Type: | Package |
Title: | The LIC for T Distribution Regression Analysis |
Version: | 0.4 |
Date: | 2025-2-12 |
Description: | This comprehensive toolkit for T-distributed regression is designated as "TLIC" (The LIC for T Distribution Regression Analysis) analysis. It is predicated on the assumption that the error term adheres to a T-distribution. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02664763.2022.2053949>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Imports: | stats, LaplacesDemon, fBasics |
NeedsCompilation: | no |
Author: | Guangbao Guo |
Maintainer: | Guangbao Guo <ggb11111111@163.com> |
Repository: | CRAN |
Date/Publication: | 2025-02-12 03:30:01 UTC |
Packaged: | 2025-02-11 13:28:58 UTC; A |
Calculate the LIC estimator based on A-optimal and D-optimal criterion
Description
Calculate the LIC estimator based on A-optimal and D-optimal criterion
Usage
LICnew(X, Y, alpha, K, nk)
Arguments
X |
A matrix of observations (design matrix) with size n x p |
Y |
A vector of responses with length n |
alpha |
The significance level for confidence intervals |
K |
The number of subsets to consider |
nk |
The size of each subset |
Value
A list containing:
E5 |
The LIC estimator based on A-optimal and D-optimal criterion. |
References
Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. Statistics and Computing, 34, 163 (2024). doi:10.1007/s11222-024-10471-z
Examples
p = 6; n = 1000; K = 2; nk = 200; alpha = 0.05; sigma = 1
e = rnorm(n, 0, sigma); beta = c(sort(c(runif(p, 0, 1))));
data = c(rnorm(n * p, 5, 10)); X = matrix(data, ncol = p);
Y = X %*% beta + e;
LICnew(X = X, Y = Y, alpha = alpha, K = K, nk = nk)
TLIC function based on LIC with T-distributed errors
Description
The TLIC function builds on the LIC function by introducing the assumption that the error term follows a T-distribution, thereby enhancing the length and information optimisation criterion.
Usage
TLIC(X, Y, alpha = 0.05, K = 10, nk = NULL, dist_type = "student_t")
Arguments
X |
is a design matrix |
Y |
is a random response vector of observed values |
alpha |
is the significance level |
K |
is the number of subsets |
nk |
is the sample size of subsets |
dist_type |
is the type where the error term obeys a T-distribution |
Value
MUopt, Bopt, MAEMUopt, MSEMUopt, opt, Yopt
Examples
set.seed(12)
n <- 1200
nr <- 200
p <- 5
data <- terr(n, nr, p, dist_type = "student_t")
TLIC(data$X, data$Y, alpha = 0.05, K = 10, nk = n / 10, dist_type = "student_t")
Caculate the estimators of beta on the A-opt and D-opt
Description
Caculate the estimators of beta on the A-opt and D-opt
Usage
beta_AD(K = K, nk = nk, alpha = alpha, X = X, y = y)
Arguments
K |
is the number of subsets |
nk |
is the length of subsets |
alpha |
is the significance level |
X |
is the observation matrix |
y |
is the response vector |
Value
A list containing:
betaA |
The estimator of beta on the A-opt. |
betaD |
The estimator of beta on the D-opt. |
References
Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. Statistics and Computing, 34, 163 (2024). doi:10.1007/s11222-024-10471-z
Examples
p=6;n=1000;K=2;nk=200;alpha=0.05;sigma=1
e=rnorm(n,0,sigma); beta=c(sort(c(runif(p,0,1))));
data=c(rnorm(n*p,5,10));X=matrix(data, ncol=p);
y=X%*%beta+e;
beta_AD(K=K,nk=nk,alpha=alpha,X=X,y=y)
Caculate the estimator of beta on the COR
Description
Caculate the estimator of beta on the COR
Usage
beta_cor(K = K, nk = nk, alpha = alpha, X = X, y = y)
Arguments
K |
is the number of subsets |
nk |
is the length of subsets |
alpha |
is the significance level |
X |
is the observation matrix |
y |
is the response vector |
Value
A list containing:
betaC |
The estimator of beta on the COR. |
References
Guo, G., Song, H. & Zhu, L. The COR criterion for optimal subset selection in distributed estimation. Statistics and Computing, 34, 163 (2024). doi:10.1007/s11222-024-10471-z
Examples
p=6;n=1000;K=2;nk=200;alpha=0.05;sigma=1
e=rnorm(n,0,sigma); beta=c(sort(c(runif(p,0,1))));
data=c(rnorm(n*p,5,10));X=matrix(data, ncol=p);
y=X%*%beta+e;
beta_cor(K=K,nk=nk,alpha=alpha,X=X,y=y)
terr function is used to generate a dataset where the error term follows a T-distribution
Description
This terr function generates a dataset with a specified number of observations and predictors, along with a response vector that has an error term following a T-distribution.
Usage
terr(n, nr, p, dist_type, ...)
Arguments
n |
is the number of observations |
nr |
is the number of observations with a different error T distribution |
p |
is the dimension of the observation |
dist_type |
is the type where the error term obeys a T-distribution |
... |
is additional arguments for the T-distribution function |
Value
X,Y,e
Examples
set.seed(12)
data <- terr(n = 1200, nr = 200, p = 5, dist_type = "student_t")
str(data)