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SSGL Spike-and-Slab Group Lasso for Group-Regularized Generalized Lin-
ear Models (GLMs)

Description

The SSGL function implements maximum a posteriori (MAP) estimation for group-regularized
GLMs with the spike-and-slab group lasso (SSGL) penalty of Bai et al. (2022) and Bai (2023).
The identity link function is used for Gaussian regression, the logit link is used for binomial re-
gression, and the log link is used for Poisson regression. If the covariates in each xi are grouped
according to known groups g = 1, ..., G, then this function can estimate some of the G groups of
coefficients as all zero, depending on the amount of regularization.

This function only returns point estimates. Please refer to the SSGL_gibbs function if uncertainty
quantification of the model parameters is desired. In general, we recommend using SSGL for esti-
mation and variable selection and SSGL_gibbs for uncertainty quantification.

The SSGL function also has the option of returning the generalized information criterion (GIC) of
Fan and Tang (2013) for each regularization parameter in the grid lambda0. The GIC can be used
for model selection and serves as a useful alternative to cross-validation. The formula for the GIC
and a given λ0 is

DIC(λ0) =
1

n
Devianceλ0 + an × ν),

where Devianceλ0
is the deviance computed with the estimate of beta based on spike hyperpa-

rameter λ0, ν0 is the number of nonzero elements in the estimated beta, and an is a sequence
that diverges at a suitable rate relative to n. As recommended by Fan and Tang (2013), we set
an = {log(log(n))} log(p).
If cross-validation is preferred for tuning λ0, please refer to the SSGL_cv function.

Usage

SSGL(Y, X, groups, family=c("gaussian","binomial","poisson"),
X_test, group_weights, n_lambda0=25,
lambda0, lambda1=1, a=1, b=length(unique(groups)),
max_iter=100, tol = 1e-6, return_GIC=TRUE, print_lambda0=TRUE)

Arguments

Y n× 1 vector of responses for training data.

X n× p design matrix for training data, where the jth column of X corresponds to
the jth overall covariate.

groups p-dimensional vector of group labels. The jth entry in groups should contain ei-
ther the group number or the factor level name that the feature in the jth column
of X belongs to. groups must be either a vector of integers or factors.

family exponential dispersion family of the response variables. Allows for "gaussian",
"binomial", and "poisson".
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X_test ntest × p design matrix for test data to calculate predictions. X_test must have
the same number of columns as X, but not necessarily the same number of rows.
If no test data is provided or if in-sample predictions are desired, then the func-
tion automatically sets X_test=X in order to calculate in-sample predictions.

group_weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

n_lambda0 number of spike hyperparameters L. Default is n_lambda0=25.

lambda0 grid of L spike hyperparameters λ0. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

lambda1 slab hyperparameter λ1 in the SSGL prior. Default is lambda1=1.

a shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is a=1.

b shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is b=length(unique(groups)), i.e. the number of groups.

max_iter maximum number of iterations in the algorithm. Default is max_iter=100.

tol convergence threshold for algorithm. Default is tol=1e-6.

return_GIC Boolean variable for whether or not to return the GIC. Default is return_GIC=TRUE.

print_lambda0 Boolean variable for whether or not to print the current value in lambda0. De-
fault is print_lambda0=TRUE.

Value

The function returns a list containing the following components:

lambda0 L× 1 vector of spike hyperpameters lambda0 used to fit the model. lambda0 is
displayed in descending order.

beta p × L matrix of estimated regression coefficients. The kth column in beta
corresponds to the kth spike hyperparameter in lambda0.

beta0 L× 1 vector of estimated intercepts. The kth entry in beta0 corresponds to the
kth spike hyperparameter in lambda0.

classifications

G×L matrix of classifications, where G is the number of groups. An entry of "1"
indicates that the group was classified as nonzero, and an entry of "0" indicates
that the group was classified as zero. The kth column of classifications
corresponds to the kth spike hyperparameter in lambda0.

Y_pred ntest × L matrix of predicted mean response values µtest = E(Ytest) based
on the test data in X_test (or training data X if no argument was specified for
X_test). The kth column in Y_pred corresponds to the predictions for the kth
spike hyperparameter in lambda0.

GIC L × 1 vector of GIC values. The kth entry of GIC corresponds to the kth entry
in our lambda0 grid. This is not returned if return_GIC=FALSE.

lambda0_GIC_min

The value in lambda0 that minimizes GIC. This is not returned if return_GIC=FALSE.

min_GIC_index The index of lambda0_GIC_min in lambda0. This is not returned if return_GIC=FALSE.
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Examples

## Generate data
set.seed(12345)
X = matrix(runif(100*10), nrow=100)
n = dim(X)[1]
groups = c("A","A","A","B","B","B","C","C","D","D")
groups = as.factor(groups)
beta_true = c(-2.5,1.5,1.5,0,0,0,2,-2,0,0)

## Generate responses from Gaussian distribution
Y = crossprod(t(X), beta_true) + rnorm(n)

## Generate test data
n_test = 50
X_test = matrix(runif(n_test*10), nrow=n_test)

## Fit SSGL model with 10 spike hyperparameters
## NOTE: If you do not specify lambda0, the program will automatically choose a suitable grid.
SSGL_mod = SSGL(Y, X, groups, family="gaussian", X_test, lambda0=seq(from=50,to=5,by=-5))

## Regression coefficient estimates
SSGL_mod$beta

## Predicted n_test-dimensional vectors mu=E(Y.test) based on test data, X_test.
## The kth column of 'Y_pred' corresponds to the kth entry in 'lambda.'
SSGL_mod$Y_pred

## Classifications of the 8 groups. The kth column of 'classifications'
## corresponds to the kth entry in 'lambda.'
SSGL_mod$classifications

## Plot lambda vs. GIC
plot(SSGL_mod$lambda0, SSGL_mod$GIC, type='l')

## Model selection with the lambda that minimizes GIC
SSGL_mod$lambda0_GIC_min
SSGL_mod$min_GIC_index
SSGL_mod$classifications[, SSGL_mod$min_GIC_index]
SSGL_mod$beta[, SSGL_mod$min_GIC_index]



SSGL_cv 5

## Example with Poisson regression

## Generate data
set.seed(1234)
X = matrix(runif(100*10), nrow=100)
n = dim(X)[1]
groups = c("A","A","A","B","B","B","C","C","D","D")
groups = as.factor(groups)
beta_true = c(-2.5,1.5,1.5,0,0,0,2,-2,0,0)

## Generate count responses
eta = crossprod(t(X), beta_true)
Y = rpois(n, exp(eta))

## Generate test data
n_test = 50
X_test = matrix(runif(n_test*10), nrow=n_test)

## Fit SSGL model
SSGL_poisson_mod = SSGL(Y, X, groups, family="poisson")

## Regression coefficient estimates
SSGL_poisson_mod$beta

## Predicted n_test-dimensional vectors mu=E(Y.test) based on test data, X_test.
## The kth column of 'Y_pred' corresponds to the kth entry in 'lambda.'
SSGL_poisson_mod$Y_pred

## Classifications of the 8 groups. The kth column of 'classifications'
## corresponds to the kth entry in 'lambda.'
SSGL_poisson_mod$classifications

## Plot lambda vs. GIC
plot(SSGL_poisson_mod$lambda0, SSGL_poisson_mod$GIC, type='l')

## Model selection with the lambda that minimizes GIC
SSGL_poisson_mod$lambda0_GIC_min
SSGL_poisson_mod$min_GIC_index
SSGL_poisson_mod$classifications[, SSGL_mod$min_GIC_index]
SSGL_poisson_mod$beta[, SSGL_mod$min_GIC_index]

SSGL_cv Cross-Validation for Spike-and-Slab Group Lasso in Group-
Regularized Generalized Linear Models (GLMs)

Description

The SSGL_cv function implements K-fold cross-validation for choosing the regularization param-
eter λ0 in group-regularized GLMs with the spike-and-slab group lasso (SSGL) penalty of Bai et
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al. (2022) and Bai (2023). The default is K = 10. The identity link function is used for Gaus-
sian regression, the logit link is used for binomial regression, and the log link is used for Poisson
regression.

Although you can choose lambda0 from cross-validation with this function, it can be time-consuming
to do so if the number of groups G and/or the number of total covariantes p is moderate to large.
In this case, you may choose to set the argument parallelize=TRUE, which will perform K-fold
cross-validation in parallel across the K folds. If K cores are used, then this may offer a speed-up
of roughly the order of K.

As an alternative to cross-validation, you can also simply use the SSGL function on your data and
select the final model according to the lambda0 which minimizes the generalized information crite-
rion (GIC). See description of the SSGL function for more details.

Usage

SSGL_cv(Y, X, groups,
family=c("gaussian","binomial","poisson"),
group_weights, n_folds=10, n_lambda0=25,
lambda0, lambda1=1, a=1, b=length(unique(groups)),
max_iter=100, tol=1e-6, parallelize=FALSE, n_cores)

Arguments

Y n× 1 vector of responses for training data.

X n × p design matrix for training data, where the jth column corresponds to the
jth overall feature.

groups p-dimensional vector of group labels. The jth entry in groups should contain ei-
ther the group number or the factor level name that the feature in the jth column
of X belongs to. groups must be either a vector of integers or factors.

family exponential dispersion family of the response variables. Allows for "gaussian",
"binomial", and "poisson".

group_weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

n_folds number of folds K to use in K-fold cross-validation. Default is n_folds=10.

n_lambda0 number of spike hyperparameters L. Default is n_lambda0=25.

lambda0 grid of L spike hyperparameters λ0. The user may specify either a scalar or a
vector. If the user does not provide this, the program chooses the grid automati-
cally.

lambda1 slab hyperparameter λ1 in the SSGL prior. Default is lambda1=1.

a shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is a=1.

b shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is b=length(unique(groups)), i.e. the number of groups.

max_iter maximum number of iterations in the algorithm. Default is max_iter=100.

tol convergence threshold for algorithm. Default is tol=1e-6.
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parallelize Boolean variable for whether or not to parallelize K-fold cross-validation across
the K folds. If the number of group G and/or the number of predictors p is mod-
erate or large, then it may be preferable to perform cross-validation in parallel.
In this case, the user can set parallelize=TRUE.

n_cores Number of cores to use for parallelization. If the user does not specify this,
the function will use the minimum of either K or the number of available cores
minus one.

Value

The function returns a list containing the following components:

lambda0 L× 1 vector of spike hyperparameters lambda0 used to fit the model. lambda0
is displayed in descending order.

cve L× 1 vector of mean cross-validation error across all K folds. The kth entry in
cve corresponds to the kth spike hyperparameter parameter in lambda0.

cvse L × 1 vector of standard errors for cross-validation error across all K folds.
The kth entry in cvse corresponds to the kth spike hyperparameter parameter in
lambda0.

lambda0_cve_min

The value in lambda0 that minimizes mean cross-validation error cve.

min_cve_index The index of lambda0_cve_min in lambda0.

References

Bai, R. (2023). "Bayesian group regularization in generalized linear models with a continuous
spike-and-slab prior." arXiv pre-print arXiv:2007.07021.

Bai, R., Moran, G. E., Antonelli, J. L., Chen, Y., and Boland, M.R. (2022). "Spike-and-slab group
lassos for grouped regression and sparse generalized additive models." Journal of the American
Statistical Association, 117:184-197.

Examples

## Generate data
set.seed(12345)
X = matrix(runif(50*6), nrow=50)
n = dim(X)[1]
groups = c(1,1,1,2,2,2)
beta_true = c(-2,1,1.5,0,0,0)

## Generate responses from Gaussian distribution
Y = crossprod(t(X), beta_true) + rnorm(n)

## K-fold cross-validation
## NOTE: If you do not specify lambda0, the function will automatically choose a suitable grid.

ssgl_mods = SSGL_cv(Y, X, groups, family="gaussian", n_folds=5, lambda0=seq(from=16,to=4,by=-4))

## Plot cross-validation curve
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plot(ssgl_mods$lambda0, ssgl_mods$cve, type="l", xlab="lambda0", ylab="CVE")

## lambda which minimizes mean CVE
ssgl_mods$lambda0_cve_min
ssgl_mods$min_cve_index

## Example with binary logistic regression

## Generate binary responses
set.seed(123)
X = matrix(runif(50*6), nrow=50)
n = dim(X)[1]
groups = c(1,1,2,2,3,3)
beta_true = c(-2,1.5,0,0,2,-1.5)
eta = crossprod(t(X), beta_true)
Y = rbinom(n, size=1, prob=1/(1+exp(-eta)))

## K-fold cross-validation. Set parallelize=TRUE for potential speed-up
## If n_cores is not specified, then the function will automatically choose
# the minimum of either K or the number of available cores minus one.

ssgl_logistic_mods = SSGL_cv(Y, X, groups, family="binomial", parallelize=TRUE, n_cores=2)

## Plot cross-validation curve
plot(ssgl_logistic_mods$lambda0, ssgl_logistic_mods$cve, type="l", xlab="lambda0", ylab="CVE")

## lambda which minimizes mean CVE
ssgl_logistic_mods$lambda0_cve_min
ssgl_logistic_mods$min_cve_index

SSGL_gibbs Gibbs sampling for Spike-and-Slab Group Lasso in Group-
Regularized Generalized Linear Models (GLMs)

Description

The SSGL_gibbs function implements Gibbs sampling for group-regularized GLMs with the spike-
and-slab group lasso (SSGL) prior of Bai et al. (2022) and Bai (2023). The identity link function is
used for Gaussian regression, the logit link is used for binomial regression, and the log link is used
for Poisson regression.

For binomial and Poisson regression, Polya-gamma data augmentation (Polson et al., 2013) is used
to draw MCMC samples. The details are described in Bai (2023).

Note that the SSGL_gibbs function only returns the posterior mean, the 95 percent posterior credible
intervals, and the posterior samples for the elements of the model parameter β and the predicted
mean response µtest = E(Ytest). This function does not perform variable selection.

It is recommended that you use the SSGL function to perform variable selection and MAP estimation.
If uncertainty quantification is also desired, then this SSGL_gibbs function can be used.
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Usage

SSGL_gibbs(Y, X, groups, family=c("gaussian","binomial","poisson"),
X_test, group_weights, lambda0=5, lambda1=1,
a=1, b=length(unique(groups)),
burn=1000, n_mcmc=2000, save_samples=TRUE)

Arguments

Y n× 1 vector of responses for training data.

X n × p design matrix for training data, where the jth column corresponds to the
jth overall feature.

groups p-dimensional vector of group labels. The jth entry in groups should contain ei-
ther the group number or the factor level name that the feature in the jth column
of X belongs to. groups must be either a vector of integers or factors.

family exponential dispersion family of the response variables. Allows for "gaussian",
"binomial", and "poisson".

X_test ntest × p design matrix for test data to calculate predictions. X_test must have
the same number of columns as X, but not necessarily the same number of rows.
If no test data is provided or if in-sample predictions are desired, then the func-
tion automatically sets X_test=X in order to calculate in-sample predictions.

group_weights group-specific, nonnegative weights for the penalty. Default is to use the square
roots of the group sizes.

lambda0 spike hyperparameter λ0 in the SSGL prior. Default is lambda0=5.

lambda1 slab hyperparameter λ1 in the SSGL prior. Default is lambda1=1.

a shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is a=1.

b shape hyperparameter for the Beta(a, b) prior on the mixing proportion in the
SSGL prior. Default is b=length(unique(groups)), i.e. the number of groups.

burn Number of warm-up MCMC samples to discard as burn-in. Default is burn=1000.

n_mcmc Number of MCMC samples to save for posterior inference. Default is n_mcmc=2000.

save_samples Boolean variable for whether or not to save the MCMC samples for β and pre-
dicted mean response µtest = E(Ytext). Default is save_samples=TRUE.

Value

The function returns a list containing the following components:

beta_hat estimated posterior mean of p× 1 regression coefficient vector β.

Y_pred_hat estimated posterior mean of ntest × 1 vector of predicted mean response values
µtest = E(Ytest) based on the test data in X_test (or training data X if no
argument was specified for X_test).

beta_lower p× 1 vector of lower endpoints of the 95 percent posterior credible intervals for
β.

beta_upper p× 1 vector of upper endpoints of the 95 percent posterior credible intervals for
β.
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Y_pred_lower ntest× 1 vector of lower endpoints of the 95 percent posterior credible intervals
for µtest = E(Ytest).

Y_pred_upper ntest×1 vector of upper endpoints of the 95 percent posterior credible intervals
for µtest = E(Ytest).

beta_samples p× n_mcmc matrix of saved posterior samples for β. The jth row of beta_samples
consists of the posterior samples for the jth regression coefficient in β. This is
not returned if save_samples=FALSE.

Y_pred_samples ntest× n_mcmc matrix of saved posterior samples for β. The ith row of Y_pred_samples
consists of the posterior samples of the predicted mean response µi,test = E(Yi,test)
for the ith test point. This is not returned if save_samples=FALSE.

References

Bai, R. (2023). "Bayesian group regularization in generalized linear models with a continuous
spike-and-slab prior." arXiv pre-print arXiv:2007.07021.

Polson, N. G., Scott, J. G., and Windle, J. (2013). "Bayesian inference for logistic models using
Polya-gamma latent variables." Journal of the American Statistical Association, 108: 1339-1349.

Examples

## Generate data
set.seed(1)
X = matrix(runif(200*17), nrow=200)
X_test = matrix(runif(20*17), nrow=20)

n = dim(X)[1]
n_test = dim(X_test)[1]

groups = c(1,1,1,2,2,2,2,3,3,3,4,4,5,5,6,6,6)
true_beta = c(-2,2,2,0,0,0,0,0,0,0,0,0,2.5,-2.5,0,0,0)
Y = crossprod(t(X), true_beta) + rnorm(n)

## Fit SSGL model. You should use the default burn=1000 and n_mcmc=2000

SSGL_mod = SSGL_gibbs(Y, X, groups, family="gaussian", X_test, burn=500, n_mcmc=1000)

## Evaluate results
cbind("True Beta" = true_beta,

"Posterior Mean" = SSGL_mod$beta_hat,
"95 CI lower" = SSGL_mod$beta_lower,
"95 CI upper"= SSGL_mod$beta_upper)

## Predictions on test data
cbind("Predicted E(Y)" = SSGL_mod$Y_pred_hat,

"95 CI lower" = SSGL_mod$Y_pred_lower,
"95 CI upper" = SSGL_mod$Y_pred_upper)

## Example with binary logistic regression
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## Generate data
set.seed(123)
X = matrix(runif(200*16), nrow=200)
X_test = matrix(runif(50*16), nrow=50)
n = dim(X)[1]
n_test = dim(X)[2]
groups = c(1,1,1,1,2,2,2,2,3,4,4,5,5,6,6,6)
true_beta = c(-2,2,2,-2,0,0,0,0,0,0,0,2.5,-2.5,0,0,0)

## Generate binary responses
eta = crossprod(t(X), true_beta)
Y = rbinom(n, 1, 1/(1+exp(-eta)))

## Fit SSGL logistic model
SSGL_logistic_mod = SSGL_gibbs(Y, X, groups, family="binomial", X_test)

## Evaluate results
cbind("True Beta" = true_beta,

"Posterior Mean" = SSGL_logistic_mod$beta_hat,
"95 CI lower" = SSGL_logistic_mod$beta_lower,
"95 CI upper"= SSGL_logistic_mod$beta_upper)

## Predictions on test data
cbind("Predicted E(Y)" = SSGL_logistic_mod$Y_pred_hat,

"95 CI lower" = SSGL_logistic_mod$Y_pred_lower,
"95 CI upper" = SSGL_logistic_mod$Y_pred_upper)
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