Package 'SwissAir'

July 21, 2025

Version 1.1.6

Date 2024-02-07

Title Air Quality Data of Switzerland for One Year in 30 Min Resolution

Maintainer Christoph Hofer <christoph.hofer@zhaw.ch>

Description Ozone, NOx (= Sum of nitrogen monoxide and nitrogen dioxide), nitrogen monoxide, ambient temperature, dew point, wind speed and wind direction at 3 sites around lake of Lucerne in Central Switzerland in 30 min time resolution for year 2004.

LazyData yes

Depends R(>= 2.13.1)

Suggests IDPmisc(>= 1.1.17)

License GPL (>= 3)

NeedsCompilation no

Author Christoph Hofer [cre], Rene Locher [aut]

Repository CRAN

Date/Publication 2024-02-08 08:30:03 UTC

Contents

AirQual .	• •	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		2	
-----------	-----	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--

6

Index

AirQual

Description

Dataset contains Ozone (= O3), Sum of nitrogen monoxide and nitrogen dioxide (= NOx), nitrogen monoxid (= NO), ambient temperature (T), dew point (Td), wind speed (WS) and wind direction (WD) at 3 sites around lake of Lucerne in Central Switzerland in 30 min time resolution for the year 2004.

Usage

data(AirQual)

Format

A data frame with 17568 observations on the following 22 variables.

- start start time of observation (GMT+1h, no day saving time)
- ad.03 Mean concentration [ppb] of O3 in ad
- ad.NOx Mean concentration [ppb] of NOx in ad
- ad.NO Mean concentration [ppb] of NO in ad
- ad.WS Wind speed [m/s] in ad
- ad.WD Wind direction in ad
- ad.T Mean ambient temperature [deg C] in ad
- ad. Td Mean dew point [deg C] in ad
- 1u.03 Mean concentration [ppb] of O3 in sz
- lu.NOx Mean concentration [ppb] of NOx in sz
- lu.NO Mean concentration [ppb] of NO in sz
- lu.WS Wind speed [m/s] in sz
- lu.WD Wind direction in sz
- lu.T Mean ambient temperature [deg C] in sz
- lu. Td Mean dew point [deg C] in sz
- sz.03 Mean concentration [ppb] of O3 in sz
- sz.NOx Mean concentration [ppb] of NOx in sz
- sz.NO Mean concentration [ppb] of NO in sz
- sz.WS Wind speed [m/s] in sz
- sz.WD Wind direction in sz
- sz.⊺ Mean ambient temperature [deg C] in sz
- sz.Td Mean dew point [deg C] in sz

AirQual

Details

The 3 sites are

- **ad** Site in Altdorf is located 100 m east of motorway A2 from Bale to Chiasso, on an open field at the beginning of a more than 2000 m deep valley, at 438 m altitude.
- **lu** Site is located in Sedel next to town of Lucerne 35m above and 250m south of motorway A14 on a small hill with free 360 degree panorama at 484 m altitude.
- sz Site is located in Schwyz in an aerea of medium density of buildings next to a shopping center.

NO and O3 react in the atmosphere within seconds to NO2. The production and destruction of the sum of O3 and NO2 (= Ox) takes place on a much lower time scale, so that the spatial (cf. ipairs output) and temporal (cf. ilagplot) correlation of Ox is much more pronounced than the correlation of O3 or NO.

Note

Type of variable start has changed in Version 1.08 from factor to character to save memory.

Source

The data are collected by inNet corporation https://www.innetag.ch/ on behalf of in-Luft, an association for air quality controle, of the Swiss Cantons Aargau, Luzern, Nidwalden, Obwalden, Schwyz, Uri und Zug https://in-luft.ch/.

References

Rene Locher, Andreas Ruckstuhl; Plausibilisierung von Ozon, Stickoxiden und PM10: Statistische Methoden zur Effizienz- und Qualitaetssteigerung der Messdatenplausibilisierung; inLuft 2003

See Also

For viewing large datasets see library(IDPmisc)

Examples

```
str(AirQual)
sapply(AirQual, function(x) sum(is.na(x)))
cbind(min = sapply(AirQual[,-1], min, na.rm = TRUE),
    median = sapply(AirQual[,-1], median, na.rm = TRUE),
    max = sapply(AirQual[,-1], max, na.rm = TRUE))
if (require(IDPmisc) && require(grid)) {
    ## low correlation, density on logarithmic scale
    ipairs(AirQual[,c("ad.03","lu.03","sz.03")],
        ztrans = function(x){x[x<1] <- 1; log2(x)*10})
## Not run:
    ipairs(AirQual[,c("ad.NOx","lu.NOx","sz.NOx")],
        ztrans = function(x){x[x<1] <- 1; log2(x)*10})</pre>
```

```
## End(Not run)
```

```
lags <- c(1, 2, 4, 8)
ilagplot(AirQual[,c("ad.03")], set.lags = lags,
       ztrans = function(x){x[x<1] <- 1; log2(x)*10})</pre>
0x <- AirQual[,c("lu.03","sz.03")]+</pre>
      AirQual[,c("lu.NOx","sz.NOx")]-
      AirQual[,c("lu.NO","sz.NO")]
names(0x) <- c("lu","sz")</pre>
## high correlation, density on logarithmic scale
ipairs(0x,
       ztrans = function(x){x[x<1] <- 1; log2(x)*10})</pre>
ilagplot(0x$lu, set.lags = lags,
       ztrans = function(x){x[x<1] <- 1; log2(x)*10})</pre>
dat <-
    data.frame(month =as.numeric(substr(AirQual$start,4,5)),
               hour = as.numeric(substr(AirQual$start,12,13)),
               WD = AirQual$ad.WD,
               NOx = AirQual$ad.NOx,
               O3 = AirQual$ad.O3,
               Ox = AirQual$ad.03+AirQual$ad.NOx-AirQual$ad.NO)
med.dayrose <- rose(dat[,c("NOx","03","0x")],</pre>
                     subset = dat$month > 4 & dat$month < 10,</pre>
                     cyclVar =dat$hour, n.cyclVar = 24, circle = 24,
                     FUN = median, na.rm = TRUE)
## NOx (= NO+NO2) and ozone (O3) have a distinct diurnal variation of
## concentration, whereas 0x (= N02+03) varies only very slightly
grid.newpage()
plot(med.dayrose,
     general = general.control(lwd=2),
     grid =
     grid.control(ray.n = 12,
                   circ.n = 2,
                   circ.sub.n = 2,
                   cyclVar.lab = seq(0, by = 2, to = 22)),
     title =
         title.control(text = "Day Rose of Medians\nduring summer time"))
grid.newpage()
plot(med.dayrose,
     general = general.control(lwd = 3),
     grid =
         grid.control(ray.n = 12,
                       circ.n = 2,
                       circ.sub.n = 2,
                       cyclVar.lab = seq(\emptyset, by = 2, to = 22)),
     title =
         title.control(text = "Day Rose of Medians\nduring summer time"))
```

```
## exploration of upslope (North) downslope (South) wind system
 ## during summer time in the valley north of Gotthard
 ncol <- 3
 grid.newpage()
 pushViewport(viewport(layout = grid.layout(nrow = 3, ncol = ncol),
                        width = 0.98, height = 0.98))
 for (hour in seq(0, 21, 3)) {
   windrose <-
     rose(dat$WD, cyclVar = dat$WD, circle = 360, n.cyclVar = 32,
           subset = dat$hour >= hour & dat$hour < hour+2 &</pre>
                    datmonth > 4 \& datmonth < 10,
           FUN = function(x) sum(!is.na(x)),
           warn = FALSE)
   pushViewport(viewport(layout.pos.col = (hour/3)%/ncol+1,
                          layout.pos.row = (hour/3)%/%ncol+1))
   pushViewport(viewport(width = 0.9, height = 0.9))
   plot(windrose,
         general =
             general.control(lwd = 3),
         grid =
             grid.control(circ.r = seq(0, 150, 50),
                          circ.sub.r = seq(25, 150, 25),
                          circ.between = -0.2,
                          circ.cex = 0.5,
                          cyclVar.cex = 0.8,
                          ray.lim = c(0, 150)),
         title = title.control(
             text = paste(hour, "-", hour+3),
            between = 0.3, cex = 1.2)
    popViewport(n = 2)
} ## end for
} else print("Package IDPmisc is not available")
```

Index

* datasets AirQual, 2

AirQual, 2

 $\texttt{SwissAir}~(\texttt{AirQual}),\, 2$