Type: | Package |
Title: | SIFT-MS and CPET Data Processor |
Version: | 0.1.0 |
Author: | Federico Vivaldi; Tommaso Lomonaco |
Maintainer: | Federico Vivaldi <federico-vivaldi@virgilio.it> |
Description: | Processor for selected ion flow tube mass spectrometer (SIFT-MS) output file from breath analysis. It allows the filtering of the SIFT output file (i.e., variation over time of the target analyte concentration) and the following analysis for the determination of: maximum, average, and standard deviation value of target concentration measured at each exhalation, and the respiratory rate over the measurement. Additionally, it is possible to align the SIFT-MS data with other on-line techniques such as cardio pulmonary exercise test (CPET) for a comprehensive characterization of breath samples. |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
Imports: | Convolutioner |
RoxygenNote: | 7.2.3 |
NeedsCompilation: | no |
Packaged: | 2023-02-21 14:13:47 UTC; federico |
Depends: | R (≥ 3.5.0) |
Repository: | CRAN |
Date/Publication: | 2023-02-22 14:50:07 UTC |
SIPETool example files
Description
Raw and filtered output from SIFT-MS, and CPET system. Four different files are available: raw_sift -> raw data from SIFT-MS CPET_time -> data from CPET system for time allignment SIFT_time -> filtered data from SIFT-MS for time allignment SIFT_filtered -> raw data from SIFT-MS filtered using SIFT_output_filter
SIPETool example files
Description
Raw and filtered output from SIFT-MS, and CPET system. Four different files are available: raw_sift -> raw data from SIFT-MS CPET_time -> data from CPET system for time allignment SIFT_time -> filtered data from SIFT-MS for time allignment SIFT_filtered -> raw data from SIFT-MS filtered using SIFT_output_filter
SIFT output filter
Description
This function takes as input the output file generated by the SIFT-MS and returns a .csv containing the TIME and the concentrations data selected by the user
Usage
SIFT_output_filter(
setdir = getwd(),
input_name = file.choose(),
output_name,
n_parameters = 2,
param_names = c("Isoprene", "Acetone"),
out_file = TRUE
)
Arguments
setdir |
allow the selection of the working directory |
input_name |
allow the selection of the input file |
output_name |
name of the .csv output file |
n_parameters |
number of analytes |
param_names |
vector with name of the analytes |
out_file |
flag for the export of a csv file |
Value
Filtered data and optional csv from SIFT input
Examples
data(raw_SIFT)
SIFT_output_filter(input_name = raw_SIFT, output_name = "testfile", out_file = FALSE)
SIPETool example files
Description
Raw and filtered output from SIFT-MS, and CPET system. Four different files are available: raw_sift -> raw data from SIFT-MS CPET_time -> data from CPET system for time allignment SIFT_time -> filtered data from SIFT-MS for time allignment SIFT_filtered -> raw data from SIFT-MS filtered using SIFT_output_filter
data indexer
Description
This function takes as input a vector and return the data index according to the selected time frame
Usage
data_indexer(dat, time_frame_index = NA)
Arguments
dat |
input vector |
time_frame_index |
custom data range from the time column |
Value
a vector indexed according to the specified time frame
Examples
data_indexer(c(1:10,10:1,1:10,10:1,1:10,10:1,1:10,10:1,1:10,10:1))
Data normalizer
Description
This function takes as input a vector and returns it normalized between a specified range
Usage
normalizer(dat, norm_range = c(0, 1))
Arguments
dat |
the vector to normalize |
norm_range |
the range used for normalization |
Value
vector normalized between norm_range
Examples
normalizer(c(1:10,10:1,1:10,10:1,1:10,10:1,1:10,10:1,1:10,10:1))
SIPETool example files
Description
Raw and filtered output from SIFT-MS, and CPET system. Four different files are available: raw_SIFT -> raw data from SIFT-MS CPET_time -> data from CPET system for time allignment SIFT_time -> filtered data from SIFT-MS for time allignment SIFT_filtered -> raw data from SIFT-MS filtered using SIFT_output_filter
Sign detection
Description
This function takes as input a vector and returns the sign of each element
Usage
sign_detect(dat)
Arguments
dat |
the vector to be used |
Value
vector with the signs of each element of the original matrix
Examples
sign_detect(c(1:10,10:1,1:10,10:1,1:10,10:1,1:10,10:1,1:10,10:1))
Tidal analyzer
Description
This function takes as input a csv file containing a time column and data columns and returns the position of the end tidals for each data column maximazing the syncronization between data. This function was originally devised for the analysis of the end tidals coming from exhaled breath analyzed through SIFT-MS technology
Usage
tidal_analyzer(
setdir = getwd(),
input_name = file.choose(),
output_name,
starting_threshold = 0.03,
time_frame = NA,
out_file = TRUE
)
Arguments
setdir |
working directory |
input_name |
csv file |
output_name |
name of the output file |
starting_threshold |
initial value for the dynamic threshold |
time_frame |
custom data range from the time column |
out_file |
flag for the export of a csv file |
Value
csv containing the end tidals, their maximum, average, frequency, and timing
Examples
data(SIFT_filtered)
tidal_analyzer(input_name = head(SIFT_filtered, n = 100), output_name = "out", out_file = FALSE)
Tidal finder
Description
This function takes as input a matrix and returns for each column the end tidals depending of the threshold set. It is possible to set a custom time frame for the search of the tidals. Note: a minimum amount of 45 points are necessary.
Usage
tidal_finder(
dat,
height_threshold = 0.2,
refine = FALSE,
time_frame_index = NA
)
Arguments
dat |
the input matrix |
height_threshold |
the minimum height of the tidal |
refine |
refine the dataset |
time_frame_index |
custom time frame |
Value
matrix with the tidals for each column
Examples
tidal_finder(c(1:10,10:1,1:10,10:1,1:10,10:1,1:10,10:1,1:10,10:1))
Time_alignment
Description
This function takes as input two data set containing a time vector and a data vector and return the two data sets aligned. This is done by reducing the dimensions of the data set with higher points. The first data set is the one coming from the CPET-ESE and the second one from the SIFT-MS
Usage
time_filter(Cy = file.choose(), sift = file.choose())
Arguments
Cy |
CPET-ESE output file |
sift |
SIFT-MS refined file |
Value
A plot and the SIFT-MS data file resized for the alignment with the CPET-ESE file
Examples
data(SIFT_time)
data(CPET_time)
time_filter(CPET_time, SIFT_time)
Trend finder
Description
This function takes as input a vector and returns the trend of each column expressed as the difference between two consecutive elements
Usage
trend(dat)
Arguments
dat |
the vector to analyze |
Value
vector containing the trend of the each column
Examples
trend(c(1:10,10:1,1:10,10:1,1:10,10:1,1:10,10:1,1:10,10:1))