Title: | Shrinkage for Extreme Partial Least-Squares (SEPaLS) |
Date: | 2023-10-11 |
Type: | Package |
Version: | 0.1.0 |
Description: | Regression context for the Partial Least Squares framework for Extreme values. Estimations of the Shrinkage for Extreme Partial Least-Squares (SEPaLS) estimators, an adaptation of the original Partial Least Squares (PLS) method tailored to the extreme-value framework. The SEPaLS project is a joint work by Stephane Girard, Hadrien Lorenzo and Julyan Arbel. R code to replicate the results of the paper is available at https://github.com/hlorenzo/SEPaLS_simus. Extremes within PLS was already studied by one of the authors, see M Bousebeta, G Enjolras, S Girard (2023) <doi:10.1016/j.jmva.2022.105101>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.2.0 |
NeedsCompilation: | no |
Packaged: | 2023-10-23 21:11:42 UTC; hlorenzo |
Author: | Stephane Girard [aut], Julyan Arbel [aut], Hadrien Lorenzo [aut, cre, cph] |
Maintainer: | Hadrien Lorenzo <hadrien.lorenzo@univ-amu.fr> |
Depends: | R (≥ 3.5.0) |
Repository: | CRAN |
Date/Publication: | 2023-10-24 18:20:06 UTC |
Function to estimate SEPaLS estimators
Description
Function to estimate SEPaLS estimators
Usage
SEPaLS(
X,
Y,
yn,
type = c("vMF", "Laplace"),
mu0 = NULL,
kappa0 = NULL,
lambda = NULL
)
Arguments
X |
|
Y |
|
yn |
|
type |
character, wether |
mu0 |
|
kappa0 |
|
lambda |
|
Details
The SEPaLS estimators are built depending on the value given to
type
:
-
vMF
: then the estimator is proportional to\hat{\beta}_{ml}(y_n) + \kappa_0\mu_0,
where
\hat{\beta}_{ml}(y_n)
is the EPLS estimator, which coincides with the maximum-likelihood estimator of SEPaLS for a thresholdy_n
. -
Laplace
: then the estimator is proportional toS_\lambda\left(\hat{\beta}_{ml}(y_n)\right),
where
S_\lambda
is the soft-thresholding operator of threshold\lambda
.
Value
A SEPaLS estimator
See Also
Examples
set.seed(1)
n <- 3000
p <- 10
X <- matrix(rnorm(n*p),n,p)
beta <- c(5:1,rep(0,p-5)) ; beta <- beta/sqrt(sum(beta^2))
Y <- (X%*%beta)^3 + rnorm(n,sd=1/3)
mu0 <- rnorm(p) ; mu0 <- mu0/sqrt(sum(mu0^2))
sepals_vMF <- SEPaLS(X,Y,yn=1,type="vMF",mu0=mu0,kappa0=1)
sepals_Laplace <- SEPaLS(X,Y,yn=1,type="Laplace",lambda=0.01)
Bootstrap function for SEPaLS estimator.
Description
Bootstrap function for SEPaLS estimator.
Usage
bootstrap.SEPaLS(
X,
Y,
yn,
type = c("vMF", "Laplace"),
mu0 = NULL,
kappa0 = NULL,
lambda = NULL,
B = 20
)
Arguments
X |
|
Y |
|
yn |
|
type |
character, whether |
mu0 |
|
kappa0 |
|
lambda |
|
B |
positive integer. The number of bootstrap samples on which estimate the SEPaLS directions. Default to 20. |
Value
A list with two elements:
-
ws
: A(B\times p)
-dimensional matrix with each row corresponding to the SEPaLS direction estimated on each bootstrap sample. -
cor
: The correlation of each estimate direction on the Out-Of-Bag (OOB) sample with the response.
See Also
Examples
set.seed(5)
n <- 3000
p <- 10
X <- matrix(rnorm(n*p),n,p)
beta <- c(5:1,rep(0,p-5)) ; beta <- beta/sqrt(sum(beta^2))
Y <- (X%*%beta)^3 + rnorm(n)
boot.sepals_Laplace <- bootstrap.SEPaLS(X,Y,yn=1,type="Laplace",lambda=0.01,
B=100)
boxplot(boot.sepals_Laplace$ws);abline(h=0,col="red",lty=2)
Maximum Likelihood estimator
Description
Maximum Likelihood estimator
Usage
maximum_Likelihood_SEPaLS(X, Y, yn)
Arguments
X |
|
Y |
|
yn |
the quantile corresponding to the lowest values of |
Value
The maximum likelihood estimator.
Examples
n <- 3000
p <- 10
X <- matrix(rnorm(n*p),n,p)
beta <- c(5:1,rep(0,p-5)) ; beta <- beta/sqrt(sum(beta^2))
Y <- X%*%beta + rnorm(n,sd=1/3)
estimators <- do.call(rbind,lapply(seq(0,1,length.out=100),function(pp){
yn <- quantile(Y,probs = pp)
maximum_Likelihood_SEPaLS(X,Y,yn)
}))
matplot(estimators,type="l",lty=1,col=c(rep(2,5),rep(1,p-5)))
abline(h=beta/sqrt(sum(beta^2)),col=c(rep(2,5),rep(1,p-5)))
The RICA dataset describing the production of carrots (open field) (in quintals) from 2000 to 2015.
Description
A subset of data from the 'agreste' French governmental website <https://agreste.agriculture.gouv.fr/agreste-web/servicon/I.2/listeTypeServicon/>.
Usage
data(ricaCarrots)
Format
'ricaCarrots'
A List of 3 objects:
- Y
a vector. The production of carrots (open field) (in quintals) for 598 French farms.
- X
a matrix. The 259 covariates describing the same 598 French farms.
- description
a matrix. Description of the 259 covariates.
Source
<https://agreste.agriculture.gouv.fr/agreste-web/servicon/I.2/listeTypeServicon/>