Type: | Package |
Title: | Simulator for Spatially Resolved Transcriptomics |
Version: | 0.99.7 |
Date: | 2024-08-14 |
Maintainer: | Jiaqiang Zhu <jiaqiang@umich.edu> |
Description: | An independent, reproducible, and flexible Spatially Resolved Transcriptomics (SRT) simulation framework that can be used to facilitate the development of SRT analytical methods for a wide variety of SRT-specific analyses. It utilizes spatial localization information to simulate SRT expression count data in a reproducible and scalable fashion. Two major simulation schemes are implemented in 'SRTsim': reference-based and reference-free. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.3.2 |
Imports: | concaveman,sf,sp,spatstat.geom,parallel,pdist,MASS,S4Vectors,stats,Matrix,Morpho,matrixStats,plotly,shiny,viridis,shinydashboard,dashboardthemes,shinyBS, ggplot2, ggpubr, DT, spatstat.random,magrittr,FNN,dplyr, magick |
Suggests: | knitr,rmarkdown,BiocStyle,RefManageR,BiocManager,sessioninfo |
VignetteBuilder: | knitr |
Depends: | R (≥ 3.5.0), methods |
NeedsCompilation: | no |
Collate: | 'SRTaffine.R' 'SRTcount.R' 'SRTfit.R' 'SRTmodels.R' 'SRTsim_class.R' 'body.R' 'compareSRT.R' 'createSRT.R' 'data.R' 'globals.R' 'reGenCountshiny.R' 'runapp.R' 'server.R' 'shiny2srt.R' 'sidebar.R' 'simSRTLocs.R' 'subsetSRT.R' 'SRTcci.R' 'ui.R' 'utilies_func.R' 'visualize_gene.R' 'visualize_metrics.R' |
Packaged: | 2024-08-20 21:02:00 UTC; jiaqiangzhu |
Author: | Jiaqiang Zhu |
Repository: | CRAN |
Date/Publication: | 2024-08-21 08:10:05 UTC |
Access Model Fitting Parameters
Description
Access Model Fitting Parameters
Usage
EstParam(x)
Arguments
x |
SRTsim object |
Value
Returns a list of estimated parameters by fitting models
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
EstParam(toySRT)
Run the SRTsim Shiny Application
Description
Run the SRTsim Shiny Application
Usage
SRTsim_shiny()
Value
A list that contains a count matrix, a location dataframe, and all parameter specifications.
Examples
## Not run:
## Will Load an Interactive Session
shinyOutput <- SRTsim_shiny()
## End(Not run)
Create a SRTsim object from reference-free shinyoutput
Description
Create a SRTsim object from reference-free shinyoutput
Usage
Shiny2SRT(shinyOutput)
Arguments
shinyOutput |
A list of Shiny Output. Including a simCount, simInfo,simcountParam,simLocParam |
Value
Returns a SRTsim object with user-specified parameters stored in metaParam slot.
Examples
shinySRT <- Shiny2SRT(toyShiny)
## Explore the new SRT object
shinySRT@metaParam
shinySRT@simCounts[1:3,1:3]
shinySRT@simcolData
Summarize metrics for reference data and synthetic data
Description
Summarize metrics for reference data and synthetic data
Usage
compareSRT(simsrt)
Arguments
simsrt |
A SRTsim object |
Value
Returns an object with summarized metrics
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
## Compute metrics
toySRT <- compareSRT(toySRT)
Convert continuous coordinate into integer, essential for BayesSpace to determine the neighborhood info
Description
Convert continuous coordinate into integer, essential for BayesSpace to determine the neighborhood info
Usage
convert_grid(x)
Arguments
x |
A numeric vector of continuous coordinate |
Value
Returns a numeric vector oof integer coordinate
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Create New Locations within Profile
toySRT2 <- srtsim_newlocs(toySRT,new_loc_num=1000)
## Convert non-integer x-coordinates into an integer value
newGrid_x <- convert_grid(simcolData(toySRT2)$x)
Create simSRT object
Description
Create simSRT object
Usage
createSRT(count_in, loc_in, refID = "ref1")
Arguments
count_in |
A gene expression count |
loc_in |
A location |
refID |
A |
Value
Returns a spatialExperiment-based object
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
## Explore the object
toySRT
Data used for creating vignettes
Description
A data list containing the a gene expression matrix and a location dataframe
Usage
exampleLIBD
Format
A data list
- example_count
A sparse matrix with 80 rows and 3611 columns.
- example_loc
A data frame with 3611 rows and 6 columns.
Source
created based on a SpatialLIBD data (SampleID: 151673) to serve as an example
Examples
data(exampleLIBD) #Lazy loading. Data becomes visible as soon as called
fitting data with poisson through optim function
Description
fitting data with poisson through optim function
Usage
fit_pos_optim(x, maxiter = 500)
Arguments
x |
A vector of count values to be fitted |
maxiter |
number of iteration |
Value
Returns a vector with mean paramter lambda, loglikelihood value llk, convergence
Extracted summarized metrics for reference data and synthetic data
Description
Extracted summarized metrics for reference data and synthetic data
Usage
get_metrics_pd(simsrt, metric = "GeneMean")
Arguments
simsrt |
A SRTsim object |
metric |
Specification of metrics to be plotted. |
Value
Returns a dataframe for ggplot
Summarize gene-wise summary metrics
Description
Summarize gene-wise summary metrics
Usage
get_stats_gene(mat, group, log_trans = TRUE)
Arguments
mat |
A count matrix |
group |
A group label |
log_trans |
A logical constant indicating whether to log transform the gene mean and variance |
Value
Returns a n by 5 dataframe with location metrics
Summarize location-wise summary metrics
Description
Summarize location-wise summary metrics
Usage
get_stats_loc(mat, group, log_trans = TRUE)
Arguments
mat |
A count matrix |
group |
A group label |
log_trans |
A logical constant indicating whether to log transform the libsize |
Value
Returns a n by 3 dataframe with location metrics
Access User-Specified Parameters
Description
Access User-Specified Parameters
Usage
metaParam(x)
Arguments
x |
SRTsim object |
Value
Returns a list of user-specified parameters
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
metaParam(toySRT)
ReSimulate Count Data with Parameters Specification from Shiny
Description
ReSimulate Count Data with Parameters Specification from Shiny
Usage
reGenCountshiny(shinyOutput, NewSeed = NULL)
Arguments
shinyOutput |
A list of Shiny Output. Including a simCount, simInfo,simcountParam,simLocParam |
NewSeed |
A new seed for data generation. Useful when multiple replicates are needed. |
Value
Returns a Count DataFrame
Examples
## Re-generate Count Data based on ShinyOutput Parameters, should be same as simCount in ShinyOutput
cMat <- reGenCountshiny(toyShiny)
## Generate Count Data with A New Seed based on ShinyOutput Parameters
cMat2 <- reGenCountshiny(toyShiny,NewSeed=2)
## Comparison across the output
toyShiny$simCount[1:3,1:3]
cMat[1:3,1:3]
cMat2[1:3,1:3]
Access reference count matrix
Description
Access reference count matrix
Usage
refCounts(x)
Arguments
x |
SRTsim object |
Value
Returns a reference count matrix
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
refCounts(toySRT)[1:3,1:3]
Access reference colData
Description
Access reference colData
Usage
refcolData(x)
Arguments
x |
SRTsim object |
Value
Returns the colData of reference data
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
refcolData(toySRT)
Access reference rowData
Description
Access reference rowData
Usage
refrowData(x)
Arguments
x |
SRTsim object |
Value
Returns the rowData of reference data
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
refrowData(toySRT)
Access synthetic count matrix
Description
Access synthetic count matrix
Usage
simCounts(x)
Arguments
x |
SRTsim object |
Value
Returns a synthetic count matrix
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
simCounts(toySRT)[1:3,1:3]
Fit the marginal distributions for single gene
Description
Fit the marginal distributions for single gene
Usage
simNewLocs(newN, lay_out = c("grid", "random"), preLoc)
Arguments
newN |
A integer specifying the number of spatial locations in the synthetic data |
lay_out |
A character string specifying arrangement of new generated spatial locations. Default is "grid" |
preLoc |
A data frame of shape n by 3 that x, y coodinates and domain label |
Value
Returns a n by 2 dataframe with newly generated spatial locations
Access synthetic colData
Description
Access synthetic colData
Usage
simcolData(x)
Arguments
x |
SRTsim object |
Value
Returns the colData of synthetic data
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
simcolData(toySRT)
Access synthetic rowData
Description
Access synthetic rowData
Usage
simrowData(x)
Arguments
x |
SRTsim object |
Value
Returns the rowData of synthetic data
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
simrowData(toySRT)
Generate Data with Cell-Cell Interaction Under Reference-Free Mode
Description
Generate Data with Cell-Cell Interaction Under Reference-Free Mode
Usage
srtsim_cci_free(
zero_prop_in = 0,
disper_in = Inf,
mu_in = 1,
numGene = 1000,
location_in,
region_cell_map,
fc = 3,
LR_in,
sim_seed = 1,
numKNN = 4,
numSingleCellType = 2000
)
Arguments
zero_prop_in |
A number specifying zero proportion for the count model, default is 0 |
disper_in |
A number specifying dispersion for the count model, default is Inf. Same as the size parameter in rnbinom. |
mu_in |
A number specifying mean for background count model, default is 1 |
numGene |
An integer specifying the number of genes in the synthetic data, default is 1000 |
location_in |
A dataframe with x, y, and region_label |
region_cell_map |
A dataframe specifying the cell type proportion in each region. Row: region,Column: cell type. |
fc |
A number specifying effect size for ligand-receptor pairs that mediate the cel-cell communication, default is 3 |
LR_in |
A dataframe specifying ligand and receptor pairs, containing four columns: protein_a, protein_b, celltypeA, and celltype B |
sim_seed |
A number for reproducible purpose |
numKNN |
A number specifying number of nearest neighbors with elevated gene expressin levels, default is 4 |
numSingleCellType |
A number specifying number of spots in the background pool. Gene expression count are then sampled from this background pool. |
Value
Returns a SRTsim object with a newly generated count matrix and correspoding parameters
Generate Data with Cell-Cell Interaction Under Reference-Based Mode
Description
Generate Data with Cell-Cell Interaction Under Reference-Based Mode
Usage
srtsim_cci_ref(
EstParam = NULL,
numGene = 1000,
location_in,
region_cell_map,
fc = 3,
LR_in,
sim_seed = 1,
numKNN = 4,
numSingleCellType = 2000
)
Arguments
EstParam |
A list of estimated parameters from srtsim_fit function, EstParam slot if the simSRT object. |
numGene |
An integer specifying the number of genes in the synthetic data, default is 1000 |
location_in |
A dataframe with x, y, and region_label |
region_cell_map |
A dataframe specifying the cell type proportion in each region. Row: region,Column: cell type. |
fc |
A number specifying effect size for ligand-receptor pairs that mediate the cel-cell communication, default is 3 |
LR_in |
A dataframe specifying ligand and receptor pairs, containing four columns: protein_a, protein_b, celltypeA, and celltype B |
sim_seed |
A number for reproducible purpose |
numKNN |
A number specifying number of nearest neighbors with elevated gene expressin levels, default is 4 |
numSingleCellType |
A number specifying number of spots in the background pool. Gene expression count are then sampled from this background pool. |
Value
Returns a SRTsim object with a newly generated count matrix and correspoding parameters
Generate Data with Estimated Parameters
Description
Generate Data with Estimated Parameters
Usage
srtsim_count(
simsrt,
breaktie = "random",
total_count_new = NULL,
total_count_old = NULL,
rrr = NULL,
nn_num = 5,
nn_func = c("mean", "median", "ransam"),
numCores = 1,
verbose = FALSE
)
Arguments
simsrt |
A object with estimated parameters from fitting step |
breaktie |
A character string specifying how ties are treated. Same as the "tie.method" in rank function |
total_count_new |
The (expected) total number of reads or UMIs in the simulated count matrix. |
total_count_old |
The total number of reads or UMIs in the original count matrix. |
rrr |
The ratio applies to the gene-specific mean estimate, used for the fixing average sequencing depth simulation. Default is null. Its specification will override the specification of total_count_new and total_count_old. |
nn_num |
A integer of nearest neighbors, default is 5. |
nn_func |
A character string specifying how the psedo-count to be generated. options include 'mean','median' and 'ransam'. |
numCores |
The number of cores to use |
verbose |
Whether to show running information for srtsim_count |
Value
Returns a SRTsim object with a newly generated count matrix
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
## Explore the synthetic count matrix
simCounts(toySRT)[1:3,1:3]
Generate Data with Estimated Parameters For A New Designed Pattern
Description
Generate Data with Estimated Parameters For A New Designed Pattern
Usage
srtsim_count_affine(
simsrt,
reflabel,
targetlabel,
breaktie = "random",
nn_func = c("mean", "median", "ransam"),
nn_num = 5,
local_sid = NULL,
numCores = 1
)
Arguments
simsrt |
A SRTsim object with estimated parameters from fitting step |
reflabel |
A character vector specifying labels for reference regions |
targetlabel |
A character vector specifying labels for target regions |
breaktie |
A character string specifying how ties are treated. Same as the "tie.method" in rank function |
nn_func |
A character string specifying how the psedo-count to be generated. options include 'mean','median' and 'ransam'. |
nn_num |
A integer of nearest neighbors, default is 5. |
local_sid |
A numberic seed used locally for the affine transformation. Default is NULL. |
numCores |
A number of cores to use |
Value
Returns a SRTsim object with a newly generated count matrix
Examples
## Prepare Data From LIBD Sample
subinfo <- exampleLIBD$info[,c("imagecol","imagerow","layer")]
colnames(subinfo) <- c("x","y","label")
gns <- c("ENSG00000168314","ENSG00000183036", "ENSG00000132639" )
## Create a simSRT Object with Three Genes For a Fast Example
simSRT1 <- createSRT(count_in= exampleLIBD$count[gns,],loc_in =subinfo)
## Estimate model parameters for data generation: domain-specific
simSRT1 <- srtsim_fit(simSRT1,sim_schem="domain")
## Define New Layer Structures
simSRT1@refcolData$target_label <- "NL1"
simSRT1@refcolData$target_label[simSRT1@refcolData$label %in% paste0("Layer",4:5)] <- "NL2"
simSRT1@refcolData$target_label[simSRT1@refcolData$label %in% c("Layer6","WM")] <- "NL3"
## Perform Data Generation for New Defined Layer Structures
## Reference: WM --> NL3, Layer5--> NL2, Layer3 --> NL1
simSRT1 <- srtsim_count_affine(simSRT1,
reflabel=c("Layer3","Layer5","WM"),
targetlabel=c("NL1","NL2","NL3"),
nn_func="ransam"
)
## Visualize the Expression Pattern for Gene of Interest
visualize_gene(simsrt=simSRT1,plotgn = "ENSG00000168314",rev_y=TRUE,ptsizeCount=1)
Fit the marginal distributions for each row of a count matrix
Description
Fit the marginal distributions for each row of a count matrix
Usage
srtsim_fit(
simsrt,
marginal = c("auto_choose", "zinb", "nb", "poisson", "zip"),
sim_scheme = c("tissue", "domain"),
min_nonzero_num = 2,
maxiter = 500
)
Arguments
simsrt |
A SRTsim object |
marginal |
Specification of the types of marginal distribution.Default value is 'auto_choose' which chooses between ZINB, NB, ZIP, and Poisson by a likelihood ratio test (lrt),AIC and whether there is underdispersion.'zinb' will fit the ZINB model. If there is underdispersion, it will fit the Poisson model. If there is no zero at all or an error occurs, it will fit an NB model instead.'nb' fits the NB model and chooses between NB and Poisson depending on whether there is underdispersion. 'poisson' simply fits the Poisson model.'zip' fits the ZIP model and chooses between ZIP and Poisson by a likelihood ratio test |
sim_scheme |
a character string specifying simulation scheme. "tissue" stands for tissue-based simulation; "domain" stands for domain-specific simulation. Default is "tissue". |
min_nonzero_num |
The minimum number of non-zero values required for a gene to be fitted. Default is 2. |
maxiter |
The number of iterations for the model-fitting. Default is 500. |
Value
Returns an object with estimated parameters
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
Fit the marginal distributions for each row of a count matrix
Description
Fit the marginal distributions for each row of a count matrix
Usage
srtsim_newlocs(
simsrt,
new_loc_num = NULL,
loc_lay_out = c("grid", "random"),
voting_nn = 3
)
Arguments
simsrt |
A SRTsim object |
new_loc_num |
A integer specifying the number of spatial locations in the synthetic data |
loc_lay_out |
a character string specifying arrangement of new generated spatial locations. Default is "grid" |
voting_nn |
A integer of nearest neighbors used in label assignment for new generated locations. Default is 3. |
Value
Returns a object with estimated parameters
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Create New Locations within Profile
toySRT2 <- srtsim_newlocs(toySRT,new_loc_num=1000)
## Explore New Generated Locations
simcolData(toySRT2)
Subset SRT object based on domain labels of interest
Description
Subset SRT object based on domain labels of interest
Usage
subsetSRT(simsrt, sel_label = NULL)
Arguments
simsrt |
A SRTsim object |
sel_label |
A vector of selected domain labels used for the data generation |
Value
Returns a spatialExperiment-based object
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Only Keep the Spatial Locations labelled as "A" in the reference data
subtoySRT <- subsetSRT(toySRT,sel_label = "A")
A toyExample to showcase reference-based simulations
Description
A data list containing the a gene expression matrix and a location dataframe
Usage
toyData
Format
A data list
- toyCount
A sparse matrix with 100 rows and 251 columns.
- toyInfo
A data frame with 251 rows and 3 columns.
Source
created based on a ST Human Breast Cancer data to serve as an example
Examples
data(toyData) #Lazy loading. Data becomes visible as soon as called
A toyExample to showcase reference-free simulations
Description
A list of shiny output
Usage
toyShiny
Format
A list of shiny output
- simCount
A data frame with 150 rows and 980 columns.
- simInfo
A data frame with 980 rows and 4 columns: x, y, group, foldchange
- simcountParam
A list of user-specified parameters for count generation
- simLocParam
A list of user-specified parameters for pattern design
Source
created based using the SRTsim_shiny()
Examples
data(toyShiny) #Lazy loading. Data becomes visible as soon as called
Visualize expression pattern for the gene of interest in reference data and synthetic data
Description
Visualize expression pattern for the gene of interest in reference data and synthetic data
Usage
visualize_gene(
simsrt,
plotgn = NULL,
ptsizeCount = 2,
textsizeCount = 12,
rev_y = FALSE,
virOption = "D",
virDirection = -1
)
Arguments
simsrt |
A SRTsim object |
plotgn |
A gene name selected for visualization |
ptsizeCount |
Specification of point size. Default is 2. |
textsizeCount |
Specification of axis font size. Default is 12. |
rev_y |
Logical indicating whether to reverse the y axis. Default is FALSE. Useful for Visualize the LIBD data. |
virOption |
Specification of |
virDirection |
Specification of |
Value
Returns two expression plots for the gene of interest
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Create New Locations within Profile
toySRT2 <- srtsim_newlocs(toySRT,new_loc_num=1000)
## Estimate model parameters for data generation
toySRT2 <- srtsim_fit(toySRT2,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT2 <- srtsim_count(toySRT2,rrr=1)
## compare the expression pattern of HLA-B in synthetic data and reference data
visualize_gene(simsrt=toySRT2,plotgn = "HLA-B")
Visualize summarized metrics for reference data and synthetic data
Description
Visualize summarized metrics for reference data and synthetic data
Usage
visualize_metrics(
simsrt,
metric_type = c("all", "genewise", "locwise", "GeneMean", "GeneVar", "GeneCV",
"GeneZeroProp", "LocZeroProp", "LocLibSize"),
colorpalette = "Set3",
axistextsize = 12
)
Arguments
simsrt |
A SRTsim object |
metric_type |
Specification of metrics to be plotted. Default value is 'all', which will plot all six metrics: including four gene-wise metrics and two location-wise metrics. "genewise" will produce violin plots for all four gene-wise metrics; "locwise" will produce violin plots for all two location-wise metrics; "GeneMean", "GeneVar", "GeneCV", "GeneZeroProp", "LocZeroProp", and "LocLibSize" will produce single violin plot for the corresponding metric. |
colorpalette |
Specification of color palette to be passed to |
axistextsize |
Specification of axis font size. Default is 12. |
Value
Returns a list of ggplots
Examples
## Create a simSRT object
toySRT <- createSRT(count_in=toyData$toyCount,loc_in = toyData$toyInfo)
set.seed(1)
## Estimate model parameters for data generation
toySRT <- srtsim_fit(toySRT,sim_schem="tissue")
## Generate synthetic data with estimated parameters
toySRT <- srtsim_count(toySRT)
## Compute metrics
toySRT <- compareSRT(toySRT)
## Visualize Metrics
visualize_metrics(toySRT)