors=TRUE, pred.arrows=FALSE)
plot(genus.scglr, style=myStyle)

## End(Not run)</pre>
```

dataGen

Sample dataset of abundance of genera in tropical moist forest

Description

dataGen gives the abundance of 8 common tree genera in the tropical moist forest of the Congo-Basin and 58 geo-referenced variables on 2615 8-by-8 km plots (observations). Each plot's data was obtained by aggregating the data measured on a variable number of previously sampled 0.5 ha subplots. Geo-referenced environmental variables were used to describe the physical factors as well as vegetation characteristics. On each plot, 34 physical factors were used pertaining the description of topography, geology, rainfall... Vegetation is characterized through 16-days enhanced vegetation index (EVI) data.

Format

- Y matrix giving the abundance of 8 common genera (matrix size = 2615*8).
- X matrix of 56 geo-referenced environmental variables (matrix size = 2615*56).
- AX matrix of 2 additionnal explanatory variables (geology and anthropic interference).

genus 5

```
offset sampled area.
```

random forest concession id number.

Note

The use of this dataset for publication must make reference to the CoForChange project.

Author(s)

CoForChange project

References

```
S. Gourlet-Fleury et al. (2009–2014) CoForChange project: https://coforchange.cirad.fr/
```

C. Garcia et al. (2013–2015) CoForTips project: https://www.cofortips.org/

genus

Sample dataset of abundance of genera in tropical moist forest

Description

Genus gives the abundance of 27 common tree genera in the tropical moist forest of the Congo-Basin and 40 geo-referenced environmental variables on one thousand 8 by 8 km plots (observations). Each plot's data was obtained by aggregating the data measured on a variable number of previously sampled 0.5 ha sub-plots. Geo-referenced environmental variables were used to describe the physical factors as well as vegetation characteristics. 14 physical factors were used pertaining the description of topography, geology and rainfall of each plot. Vegetation is characterized through 16-days enhanced vegetation index (EVI) data.

Format

gen1 to gen27 abundance of the 27 common genera.

altitude above-sea level in meters.

pluvio_yr mean annual rainfall.

forest classified into seven classes.

pluvio_1 to pluvio_12 monthly rainfalls.

geology 5-level geological substrate.

evi_1 to evi_23 16-days enhanced vegetation indexes.

lon and lat position of the plot centers.

surface sampled area.

6 genus2

Note

The use of this dataset for publication must make reference to the CoForChange project.

Author(s)

CoForChange project

References

```
S. Gourlet-Fleury et al. (2009–2014) CoForChange project: https://coforchange.cirad.fr/C. Garcia et al. (2013–2015) CoForTips project: https://www.cofortips.org/
```

genus2

Sample dataset of abundance of genera in tropical moist forest

Description

genus2 gives the abundance of 15 common tree genera in the tropical moist forest of the Congo-Basin and 46 geo-referenced environmental variables on one thousand 8 by 8 km plots (observations). Each plot's data was obtained by aggregating the data measured on a variable number of previously sampled 0.5 ha sub-plots. Geo-referenced environmental variables were used to describe the physical factors as well as vegetation characteristics. 23 physical factors were used pertaining the description of topography, geology and rainfall of each plot. Vegetation is characterized through 16-days enhanced vegetation index (EVI) data.

Format

abundance of 15 common genera. gen1 to gen15 evi_1 to evi_23 16-days enhanced vegetation indexes. MIR and NIR Middle-Infrared and Near-Infrared channels. pluvio_an mean annual rainfall. monthly rainfalls. pluvio_1 to pluvio_12 altitude above-sea level in meters. ??? mois_sec_50 and mois_sec_50 ??? CWD, awd and mcwd wetness ??? longitude and latitude of the plot centers. center_x and center_y geology 5-level geological substrate. forest concession id number. inventory surface sampled area.

Note

The use of this dataset for publication must make reference to the CoForChange project.

kCompRand 7

Author(s)

CoForChange project

References

```
S.\ Gourlet-Fleury\ et\ al.\ (2009-2014)\ CoFor Change\ project:\ \verb|https://coforchange.cirad.fr/|
```

C. Garcia et al. (2013–2015) CoForTips project: https://www.cofortips.org/

kCompRand

Function that fits the mixed-SCGLR model

Description

Calculates the components to predict all the response variables.

Usage

```
kCompRand(
    Y,
    family,
    size = NULL,
    X,
    AX = NULL,
    random,
    loffset = NULL,
    k,
    init.sigma = rep(1, ncol(Y)),
    init.comp = c("pca", "pls"),
    method = methodSR("vpi", 1 = 4, s = 1/2, maxiter = 1000, epsilon = 10^-6, bailout = 1000)
)
```

Arguments

Υ	the matrix of random responses
family	a vector of character of the same length as the number of response variables: "bernoulli", "binomial", "poisson" or "gaussian" is allowed.
size	describes the number of trials for the binomial dependent variables: a (number of observations * number of binomial response variables) matrix is expected.
Χ	the matrix of the standardized explanatory variables
AX	the matrix of the additional explanatory variables
random	the vector giving the group of each unit (factor)
loffset	a matrix of size (number of observations * number of Poisson response variables) giving the log of the offset associated with each observation

8 methodSR

k	number of components, default is one
init.sigma	a vector giving the initial values of the variance components, default is $\text{rep}(1, \text{ncol}(Y))$
init.comp	a character describing how the components (loadings-vectors) are initialized in the PING algorithm: "pca" or "pls" is allowed.
method	Regularization criterion type: object of class "method.SCGLR" built by function methodSR.

Value

an object of the SCGLR class.

Examples

```
## Not run:
library(SCGLR)
# load sample data
data(dataGen)
k.opt=4
s.opt=0.1
1.opt=10
with Random.opt = kCompRand(Y = dataGen\$Y), \ family = rep("poisson", \ ncol(dataGen\$Y)), \\
                         X=dataGen$X, AX=dataGen$AX,
                         random=dataGen$random, loffset=log(dataGen$offset), k=k.opt,
                         init.sigma = rep(1, ncol(dataGen$Y)), init.comp = "pca",
                         method=methodSR("vpi", l=l.opt, s=s.opt,
                                          maxiter=1000, epsilon=10^-6, bailout=1000))
\verb|plot(withRandom.opt, pred=TRUE, plane=c(1,2), title="Component plane (1,2)", |
     threshold=0.7, covariates.alpha=0.4, predictors.labels.size=6)
## End(Not run)
```

 ${\tt methodSR}$

Regularization criterion types

Description

Regularization criterion types

Usage

```
methodSR(
   phi = "vpi",
   l = 1,
   s = 1/2,
   maxiter = 1000,
   epsilon = 1e-06,
   bailout = 10
)
```

multivariateFormula 9

Arguments

character string describing structural relevance used in the regularization process. Allowed values are "vpi" for Variable Powered Inertia and "cv" for Component Variance. Default to "vpi".
is an integer argument (>1) tuning the importance of variable bundle locality.
is a numeric argument (in [0,1]) tuning the strength of structural relevance with respect to goodness of fit.
integer for maximum number of iterations of SR function
positive convergence threshold
integer argument

Value

an object of class method. SCGLR

multivariateFormula Formula construction

Description

Helper function for building multivariate scglr formula.

NOTE: Interactions involving factors are not allowed for now. For interactions between two quantitative variables, use I(x*y) as usual.

Usage

```
multivariateFormula(Y, X = NULL, ..., A = NULL, additional = NULL, data = NULL)
```

Arguments

Υ	a formula or a vector of character containing the names of the dependent variables.
X	a vector of character containing the names of the covariates (X) involved in the components or a list of it.
	additional groups of covariates (theme)
A	a vector of character containing the names of the additional covariates.
additional	logical (if A is not provided, should we consider last X to be additional covariates)
data	a data frame against which formula's variable will be checked

Details

If Y is given as a formula, groups of covariates must be separated by | (pipes). To declare last group as additional covariates, one can use | | (double pipes) as last group separator or set additional parameter as TRUE.

10 pairs.SCGLR

Value

an object of class MultivariateFormula, Formula, formula with additional attributes: Y, X, X_vars, Y_vars, Y_vars, Y_vars, Y_vars, Y_vars, additional

Examples

```
## Not run:
# build multivariate formula
ny <- c("y1","y2")
nx1 <- c("x11","x12")
nx2 <- c("x21","x22")
nadd <- c("add1","add2")
form <- multivariateFormula(ny,nx1,nx2,nadd,additional=T)
form2 <- multivariateFormula(ny,list(nx1,nx2,nadd),additional=T)
form3 <- multivariateFormula(ny,list(nx1,nx2),A=nadd)
form4 <- multivariateFormula(y1+y2~x11+x12|x21+x22||add1+add2)
# Print formulas
form
form2
form3
## End(Not run)</pre>
```

pairs.SCGLR

Pairwise scglr plot on components

Description

Pairwise scglr plot on components

Usage

```
## S3 method for class 'SCGLR'
pairs(x, ..., nrow = NULL, ncol = NULL, components = NULL)
```

Arguments

x object of class 'SCGLR', usually a result of running scglr.
... optionally, further arguments forwarded to plot. SCGLR.
nrow number of rows of the grid layout.
ncol number of columns of the grid layout.

components vector of integers selecting components to plot (default is all components).

Value

an object of class ggplot.

plot.SCGLR 11

See Also

For pairs application see examples in plot. SCGLR

plot.SCGLR

SCGLR generic plot

Description

SCGLR generic plot

Usage

```
## S3 method for class 'SCGLR'
plot(x, ..., style = getOption("plot.SCGLR"), plane = c(1, 2))
```

Arguments

```
x an object from SCGLR class.
... optional arguments (see customize).
style named list of values used to customize the plot (see customize)
plane a size-2 vector (or string with separator) indicating which components are plotted (eg: c(1,2) or "1,2" or "1/2").
```

Value

an object of class ggplot.

Examples

```
## Not run:
library(SCGLR)

# load sample data
data(genus)

# get variable names from dataset
n <- names(genus)
ny <- n[grep("^gen",n)]  # Y <- names that begins with "gen"
nx <- n[-grep("^gen",n)]  # X <- remaining names

# remove "geology" and "surface" from nx
# as surface is offset and we want to use geology as additional covariate
nx <-nx[!nx%in%c("geology", "surface")]

# build multivariate formula
# we also add "lat*lon" as computed covariate
form <- multivariateFormula(ny,c(nx,"I(lat*lon)"),c("geology"))</pre>
```

12 plot.SCGLRTHM

```
# define family
fam <- rep("poisson",length(ny))
genus.scglr <- scglr(formula=form,data = genus,family=fam, K=4,
    offset=genus$surface)
summary(genus.scglr)
barplot(genus.scglr)
plot(genus.scglr)
plot(genus.scglr, predictors=TRUE, factor=TRUE)
pairs(genus.scglr)
## End(Not run)</pre>
```

plot.SCGLRTHM

SCGLRTHM generic plot

Description

SCGLR generic plot for themes

Usage

```
## S3 method for class 'SCGLRTHM' plot(x, ...)
```

Arguments

```
x object of class 'SCGLRTHM', usually a result of running scglrTheme.... see SCGLR plot method
```

Value

an object of class ggplot.

scglr 13

scglr

Function that fits the scglr model

Description

Calculates the components to predict all the dependent variables.

Usage

```
scglr(
  formula,
  data,
  family,
  K = 1,
  size = NULL,
  weights = NULL,
  offset = NULL,
  subset = NULL,
  na.action = na.omit,
  crit = list(),
  method = methodSR()
)
```

Arguments

formula	an object of class MultivariateFormula (or one that can be coerced to that class): a symbolic description of the model to be fitted.
data	a data frame to be modeled.
family	a vector of character of the same length as the number of dependent variables: "bernoulli", "binomial", "poisson" or "gaussian" is allowed.
K	number of components, default is one.
size	describes the number of trials for the binomial dependent variables. A (number of statistical units * number of binomial dependent variables) matrix is expected.
weights	weights on individuals (not available for now)
offset	used for the poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected.
subset	an optional vector specifying a subset of observations to be used in the fitting process.
na.action	a function which indicates what should happen when the data contain NAs. The default is set to na.omit.
crit	a list of two elements: maxit and tol, describing respectively the maximum number of iterations and the tolerance convergence criterion for the Fisher scoring algorithm. Default is set to 50 and 10e-6 respectively.
method	structural relevance criterion. Object of class "method.SCGLR" built by methodSR for Structural Relevance.

14 scglr

Value

an object of the SCGLR class.

The function summary (i.e., summary SCGLR) can be used to obtain or print a summary of the results. An object of class "SCGLR" is a list containing following components:

matrix of size (number of regressors * number of components), contains the component-loadings, i.e. the coefficients of the regressors in the linear combination giving each component. comp matrix of size (number of statistical units * number of components) having the components as column vectors. matrix of size (number of statistical units * number of components) having the compr standardized components as column vectors. list of length number of dependant variables. Each element is a matrix of coefgamma ficients, standard errors, z-values and p-values. matrix of size (number of regressors + 1 (intercept) * number of dependent varibeta ables), contains the coefficients of the regression on the original regressors X. lin.pred data.frame of size (number of statistical units * number of dependent variables), the fitted linear predictor. xFactors data.frame containing the nominal regressors. xNumeric data.frame containing the quantitative regressors. inertia matrix of size (number of components * 2), contains the percentage and cumulative percentage of the overall regressors' variance, captured by each component. logLik vector of length (number of dependent variables), gives the likelihood of the model of each y_k 's GLM on the components. vector of length (number of dependent variables), gives the deviance of the null deviance.null

model of each y_k 's GLM on the components.

deviance.residual

vector of length (number of dependent variables), gives the deviance of the model of each y_k 's GLM on the components.

References

Bry X., Trottier C., Verron T. and Mortier F. (2013) Supervised Component Generalized Linear Regression using a PLS-extension of the Fisher scoring algorithm. *Journal of Multivariate Analysis*, 119, 47-60.

Examples

```
## Not run:
library(SCGLR)

# load sample data
data(genus)

# get variable names from dataset
```

scglrCrossVal 15

scglrCrossVal

Function that fits and selects the number of component by cross-validation.

Description

Function that fits and selects the number of component by cross-validation.

Usage

```
scglrCrossVal(
  formula,
  data,
  family,
  K = 1,
  folds = 10,
  type = "mspe",
  size = NULL,
  offset = NULL,
  na.action = na.omit,
  crit = list(),
  method = methodSR(),
  nfolds,
  mc.cores
)
```

16 scglrCrossVal

Arguments

formula an object of class "Formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. data the data frame to be modeled. a vector of character of length q specifying the distributions of the responses. family Bernoulli, binomial, poisson and gaussian are allowed. Κ number of components, default is one. folds number of folds, default is 10. Although folds can be as large as the sample size (leave-one-out CV), it is not recommended for large datasets. folds can also be provided as a vector (same length as data) of fold identifiers. loss function to use for cross-validation. Currently six options are available detype pending on whether the responses are of the same distribution family. If the responses are all bernoulli distributed, then the prediction performance may be measured through the area under the ROC curve: type = "auc" In any other case one can choose among the following five options ("likelihood", "aic", "aicc", "bic", "mspe"). specifies the number of trials of the binomial variables included in the model. A size (n*qb) matrix is expected for qb binomial variables. offset used for the poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected. na.action a function which indicates what should happen when the data contain NAs. The default is set to the na.omit. crit a list of two elements: maxit and tol, describing respectively the maximum number of iterations and the tolerance convergence criterion for the Fisher scoring algorithm. Default is set to 50 and 10e-6 respectively. method Regularization criterion type. Object of class "method.SCGLR" built by methodSR for Structural Relevance.

Value

nfolds

mc.cores

a matrix containing the criterion values for each response (rows) and each number of components (columns).

deprecated. Use fold parameter instead.

deprecated

References

Bry X., Trottier C., Verron T. and Mortier F. (2013) Supervised Component Generalized Linear Regression using a PLS-extension of the Fisher scoring algorithm. *Journal of Multivariate Analysis*, 119, 47-60.

Examples

Not run: library(SCGLR) scglrTheme 17

```
# load sample data
data(genus)
# get variable names from dataset
n <- names(genus)</pre>
ny <- n[grep("^gen",n)]</pre>
                            # Y <- names that begins with "gen"
nx <- n[-grep("^gen",n)] # X <- remaining names</pre>
# remove "geology" and "surface" from nx
# as surface is offset and we want to use geology as additional covariate
nx <-nx[!nx%in%c("geology","surface")]</pre>
# build multivariate formula
# we also add "lat*lon" as computed covariate
form <- multivariateFormula(ny,c(nx,"I(lat*lon)"),A=c("geology"))</pre>
# define family
fam <- rep("poisson",length(ny))</pre>
# cross validation
genus.cv <- scglrCrossVal(formula=form, data=genus, family=fam, K=12,</pre>
offset=genus$surface)
# find best K
mean.crit <- colMeans(log(genus.cv))</pre>
#plot(mean.crit, type="l")
## End(Not run)
```

scglrTheme

Function that fits the theme model

Description

Calculates the components to predict all the dependent variables.

Usage

```
scglrTheme(
  formula,
  data,
  H,
  family,
  size = NULL,
  weights = NULL,
  offset = NULL,
  subset = NULL,
  na.action = na.omit,
```

18 scglrTheme

```
crit = list(),
  method = methodSR(),
  st = FALSE
)
```

Arguments

an object of class "MultivariateFormula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.
data frame.
vector of R integer. Number of components to keep for each theme
a vector of character of the same length as the number of dependent variables: "bernoulli", "binomial", "poisson" or "gaussian" is allowed.
describes the number of trials for the binomial dependent variables. A (number of statistical units * number of binomial dependent variables) matrix is expected.
weights on individuals (not available for now)
used for the poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected.
an optional vector specifying a subset of observations to be used in the fitting process.
a function which indicates what should happen when the data contain NAs. The default is set to na.omit.
a list of two elements: maxit and tol, describing respectively the maximum number of iterations and the tolerance convergence criterion for the Fisher scoring algorithm. Default is set to 50 and 10e-6 respectively.
structural relevance criterion. Object of class "method.SCGLR" built by methodSR for Structural Relevance.
logical (FALSE) theme build and fit order. TRUE means random, FALSE means sequential (T1,, Tr) $$

Details

Models for theme are specified symbolically.

A model as the form response \sim terms where response is the numeric response vector and terms is a series of R themes composed of predictors.

Themes are separated by "I" (pipe) and are composed. ... $Y1+Y2+... \sim X11+X12+...+X1_I \times X21+X22+... \mid ...+X1_I+... \mid A1+A2+...$

See multivariateFormula.

Value

a list of SCGLRTHM class. Each element is a SCGLR object

scglrThemeBackward 19

Examples

```
## Not run:
library(SCGLR)

# load sample data
data(genus)

# get variable names from dataset
n <- names(genus)
n <-n[!n%in%c("geology", "surface", "lon", "lat", "forest", "altitude")]
ny <- n[grep("^gen",n)]  # Y <- names that begins with "gen"
nx1 <- n[grep("^evi",n)]  # X <- remaining names
nx2 <- n[-c(grep("^evi",n),grep("^gen",n))]

form <- multivariateFormula(ny,nx1,nx2,A=c("geology"))
fam <- rep("poisson",length(ny))
testthm <-scglrTheme(form,data=genus,H=c(2,2),family=fam,offset = genus$surface)
plot(testthm)

## End(Not run)</pre>
```

scglrThemeBackward

Theme Backward selection

Description

Perform component selection by cross-validation backward approach

Usage

```
scglrThemeBackward(
  formula,
  data,
  H,
  family,
  size = NULL,
  weights = NULL,
  offset = NULL,
  na.action = na.omit,
  crit = list(),
  method = methodSR(),
  folds = 10,
  type = "mspe",
  st = FALSE
)
```

Arguments

formula	an object of class "Formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.
data	data frame.
Н	vector of R integer. Number of components to keep for each theme
family	a vector of character of the same length as the number of dependent variables: "bernoulli", "binomial", "poisson" or "gaussian" is allowed.
size	describes the number of trials for the binomial dependent variables. A (number of statistical units * number of binomial dependent variables) matrix is expected.
weights	weights on individuals (not available for now)
offset	used for the poisson dependent variables. A vector or a matrix of size: number of observations * number of Poisson dependent variables is expected.
na.action	a function which indicates what should happen when the data contain NAs. The default is set to na.omit.
crit	a list of two elements: maxit and tol, describing respectively the maximum number of iterations and the tolerance convergence criterion for the Fisher scoring algorithm. Default is set to 50 and 10e-6 respectively.
method	structural relevance criterion. Object of class "method.SCGLR" built by methodSR for Structural Relevance.
folds	number of folds - default is 10. Although folds can be as large as the sample size (leave-one-out CV), it is not recommended for large datasets. Smallest value allowable is folds=2. folds can also be provided as a vector (same length as data) of fold identifiers.
type	loss function to use for cross-validation. Currently six options are available depending on whether the responses are of the same distribution family. If the responses are all bernoulli distributed, then the prediction performance may be measured through the area under the ROC curve: type = "auc" In any other case one can choose among the following five options ("likelihood", "aic", "aicc", "bic", "mspe").
st	logical (FALSE) theme build and fit order. TRUE means random, FALSE means sequential (T1,, Tr)

Details

Models for theme are specified symbolically.

A model as the form response \sim terms where response is the numeric response vector and terms is a series of R themes composed of predictors.

```
Themes are separated by "|" (pipe) and are composed. y1 + y2 + ... \sim x11 + x12 + ... + x1_| x21 + x22 + ... | ... + x1_| + ... | a1 + a2 + ... See multivariateFormula.
```

Value

a list containing the path followed along the selection process, the associated mean square predictor error and the best configuration.

screeplot.SCGLR 21

Examples

```
## Not run:
library(SCGLR)
# load sample data
data(genus)
# get variable names from dataset
n <- names(genus)</pre>
n <- n[!n %in% c("geology", "surface", "lon", "lat", "forest", "altitude")]</pre>
nx2 <- n[-c(grep("^evi",n),grep("^gen",n))]</pre>
form <- multivariateFormula(ny,nx1,nx2,A=c("geology"))</pre>
fam <- rep("poisson",length(ny))</pre>
testcv <- scglrThemeBackward(form,data=genus,H=c(2,2),family=fam,offset = genus$surface,folds=3)</pre>
# Cross-validation pathway
testcv$H_path
# Plot criterion
plot(testcv$cv_path)
# Best combination
testcv$H_best
## End(Not run)
```

screeplot.SCGLR

Screeplot of percent of overall X variance captured by component

Description

Screeplot of percent of overall X variance captured by component

Usage

```
## S3 method for class 'SCGLR'
screeplot(x, ...)
```

Arguments

```
x object of class 'SCGLR', usually a result of running scglr. ... optional arguments.
```

Value

```
an object of class ggplot.
```

See Also

For screeplot application see examples in plot. SCGLR.

screeplot.SCGLRTHM

Screeplot of percent of overall X variance captured by component

Description

Screeplot of percent of overall X variance captured by component by theme

Usage

```
## S3 method for class 'SCGLRTHM' screeplot(x, ...)
```

Arguments

```
x object of class 'SCGLRTHM', usually a result of running scglrTheme.
... optional arguments.
```

Value

an object of class ggplot.

Index

```
critConvergence, 2
customize, 3, 11
dataGen, 4
genus, 5
genus2, 6
kCompRand, 7
methodSR, 8, 8, 13, 16, 18, 20
MultivariateFormula, 18
multivariateFormula, 9, 18, 20
pairs.SCGLR, 3, 10
plot.SCGLR, 3, 10, 11, 11, 22
plot.SCGLRTHM, 12
scglr, 10, 13, 21
\verb|scglrCrossVal|, 15|
scglrTheme, 12, 17, 22
scglrThemeBackward, 19
screeplot.SCGLR, 21
screeplot.SCGLRTHM, 22
```