Encoding: | UTF-8 |
Type: | Package |
Version: | 1.2.12 |
Date: | 2023-12-07 |
Title: | Estimation of Transition Probabilities in Multistate Models |
Depends: | R (≥ 3.1.0), graphics, grDevices, KernSmooth |
Enhances: | etm, p3state.msm |
Suggests: | knitr |
VignetteBuilder: | knitr |
Description: | Estimation of transition probabilities for the illness-death model and or the three-state progressive model. |
License: | GPL-3 |
URL: | https://github.com/arturstat/TPmsm |
BugReports: | https://github.com/arturstat/TPmsm/issues |
LazyLoad: | yes |
LazyData: | yes |
NeedsCompilation: | yes |
Packaged: | 2023-12-07 20:31:56 UTC; User |
Author: | Artur Araujo |
Maintainer: | Artur Araujo <artur.stat@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2023-12-07 21:40:08 UTC |
Estimation of Transition Probabilities in Multistate Models
Description
The TPmsm software contains functions that compute estimates for the transition probabilities in the illness-death model and or the three-state progressive model. This package implements seven different estimators. Being five of them non-parametric and two of them semi-parametric (PAJ and KMPW). The implemented estimators are the Aalen-Johansen estimator (AJ), Presmoothed Aalen-Johansen estimator (PAJ), Kaplan-Meier Weighted estimator (KMW), Presmoothed Kalpan-Meier Weighted estimator (KMPW), Inverse Probability Censoring estimator (IPCW), Lin estimator (LIN) and Location-Scale estimator (LS). The Inverse Probability Censoring (IPCW) and Lin (LIN) estimators also permit to compute transition probabilities conditioned on a single covariate. Bootstrap confidence bands can be computed for each of the mentioned estimators. Several graphical plots of the transition probabilities with or without confidence bands can be drawn. To aid in the study of the statistical properties of the implemented estimators, functions to generate pseudo-random data for some well-known multivariate distributions were implemented.
Details
Package: | TPmsm |
Type: | Package |
Version: | 1.2.12 |
Date: | 2023-12-07 |
License: | GPL-3 |
LazyLoad: | yes |
LazyData: | yes |
Author(s)
Artur Araújo, Javier Roca-Pardiñas roca@uvigo.es
and Luís Meira-Machado lmachado@math.uminho.pt
Maintainer: Artur Araújo artur.stat@gmail.com
References
Aalen O. O., Johansen S. (1978). An Empirical Transition Matrix for Nonhomogeneous Markov Chains Based on Censored Observations. Scandinavian Journal of Statistics, 5(3), 141-150. https://www.jstor.org/stable/4615704
Allignol A., Schumacher M., Beyersmann J. (2011). Empirical Transition Matrix of Multi-State Models: The etm Package. Journal of Statistical Software, 38(4), 1-15. doi:10.18637/jss.v038.i04
Amorim A. P., de Uña-Álvarez J., Meira Machado L. F. (2011). Presmoothing the transition probabilities in the illness-death model. Statistics and Probability Letters, 81(7), 797-806. doi:10.1016/j.spl.2011.02.017
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Crowley J., Hu M. (1977). Covariance analysis of heart transplant survival data. Journal of the American Statistical Association, 72(357), 27-36. doi:10.2307/2286902
Davison, A. C., Hinkley, D. V. (1997). Bootstrap Methods and their Application, Chapter 5, Cambridge University Press.
Devroye L. (1986). Non-Uniform Random Variate Generation, New York: Springer-Verlag.
Johnson M. E. (1987). Multivariate Statistical Simulation, John Wiley and Sons.
Johnson N., Kotz S. (1972). Distributions in statistics: continuous multivariate distributions, John Wiley and Sons.
Karl A. T., Eubank R., Milovanovic J., Reiser M., Young D. (2014). Using RngStreams for parallel random number generation in C++ and R. Computational Statistics, 29(5), 1301-1320. doi:10.1007/s00180-014-0492-3
Laurie J. A., Moertel C. G., Fleming T. R., Wieand H. S., Leigh J. E., Rubin J., McCormack G. W., Gerstner J. B., Krook J. E., Malliard J. (1989). Surgical adjuvant therapy of large-bowel carcinoma: An evaluation of levamisole and the combination of levamisole and fluorouracil: The North Central Cancer Treatment Group and the Mayo Clinic. Journal of Clinical Oncology, 7(10), 1447-1456. doi:10.1200/JCO.1989.7.10.1447
L'Ecuyer, P. (1999). Good parameters and implementations for combined multiple recursive random number generators. Operations Research, 47(1), 159–-164. doi:10.1287/opre.47.1.159
L’Ecuyer P., Simard R., Chen E. J., Kelton W. D. (2002). An object-oriented random-number package with many long streams and substreams. Operations Research, 50(6), 1073–-1075. doi:10.1287/opre.50.6.1073.358
Lin D. Y. (1994). Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13(21), 2233-2247. doi:10.1002/sim.4780132105
Lu J., Bhattacharya G. (1990). Some new constructions of bivariate weibull models. Annals of Institute of Statistical Mathematics, 42(3), 543-559. doi:10.1007/BF00049307
Meira Machado L. F., de Uña-Álvarez J., Cadarso-Suárez C. (2006). Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Anal, 12(3), 325-344. doi:10.1007/s10985-006-9009-x
Meira-Machado L., de Uña-Álvarez J., Datta S. (2011). Conditional Transition Probabilities in a non-Markov Illness-death Model. Discussion Papers in Statistics and Operations Research n 11/03. Department of Statistics and Operations Research, University of Vigo (ISSN: 1888-5756, Deposito Legal VG 1402-2007). https://depc05.webs.uvigo.es/reports/12_05.pdf
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi:10.1080/03610918.2012.718841
Meira-Machado L., Roca-Pardiñas J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03
Meira-Machado L., Roca-Pardiñas J., Van Keilegom I., Cadarso-Suárez C. (2013). Bandwidth Selection for the Estimation of Transition Probabilities in the Location-Scale Progressive Three-State Model. Computational Statistics, 28(5), 2185-2210. doi:10.1007/s00180-013-0402-0
Meira-Machado L., Roca-Pardiñas J., Van Keilegom I. Cadarso-Suárez C. (2010). Estimation of transition probabilities in a non-Markov model with successive survival times. https://sites.uclouvain.be/IAP-Stat-Phase-V-VI/ISBApub/dp2010/DP1053.pdf
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi:10.1002/bimj.201700200
Moertel C. G., Fleming T. R., MacDonald J. S., Haller D. G., Laurie J. A., Goodman P.J., Ungerleider J.S., Emerson W.A., Tormey D.C., Glick J.H., Veeder M.H., Maillard J.A. (1990). Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. New England Journal of Medicine, 322(6), 352-358. doi:10.1056/NEJM199002083220602
Moertel C. G., Fleming T. R., MacDonald J. S., Haller D. G., Laurie J. A., Tangen C. M., Ungerleider J. S., Emerson W. A., Tormey D. C., Glick J. H., Veeder M. H., Maillard J. A. (1995). Fluorouracil plus Levamisole as an effective adjuvant therapy after resection of stage II colon carcinoma: a final report. Annals of Internal Medicine, 122(5), 321-326. doi:10.7326/0003-4819-122-5-199503010-00001
Moreira A., de Uña-Álvarez J., Meira-Machado L. (2011). Presmoothing the Aalen-Johansen estimator of transition probabilities. Discussion Papers in Statistics and Operation Research n 11/03. Department of Statistics and Operations Research, University of Vigo (ISSN: 1888-5756, Deposito Legal VG 1402-2007). https://depc05.webs.uvigo.es/reports/11_03.pdf
Van Keilegom I., de Uña-Álvarez J., Meira-Machado L. (2011). Nonparametric location-scale models for successive survival times under dependent censoring. Journal of Statistical Planning and Inference, 141(3), 1118-1131. doi:10.1016/j.jspi.2010.09.010
Wei L. J., Lin D. Y., Weissfeld L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association, 84(408), 1065-1073. doi:10.2307/2290084
Convert a data.frame in the TPmsm format to other formats
Description
Converts a data.frame in the TPmsm format to formats supported by external packages.
Usage
TPmsmOut(data, names, package="p3state.msm")
Arguments
data |
A data.frame in the TPmsm format. |
names |
A character vector of lenght 4, indicating the variable names equivalent to variable names “time1”, “event1”, “Stime”, “event” in the TPmsm format, in this order. |
package |
The format of the data.frame. Possible options are “p3state.msm” and “etm”. Defaults to “p3state.msm”. |
Value
A data.frame in the format specified by argument package
.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Allignol A., Schumacher M., Beyersmann J. (2011). Empirical Transition Matrix of Multi-State Models: The etm Package. Journal of Statistical Software, 38(4), 1-15. doi:10.18637/jss.v038.i04
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., Roca-Pardiñas J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03
See Also
Examples
data(heartTP);
heartP3 <- TPmsmOut( heartTP, c("time1", "event1", "Stime", "event") );
head(heartP3);
as.data.frame method for a survTP object
Description
as.data.frame method for an object of class ‘survTP’.
Usage
## S3 method for class 'survTP'
as.data.frame(x, ..., package="TPmsm")
Arguments
x |
An object of class ‘survTP’. |
... |
Additional arguments to be passed to or from method. |
package |
The format of the data.frame. Possible options are “TPmsm”, “p3state.msm” and “etm”. Defaults to “TPmsm”. |
Value
A data.frame in the format specified by argument package
.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Allignol A., Schumacher M., Beyersmann J. (2011). Empirical Transition Matrix of Multi-State Models: The etm Package. Journal of Statistical Software, 38(4), 1-15. doi:10.18637/jss.v038.i04
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., Roca-Pardiñas J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi:10.18637/jss.v038.i03
See Also
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Example for the "TPmsm" format
weiTP <- dgpTP(n=100, corr=1, dist="weibull", dist.par=c(2, 7, 2, 7),
model.cens="exponential", cens.par = 6, state2.prob=0.6);
weidata <- as.data.frame(weiTP);
head(weidata);
# Example for the "etm" format
expTP <- dgpTP(n=100, corr=1, dist="exponential", dist.par=c(1, 1),
model.cens="uniform", cens.par=3, state2.prob=0.5);
expdata <- as.data.frame(expTP, package="etm");
head(expdata);
# Restore the number of threads
setThreadsTP(nth);
Bladder cancer recurrences
Description
This contains the bladder cancer recurrences data in a different format. In this study, patients had superficial bladder tumors that were removed by transurethral resection. Many patients had multiple recurrences (up to a maximum of 9) of tumors during the study, and new tumors were removed at each visit. Only the first two recurrence times (in months) are considered.
Usage
data(bladderTP)
Format
A data frame with 85 observations on the following 4 variables.
time1
Time until first recurrence/censoring time.
event1
First recurrence indicator.
Stime
Time until second recurrence/censoring time, i.e. the total time of the process.
event
First or second recurrence indicator, i.e. the censoring indicator of the total time.
References
Wei L. J., Lin D. Y., Weissfeld L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association, 84(408), 1065-1073. doi:10.2307/2290084
Chemotherapy for Stage B/C colon cancer
Description
These are data from one of the first successful trials of adjuvant chemotherapy for colon cancer. Levamisole is a low-toxicity compound previously used to treat worm infestations in animals; 5-FU is a moderately toxic (as these things go) chemotherapy agent.
Usage
data(colonTP)
Format
A data frame with 929 observations on the following 15 variables.
time1
Time to recurrence/censoring/death, whichever occurs first.
event1
Recurrence/censoring/death indicator (recurrence/dead=1, alive=0).
Stime
Time to death/censoring.
event
Censoring indicator (dead=1, alive=0).
rx
Treatment - Obs(ervation), Lev(amisole), Lev(amisole)+5-FU.
sex
1=male.
age
Age in years.
obstruct
Obstruction of colon by tumour.
perfor
Perforation of colon.
adhere
Adherence to nearby organs.
nodes
Number of lymph nodes with detectable cancer.
differ
Differentiation of tumour (1=well, 2=moderate, 3=poor).
extent
Extent of local spread (1=submucosa, 2=muscle, 3=serosa, 4=contiguous structures).
surg
Time from surgery to registration (0=short, 1=long).
node4
More than 4 positive lymph nodes.
Note
The study is originally described in Laurie (1989). The main report is found in Moertel (1990). This data set is closest to that of the final report in Moertel (1991). A version of the data with less follow-up time was used in the paper by Lin (1994).
References
Laurie J. A., Moertel C. G., Fleming T. R., Wieand H. S., Leigh J. E., Rubin J., McCormack G. W., Gerstner J. B., Krook J. E., Malliard J. (1989). Surgical adjuvant therapy of large-bowel carcinoma: An evaluation of levamisole and the combination of levamisole and fluorouracil: The North Central Cancer Treatment Group and the Mayo Clinic. Journal of Clinical Oncology, 7(10), 1447-1456. doi:10.1200/JCO.1989.7.10.1447
Lin D. Y. (1994). Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13(21), 2233-2247. doi:10.1002/sim.4780132105
Moertel C. G., Fleming T. R., MacDonald J. S., Haller D. G., Laurie J. A., Goodman P.J., Ungerleider J.S., Emerson W.A., Tormey D.C., Glick J.H., Veeder M.H., Maillard J.A. (1990). Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. New England Journal of Medicine, 322(6), 352-358. doi:10.1056/NEJM199002083220602
Moertel C. G., Fleming T. R., MacDonald J. S., Haller D. G., Laurie J. A., Tangen C. M., Ungerleider J. S., Emerson W. A., Tormey D. C., Glick J. H., Veeder M. H., Maillard J. A. (1995). Fluorouracil plus Levamisole as an effective adjuvant therapy after resection of stage II colon carcinoma: a final report. Annals of Internal Medicine, 122(5), 321-326. doi:10.7326/0003-4819-122-5-199503010-00001
contour method for a TPCmsm object
Description
contour method for an object of class ‘TPCmsm’. Creates a contour plot of the transition probabilities.
Usage
## S3 method for class 'TPCmsm'
contour(x, contour.type="tc", tr.choice, nlevels=20, levels=pretty(zlim, nlevels),
xlim, ylim, zlim=c(0, 1), col=grey(0.4), xlab, ylab, main="", sub="",
add=FALSE, las=1, conf.int=FALSE, legend=TRUE, curvlab, ...)
Arguments
x |
An object of class ‘TPCmsm’. |
contour.type |
A character string specifying the type of contour. If “tc” the contour with time in the x axis, covariate in the y axis and transition probability in the z axis is drawn. If “ct” the contour with covariate in the x axis, time in the y axis and transition probability in the z axis is drawn. Defaults to “tc”. |
tr.choice |
Character vector of the form ‘c(“from to”, “from to”)’ specifying which transitions should be plotted. Default, all the transition probabilities are plotted. |
nlevels |
The number of levels to divide the range of z. Defaults to 20 levels. |
levels |
Numeric vector of levels at which to draw contour lines.
Defaults to |
xlim |
Limits of x-axis for the plot. |
ylim |
Limits of y-axis for the plot. |
zlim |
Limits of z-axis for the plot. Defaults to |
col |
Color for the lines drawn. Defaults to |
xlab |
x-axis label. If |
ylab |
y-axis label. If |
main |
The main title for the plot. By default no main title is added. |
sub |
A sub title for the plot. By default no sub title is added. |
add |
logical. If TRUE, add to a current plot. |
las |
The style of labeling to be used. The default is to use horizontal labeling. |
conf.int |
Logical. Whether to display contour plots of confidence regions. Default is FALSE. |
legend |
A logical specifying if a legend should be added. |
curvlab |
A character or expression vector to appear in the legend. Default is the name of the transitions. |
... |
Further arguments for contour. |
Value
No value is returned.
Note
The device is divided by the number of transitions specified by argument tr.choice
.
Being the number of columns equal to the number of transitions.
If argument conf.int=TRUE
the device is further divided to make room for the confidence regions.
In this case two rows are added, one for each side of the confidence region.
So if conf.int=TRUE
the center row provides the contour of the estimates.
The upper row provides the upper side of the confidence region.
And the lower row provides the lower side of the confidence region.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., de Uña-Álvarez J., Datta S. (2011). Conditional Transition Probabilities in a non-Markov Illness-death Model. Discussion Papers in Statistics and Operations Research n 11/03. Department of Statistics and Operations Research, University of Vigo (ISSN: 1888-5756, Deposito Legal VG 1402-2007). https://depc05.webs.uvigo.es/reports/12_05.pdf
See Also
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(colonTP);
colonTP_obj <- with( colonTP, survTP(time1, event1, Stime, event, age=age) );
# Compute IPCW conditional transition probabilities without confidence band
TPCmsm_obj <- transIPCW(colonTP_obj, s=57, t=310, x=0);
# Plot contour with Time in the x-axis
contour(TPCmsm_obj, contour.type="tc", tr.choice=c("1 1", "1 2", "2 2"), ylab="Age");
# Plot contour with Time in the y-axis
contour(TPCmsm_obj, contour.type="ct", tr.choice=c("1 1", "1 2", "1 3"), xlab="Age");
# Restore the number of threads
setThreadsTP(nth);
Correlation between two gap times
Description
Provides the correlation between the bivariate times for some copula distributions.
Usage
corrTP(dist, corr, dist.par)
Arguments
dist |
The distribution. Possible bivariate distributions are “exponential” and “weibull”. |
corr |
Correlation parameter. Possible values for the bivariate exponential distribution are between -1 and 1 (0 for independency). Any value between 0 (not included) and 1 (1 for independency) is accepted for the bivariate Weibull distribution. |
dist.par |
Vector of parameters for the allowed distributions. Two (scale) parameters for the bivariate exponential distribution and four (2 location parameters and 2 scale parameters) for the bivariate Weibull distribution. See details below. |
Details
The bivariate exponential distribution, also known as Farlie-Gumbel-Morgenstern distribution is given by
F(x,y)=F_1(x)F_2(y)[1+\alpha(1-F_1(x))(1-F_2(y))]
for x\ge0
and y\ge0
. Where the marginal distribution functions F_1
and F_2
are exponential with scale parameters \theta_1
and \theta_2
and correlation parameter \alpha
, -1 \le \alpha \le 1
.
The bivariate Weibull distribution with two-parameter marginal distributions. It's survival function is given by
S(x,y)=P(X>x,Y>y)=e^{-[(\frac{x}{\theta_1})^\frac{\beta_1}{\delta}+(\frac{y}{\theta_2})^\frac{\beta_2}{\delta}]^\delta}
Where 0 < \delta \le 1
and each marginal distribution has shape parameter \beta_i
and a scale parameter \theta_i
, i = 1, 2
.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Johnson N., Kotz S. (1972). Distributions in statistics: continuous multivariate distributions, John Wiley and Sons.
Lu J., Bhattacharya G. (1990). Some new constructions of bivariate weibull models. Annals of Institute of Statistical Mathematics, 42(3), 543-559. doi:10.1007/BF00049307
See Also
Examples
# Example for the bivariate Weibull distribution
corrTP( dist = "weibull", corr = 0.5, dist.par = c(2, 7, 2, 7) );
# Example for the bivariate Exponential distribution
corrTP( dist = "exponential", corr = 1, dist.par = c(1, 1) );
Generates bivariate survival data
Description
Generates bivariate censored gap times from some known copula functions.
Usage
dgpTP(n, corr, dist, dist.par, model.cens, cens.par, state2.prob)
Arguments
n |
Sample size. |
corr |
Correlation parameter. Possible values for the bivariate exponential distribution are between -1 and 1 (0 for independency). Any value between 0 (not included) and 1 (1 for independency) is accepted for the bivariate Weibull distribution. |
dist |
Distribution. Possible bivariate distributions are “exponential” and “weibull”. |
dist.par |
Vector of parameters for the allowed distributions. Two (scale) parameters for the bivariate exponential distribution and four (2 location parameters and 2 scale parameters) for the bivariate Weibull distribution. See details below. |
model.cens |
Model for censorship. Possible values are “uniform” and “exponential”. |
cens.par |
Parameter for the censorship distribution.
For censure model equal to “exponential” the argument |
state2.prob |
The proportion of individuals that enter state 2. |
Details
The bivariate exponential distribution, also known as Farlie-Gumbel-Morgenstern distribution is given by
F(x,y)=F_1(x)F_2(y)[1+\alpha(1-F_1(x))(1-F_2(y))]
for x\ge0
and y\ge0
. Where the marginal distribution functions F_1
and F_2
are exponential with scale parameters \theta_1
and \theta_2
and correlation parameter \alpha
, -1 \le \alpha \le 1
.
The bivariate Weibull distribution with two-parameter marginal distributions. It's survival function is given by
S(x,y)=P(X>x,Y>y)=e^{-[(\frac{x}{\theta_1})^\frac{\beta_1}{\delta}+(\frac{y}{\theta_2})^\frac{\beta_2}{\delta}]^\delta}
Where 0 < \delta \le 1
and each marginal distribution has shape parameter \beta_i
and a scale parameter \theta_i
, i = 1, 2
.
Value
An object of class ‘survTP’.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Devroye L. (1986). Non-Uniform Random Variate Generation, New York: Springer-Verlag.
Johnson M. E. (1987). Multivariate Statistical Simulation, John Wiley and Sons.
Johnson N., Kotz S. (1972). Distributions in statistics: continuous multivariate distributions, John Wiley and Sons.
Lu J., Bhattacharya G. (1990). Some new constructions of bivariate weibull models. Annals of Institute of Statistical Mathematics, 42(3), 543-559. doi:10.1007/BF00049307
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi:10.1080/03610918.2012.718841
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi:10.1002/bimj.201700200
See Also
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Example for the bivariate Exponential distribution
dgpTP(n=100, corr=1, dist="exponential", dist.par=c(1, 1),
model.cens="uniform", cens.par=3, state2.prob=0.5);
# Example for the bivariate Weibull distribution
dgpTP(n=100, corr=1, dist="weibull", dist.par=c(2, 7, 2, 7),
model.cens="exponential", cens.par = 6, state2.prob=0.6);
# Restore the number of threads
setThreadsTP(nth);
More Stanford heart transplant data
Description
This contains the Stanford heart transplant data in a different format.
The main data set is in (heart
).
Survival of patients on the waiting list for the Stanford heart transplant program.
Usage
data(heartTP)
Format
A data frame with 103 observations on the following 7 variables.
time1
Time to transplant/censoring/death, whichever occurs first.
event1
Transplant/censoring/death indicator (transplanted/dead=1, alive=0).
Stime
Time to death/censoring.
event
Censoring indicator (dead=1, alive=0).
age
age-48 years.
year
Year of acceptance; in years after 1 Nov 1967.
surgery
Prior bypass surgery; 1=yes.
References
Crowley J., Hu M. (1977). Covariance analysis of heart transplant survival data. Journal of the American Statistical Association, 72(357), 27-36. doi:10.2307/2286902
image method for a TPCmsm object
Description
image method for an object of class ‘TPCmsm’. Creates a grid of colored or gray-scale rectangles with colors corresponding to the values of the transition probabilities.
Usage
## S3 method for class 'TPCmsm'
image(x, image.type="tc", tr.choice, xlim, ylim, zlim=c(0, 1), col, xlab, ylab,
main, sub, key.title, key.axes, las=1, conf.int=FALSE, legend=TRUE, curvlab,
contour=TRUE, nlevels=20, levels=pretty(zlim, nlevels), ...)
Arguments
x |
An object of class ‘TPCmsm’. |
image.type |
A character string specifying the type of image. If “tc” the image with time in the x axis, covariate in the y axis and transition probability in the z axis is drawn. If “ct” the image with covariate in the x axis, time in the y axis and transition probability in the z axis is drawn. Defaults to “tc”. |
tr.choice |
Character vector of the form ‘c(“from to”, “from to”)’ specifying which transitions should be plotted. Default, all the transition probabilities are plotted. |
xlim |
Limits of x-axis for the plot. |
ylim |
Limits of y-axis for the plot. |
zlim |
Limits of z-axis for the plot. Defaults to |
col |
Vector of colour. Defaults to |
xlab |
x-axis label. If |
ylab |
y-axis label. If |
main |
The main title for the plot. By default no main title is added. |
sub |
A sub title for the plot. By default no sub title is added. |
key.title |
Statements which add titles for the plot key. |
key.axes |
Statements which draw axes on the plot key. This overrides the default axis. |
las |
The style of labeling to be used. The default is to use horizontal labeling. |
conf.int |
Logical. Whether to display images of confidence regions. Default is FALSE. |
legend |
A logical specifying if a legend should be added. |
curvlab |
A character or expression vector to appear in the legend. Default is the name of the transitions. |
contour |
If |
nlevels |
The number of levels to divide the range of z. Defaults to 20 levels. |
levels |
Numeric vector of levels at which to draw contour lines.
Defaults to |
... |
Further arguments for image. |
Value
No value is returned.
Note
The device is divided by the number of transitions specified by argument tr.choice
.
Being the number of columns equal to the number of transitions.
If argument conf.int=TRUE
the device is further divided to make room for the confidence regions.
In this case two rows are added, one for each side of the confidence region.
So if conf.int=TRUE
the center row provides the image of the estimates.
The upper row provides the upper side of the confidence region.
And the lower row provides the lower side of the confidence region.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., de Uña-Álvarez J., Datta S. (2011). Conditional Transition Probabilities in a non-Markov Illness-death Model. Discussion Papers in Statistics and Operation Research n 11/03. Department of Statistics and Operations Research, University of Vigo (ISSN: 1888-5756, Deposito Legal VG 1402-2007). https://depc05.webs.uvigo.es/reports/12_05.pdf
See Also
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event, age=age) );
# Compute LIN conditional transition probabilities with confidence band
TPCmsm_obj <- transLIN(heartTP_obj, s=57, t=310, x=0, conf=TRUE, n.boot=100,
method.boot="basic");
# Plot image with Time in the x-axis
image(TPCmsm_obj, image.type="tc", tr.choice=c("1 1", "1 2", "2 2"),
conf.int=TRUE, ylab="Age");
# Plot image with Time in the y-axis
image(TPCmsm_obj, image.type="ct", tr.choice=c("1 1", "1 2", "1 3"),
conf.int=TRUE, xlab="Age");
# Restore the number of threads
setThreadsTP(nth);
lines method for a TPCmsm object
Description
lines method for an object of class ‘TPCmsm’.
Usage
## S3 method for class 'TPCmsm'
lines(x, plot.type="t", tr.choice, col, lty, conf.int=FALSE,
ci.col, ci.lty, legend=FALSE, legend.pos, curvlab, legend.bty="n", ...)
Arguments
x |
An object of class ‘TPCmsm’. |
plot.type |
A character string specifying the type of plot. If “t” the scatterplot of transition probability versus time is plotted. If “c” the scatterplot of transition probability versus covariate is plotted. |
tr.choice |
Character vector of the form ‘c(“from to”, “from to”)’ specifying which transitions should be plotted. Default, all the transition probabilities are plotted. |
col |
Vector of colour. |
lty |
Vector of line type. Default is 1:number of transitions. |
conf.int |
Logical. Whether to display pointwise confidence bands. Default is FALSE. |
ci.col |
Colour of the confidence bands. Default is |
ci.lty |
Line type of the confidence bands. Default is 3. |
legend |
A logical specifying if a legend should be added. |
legend.pos |
A vector giving the legend's position.
See |
curvlab |
A character or expression vector to appear in the legend. Default is the name of the transitions. |
legend.bty |
Box type for the legend. By default no box is drawn. |
... |
Further arguments for lines. |
Value
No value is returned.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., de Uña-Álvarez J., Datta S. (2011). Conditional Transition Probabilities in a non-Markov Illness-death Model. Discussion Papers in Statistics and Operation Research n 11/03. Department of Statistics and Operations Research, University of Vigo (ISSN: 1888-5756, Deposito Legal VG 1402-2007). https://depc05.webs.uvigo.es/reports/12_05.pdf
See Also
legend
,
lines
,
plot.default
,
plot.TPCmsm
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event, age=age) );
# Compute IPCW1 conditional transition probabilities without confidence band
TPC_IPCW1 <- transIPCW(heartTP_obj, s=57, t=310, x=15, conf=FALSE, method.est=1);
# Compute IPCW2 conditional transition probabilities without confidence band
TPC_IPCW2 <- transIPCW(heartTP_obj, s=57, t=310, x=15, conf=FALSE, method.est=2);
# Compute LIN conditional transition probabilities without confidence band
TPC_LIN <- transLIN(heartTP_obj, s=57, t=310, x=15, conf=FALSE);
# Build covariate plots
tr.choice <- dimnames(TPC_LIN$est)[[3]];
par.orig <- par( c("mfrow", "cex") );
par( mfrow=c(2,3) );
for ( i in seq_len( length(tr.choice) ) ) {
plot(TPC_IPCW1, plot.type="c", tr.choice=tr.choice[i], legend=FALSE,
main=tr.choice[i], col=1, lty=1, xlab="", ylab="");
lines(TPC_IPCW2, plot.type="c", tr.choice=tr.choice[i], legend=FALSE, col=2, lty=1);
lines(TPC_LIN, plot.type="c", tr.choice=tr.choice[i], legend=FALSE, col=3, lty=1);
}
plot.new();
legend(x="center", legend=c("IPCW1", "IPCW2", "LIN"), col=1:3, lty=1, bty="n", cex=1.5);
par(mfrow=c(1, 1), cex=1.2);
title(xlab="Age", ylab="Transition probability", line=3);
par(par.orig);
# Restore the number of threads
setThreadsTP(nth);
lines method for a TPmsm object
Description
lines method for an object of class ‘TPmsm’.
Usage
## S3 method for class 'TPmsm'
lines(x, tr.choice, col, lty, conf.int=FALSE, ci.col, ci.lty,
legend=FALSE, legend.pos, curvlab, legend.bty="n", ...)
Arguments
x |
An object of class ‘TPmsm’. |
tr.choice |
Character vector of the form ‘c(“from to”, “from to”)’ specifying which transitions should be plotted. Default, all the transition probabilities are plotted. |
col |
Vector of colour. Default is black. |
lty |
Vector of line type. Default is 1:number of transitions. |
conf.int |
Logical. Whether to display pointwise confidence bands. Default is FALSE. |
ci.col |
Colour of the confidence bands. Default is |
ci.lty |
Line type of the confidence bands. Default is 3. |
legend |
A logical specifying if a legend should be added. |
legend.pos |
A vector giving the legend's position.
See |
curvlab |
A character or expression vector to appear in the legend. Default is the name of the transitions. |
legend.bty |
Box type for the legend. By default no box is drawn. |
... |
Further arguments for lines. |
Value
No value is returned.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
See Also
legend
,
lines
,
plot.default
,
plot.TPmsm
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(bladderTP);
bladderTP_obj <- with( bladderTP, survTP(time1, event1, Stime, event) );
# Compute transition probabilities without confidence band
KMW <- transKMW(object=bladderTP_obj, s=5, t=59, conf=FALSE, method.est=1);
KMPW <- transKMPW(object=bladderTP_obj, s=5, t=59, conf=FALSE, method.est=1);
AJ <- transAJ(object=bladderTP_obj, s=5, t=59, conf=FALSE);
PAJ <- transPAJ(object=bladderTP_obj, s=5, t=59, conf=FALSE);
LIN <- transLIN(object=bladderTP_obj, s=5, t=59, conf=FALSE);
LS <- transLS(object=bladderTP_obj, s=5, t=59, h=c(0.25, 2.5),
nh=25, ncv=50, conf=FALSE);
# Plot '1 2' KMW transition probability estimate
par( mfrow=c(1, 1) );
plot(KMW, tr.choice="1 2", ylab="P12(5, Time)", xlab="Time",
col=1, lty=1, legend=FALSE);
# Add other '1 2' transition probability estimates
lines(KMPW, tr.choice="1 2", col=2, lty=1);
lines(AJ, tr.choice="1 2", col=3, lty=1);
lines(PAJ, tr.choice="1 2", col=4, lty=1);
lines(LIN, tr.choice="1 2", col=5, lty=1);
lines(LS, tr.choice="1 2", col=6, lty=1);
# Add legend
legend(x="topleft", legend=c("KMW", "KMPW", "AJ", "PAJ", "LIN", "LS"),
col=1:6, lty=1, bty="n");
# Plot all the transitions
tr.choice <- colnames(KMW$est);
par.orig <- par( c("mfrow", "cex") );
par( mfrow=c(2, 3) );
for ( i in seq_len( length(tr.choice) ) ) {
plot(KMW, tr.choice=tr.choice[i], col=1, lty=1, legend=FALSE,
main=tr.choice[i], xlab="", ylab="");
lines(KMPW, tr.choice=tr.choice[i], col=2, lty=1);
lines(AJ, tr.choice=tr.choice[i], col=3, lty=1);
lines(PAJ, tr.choice=tr.choice[i], col=4, lty=1);
lines(LIN, tr.choice=tr.choice[i], col=5, lty=1);
lines(LS, tr.choice=tr.choice[i], col=6, lty=1);
}
plot.new();
legend(x="center", legend=c("KMW", "KMPW", "AJ", "PAJ", "LIN", "LS"),
col=1:6, lty=1, bty="n", cex=1.5);
par(mfrow=c(1, 1), cex=1.2);
title(xlab="Time", ylab="Transition probability", line=3);
par(par.orig);
# Restore the number of threads
setThreadsTP(nth);
plot method for a TPCmsm object
Description
plot method for an object of class ‘TPCmsm’. It draws the estimated transition probabilities in a basic scatterplot.
Usage
## S3 method for class 'TPCmsm'
plot(x, plot.type="t", tr.choice, xlab, ylab, col, lty, xlim, ylim,
conf.int=FALSE, ci.col, ci.lty, legend=TRUE, legend.pos, curvlab,
legend.bty="n", ...)
Arguments
x |
An object of class ‘TPCmsm’. |
plot.type |
A character string specifying the type of plot. If “t” the scatterplot of transition probability versus time is plotted. If “c” the scatterplot of transition probability versus covariate is plotted. |
tr.choice |
Character vector of the form ‘c(“from to”, “from to”)’ specifying which transitions should be plotted. Default, all the transition probabilities are plotted. |
xlab |
x-axis label. |
ylab |
y-axis label. |
col |
Vector of colour. |
lty |
Vector of line type. Default is 1:number of transitions. |
xlim |
Limits of x-axis for the plot. |
ylim |
Limits of y-axis for the plot. |
conf.int |
Logical. Whether to display pointwise confidence bands. Default is FALSE. |
ci.col |
Colour of the confidence bands. Default is |
ci.lty |
Line type of the confidence bands. Default is 3. |
legend |
A logical specifying if a legend should be added. |
legend.pos |
A vector giving the legend's position.
See |
curvlab |
A character or expression vector to appear in the legend. Default is the name of the transitions. |
legend.bty |
Box type for the legend. By default no box is drawn. |
... |
Further arguments for plot. |
Value
No value is returned.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., de Uña-Álvarez J., Datta S. (2011). Conditional Transition Probabilities in a non-Markov Illness-death Model. Discussion Papers in Statistics and Operation Research n 11/03. Department of Statistics and Operations Research, University of Vigo (ISSN: 1888-5756, Deposito Legal VG 1402-2007). https://depc05.webs.uvigo.es/reports/12_05.pdf
See Also
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event, age=age) );
# Compute IPCW conditional transition probabilities with confidence band
TPCmsm_obj <- transIPCW(heartTP_obj, s=57, t=310, x=c(0, 15), conf=TRUE, n.boot=100,
method.boot="percentile", method.est=2);
# Build time plots
tr.choice <- dimnames(TPCmsm_obj$est)[[3]];
par.orig <- par( c("mfrow", "cex") );
par( mfrow=c(2,3) );
for ( i in seq_len( length(tr.choice) ) ) {
plot( TPCmsm_obj, plot.type="t", tr.choice=tr.choice[i], conf.int=TRUE, legend=TRUE,
main=tr.choice[i], col=seq_len( length(TPCmsm_obj$x) ), lty=1, xlab="", ylab="",
curvlab=c("Age = 0", "Age = 15") );
}
par(mfrow=c(1, 1), cex=1.2);
title(xlab="Time", ylab="Transition probability", line=3);
par(par.orig);
# Build covariate plots without colors and without confidence band
plot(TPCmsm_obj, plot.type="c", xlab="Age");
# Build covariate plots with colors and without confidence band
plot(TPCmsm_obj, plot.type="c", col=seq_len(5), lty=1, xlab="Age");
# Build covariate plots with confidence band
tr.choice <- dimnames(TPCmsm_obj$est)[[3]];
par.orig <- par( c("mfrow", "cex") );
par( mfrow=c(2,3) );
for ( i in seq_len( length(tr.choice) ) ) {
plot(TPCmsm_obj, plot.type="c", tr.choice=tr.choice[i], conf.int=TRUE, legend=FALSE,
main=tr.choice[i], xlab="", ylab="");
}
par(mfrow=c(1, 1), cex=1.2);
title( xlab="Age", ylab=paste("P(", TPCmsm_obj$s, ", ", TPCmsm_obj$t, " | Age)", sep=""), line=3);
par(par.orig);
# Restore the number of threads
setThreadsTP(nth);
plot method for a TPmsm object
Description
plot method for an object of class ‘TPmsm’. It draws the estimated transition probabilities in a basic scatterplot.
Usage
## S3 method for class 'TPmsm'
plot(x, tr.choice, xlab = "Time", ylab="Transition probability",
col, lty, xlim, ylim, conf.int=FALSE, ci.col, ci.lty,
legend=TRUE, legend.pos, curvlab, legend.bty="n", ...)
Arguments
x |
An object of class ‘TPmsm’. |
tr.choice |
Character vector of the form ‘c(“from to”, “from to”)’ specifying which transitions should be plotted. Default, all the transition probabilities are plotted. |
xlab |
x-axis label. Default is “Time”. |
ylab |
y-axis label. Default is “Transition probability”. |
col |
Vector of colour. Default is black. |
lty |
Vector of line type. Default is 1:number of transitions. |
xlim |
Limits of x-axis for the plot. |
ylim |
Limits of y-axis for the plot. |
conf.int |
Logical. Whether to display pointwise confidence bands. Default is FALSE. |
ci.col |
Colour of the confidence bands. Default is |
ci.lty |
Line type of the confidence bands. Default is 3. |
legend |
A logical specifying if a legend should be added. |
legend.pos |
A vector giving the legend's position.
See |
curvlab |
A character or expression vector to appear in the legend. Default is the name of the transitions. |
legend.bty |
Box type for the legend. By default no box is drawn. |
... |
Further arguments for plot. |
Value
No value is returned.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
See Also
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(bladderTP);
bladderTP_obj <- with( bladderTP, survTP(time1, event1, Stime, event) );
# Compute KMW transition probabilities with confidence band
TPmsm_obj <- transKMW(object=bladderTP_obj, s=5, t=59, conf=TRUE, conf.level=0.95,
method.boot="basic", method.est=2);
# Plot all the transitions without confidence band
plot(TPmsm_obj, conf.int=FALSE, col=seq_len(5), lty=1);
# Plot all the transitions with confidence band
tr.choice <- colnames(TPmsm_obj$est);
par.orig <- par( c("mfrow", "cex") );
par( mfrow=c(2,3) );
for ( i in seq_len( length(tr.choice) ) ) {
plot(TPmsm_obj, tr.choice=tr.choice[i], conf.int=TRUE, legend=FALSE, main=tr.choice[i],
xlab="", ylab="");
}
par(mfrow=c(1, 1), cex=1.2);
title(xlab="Time", ylab="Transition probability", line=3);
par(par.orig);
# Restore the number of threads
setThreadsTP(nth);
Set the initial package seed
Description
The random number generator (RNG) with multiple independent streams developed by L'Ecuyer et al. (2002) is used for parallel computation of uniform pseudorandom numbers. Package TPmsm makes extensive use of uniform pseudorandom numbers, particularly for the bootstrapping statistical techniques and for the generation of univariate and multivariate pseudorandom data. This function defines the seed for the creation of RNG streams.
Usage
setPackageSeedTP(seed=12345)
Arguments
seed |
A vector of one to six integers.
Defaults to |
Details
If the user defines a vector with length lower than six
as seed, then the seed is internally defined as a vector
of length six with the first elements equal to the user
defined values, and the leaving elements equal to 12345
.
If a vector with more than six elements is provided as seed,
then only the first six elements are used.
Value
Invisibly returns NULL.
Note
When package TPmsm loads, an initial set of RNG streams
is created, one stream for each thread available for parallel
computation. The initial set of RNG streams is created from the
package seed c(12345, 12345, 12345, 12345, 12345, 12345)
.
Every time this function is called, the old set of RNG streams
is deleted, and a new set of RNG streams is created from the
user defined package seed. After the creation of each new RNG stream,
the internally stored package seed changes. So each RNG stream is
created from a different package seed, and yields different sets of
pseudorandom numbers.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Karl A. T., Eubank R., Milovanovic J., Reiser M., Young D. (2014). Using RngStreams for parallel random number generation in C++ and R. Computational Statistics, 29(5), 1301-1320. doi:10.1007/s00180-014-0492-3
L'Ecuyer, P. (1999). Good parameters and implementations for combined multiple recursive random number generators. Operations Research, 47(1), 159–-164. doi:10.1287/opre.47.1.159
L’Ecuyer P., Simard R., Chen E. J., Kelton W. D. (2002). An object-oriented random-number package with many long streams and substreams. Operations Research, 50(6), 1073–-1075. doi:10.1287/opre.50.6.1073.358
See Also
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Define package seed
seed <- rep(x=1, times=6);
# Set package seed
setPackageSeedTP(seed);
# Create survTP object
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event) );
# Compute transition probabilities with confidence band
TPmsm0 <- transAJ(object=heartTP_obj, s=33, t=412, conf=TRUE,
conf.level=0.9, method.boot="percentile");
# Compute transition probabilities with confidence band
TPmsm1 <- transAJ(object=heartTP_obj, s=33, t=412, conf=TRUE,
conf.level=0.9, method.boot="percentile");
# The objects should be different
all.equal(TPmsm0, TPmsm1);
# Set package seed
setPackageSeedTP(seed);
# Compute transition probabilities with confidence band
TPmsm2 <- transAJ(object=heartTP_obj, s=33, t=412, conf=TRUE,
conf.level=0.9, method.boot="percentile");
# Both objects were computed from the same seed and should be equal
all.equal(TPmsm0, TPmsm2);
# Restore the number of threads
setThreadsTP(nth);
Save and restore RNG stream seeds
Description
The random number generator (RNG) with multiple independent streams developed by L'Ecuyer et al. (2002) is used for parallel computation of uniform pseudorandom numbers. Package TPmsm makes extensive use of uniform pseudorandom numbers, particularly for the bootstrapping statistical techniques and for the generation of univariate and multivariate pseudorandom data. This function permits saving and restoring the seed of each individual RNG stream.
Usage
setSeedTP(x)
Arguments
x |
either a NULL object or an object of class ‘TPmsmSeed’. |
Details
An object of class ‘TPmsmSeed’ can be obtained by a previous
call to function setSeedTP
, usually setSeedTP(NULL)
or setSeedTP()
.
The object can be saved and used as input on a later call to function setSeedTP
effectively restoring the seed of each individual RNG stream.
An object of class ‘TPmsmSeed’ can be manipulated or defined with arbitrary seeds,
however such procedure is not recommended. It is strongly recommended to input
objects of class ‘TPmsmSeed’ obtained from previous calls to function setSeedTP
.
A seed of choice can be defined by calling function setPackageSeedTP
.
Value
Invisibly returns an object of class ‘TPmsmSeed’. ‘TPmsmSeed’ objects are implemented as a list of RNG stream seeds.
Note
Unlike function setPackageSeedTP
this function doesn't
recreate the RNG streams each time it is called.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Karl A. T., Eubank R., Milovanovic J., Reiser M., Young D. (2014). Using RngStreams for parallel random number generation in C++ and R. Computational Statistics, 29(5), 1301-1320. doi:10.1007/s00180-014-0492-3
L'Ecuyer, P. (1999). Good parameters and implementations for combined multiple recursive random number generators. Operations Research, 47(1), 159–-164. doi:10.1287/opre.47.1.159
L’Ecuyer P., Simard R., Chen E. J., Kelton W. D. (2002). An object-oriented random-number package with many long streams and substreams. Operations Research, 50(6), 1073–-1075. doi:10.1287/opre.50.6.1073.358
See Also
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Generate bivariate survival data
survTP0 <- dgpTP(n=100, corr=1, dist="weibull", dist.par=c(2, 7, 2, 7),
model.cens="exponential", cens.par = 6, state2.prob=0.6);
# Save seed
seed <- setSeedTP();
# Generate bivariate survival data
survTP1 <- dgpTP(n=100, corr=1, dist="weibull", dist.par=c(2, 7, 2, 7),
model.cens="exponential", cens.par = 6, state2.prob=0.6);
# The objects should be different
all.equal(survTP0, survTP1);
# Restore seed
setSeedTP(seed);
# Generate bivariate survival data
survTP2 <- dgpTP(n=100, corr=1, dist="weibull", dist.par=c(2, 7, 2, 7),
model.cens="exponential", cens.par = 6, state2.prob=0.6);
# Both objects were computed from the same seed and should be equal
all.equal(survTP1, survTP2);
# Restore the number of threads
setThreadsTP(nth);
Set the number of threads
Description
Specifies the number of threads used by default in parallel sections.
Usage
setThreadsTP(num_threads=NULL)
Arguments
num_threads |
the number of threads to use. |
Details
If num_threads
is greater than the number of processors/cores
then the number of processors/cores is used. If package TPmsm
was compiled without OpenMP support then this function returns 1
regardless of the number of processors/cores available.
If num_threads=NULL
the number of threads is not defined.
This is useful when the current number of threads is desired
without defining a new thread number.
Value
Invisibly returns the previous number of threads.
Note
The given thread number is stored in a global variable. This global variable
is then passed to the num_threads clause defined on all parallel sections of
underlying C code. By specifying the number of threads in this way instead of
specifying with a call to omp_set_num_threads we are certain that there is
no interference with the R process. Every time this function is called the
RNG streams are recreated. For more details see setPackageSeedTP
.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
OpenMP Architecture Review Board, OpenMP Application Program Interface Version 3.0, May 2008, p110. https://www.openmp.org/wp-content/uploads/spec30.pdf
“Runtime Library Routines”, Summary of OpenMP 3.0 C/C++ Syntax, p5. https://www.openmp.org/wp-content/uploads/OpenMP3.0-SummarySpec.pdf
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Restore the number of threads
setThreadsTP(nth);
Create a survTP object
Description
Creates a ‘survTP’ object, usually used as input to other functions.
Usage
survTP(time1, event1, Stime, event, ...)
is.survTP(x)
Arguments
time1 |
Time of the transition into state 2, state 3 or censoring time. |
event1 |
Indicator of transition into state 2 or state 3; 0 if the transition time is censored and 1 otherwise. |
Stime |
The total time of the process. |
event |
Censoring indicator of the total time of the process; 0 if the total time is censored and 1 otherwise. |
... |
Any number of covariates can be specified. |
x |
Any R object. |
Value
An object of class ‘survTP’.
‘survTP’ objects are implemented as a single element list
data |
a data.frame
with |
In the case of is.survTP
, a logical value TRUE
if x
inherits from class ‘survTP’, otherwise FALSE
.
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Examples
data(bladderTP);
bladderTP_obj <- with( bladderTP, survTP(time1, event1, Stime, event) );
#or
bladderTP_obj <- survTP(bladderTP$time1, bladderTP$event1, bladderTP$Stime,
bladderTP$event);
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event, age=age) );
#or
heartTP_obj <- survTP(heartTP$time1, heartTP$event1, heartTP$Stime,
heartTP$event, age=heartTP$age);
Aalen-Johansen transition probabilities
Description
Provides estimates for the transition probabilities based on the Aalen-Johansen estimator, AJ.
Usage
transAJ(object, s, t, state.names=c("1", "2", "3"), conf=FALSE, n.boot=1000,
conf.level=0.95, method.boot="percentile")
Arguments
object |
An object of class ‘survTP’. |
s |
The first time for obtaining estimates for the transition probabilities. If missing, 0 will be used. |
t |
The second time for obtaining estimates for the transition probabilities.
If missing, the maximum of |
state.names |
A vector of characters giving the state names. |
conf |
Provides pointwise confidence bands. Defaults to |
n.boot |
The number of bootstrap samples. Defaults to 1000 samples. |
conf.level |
Level of confidence. Defaults to 0.95 (corresponding to 95%). |
method.boot |
The method used to compute bootstrap confidence bands. Possible options are “percentile” and “basic”. Defaults to “percentile”. |
Value
An object of class ‘TPmsm’. There are methods for contour
, image
, print
and plot
.
‘TPmsm’ objects are implemented as a list with elements:
method |
A string indicating the type of estimator used in the computation. |
est |
A matrix with transition probability estimates. The rows being the event times and the columns the 5 possible transitions. |
inf |
A matrix with the lower transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
sup |
A matrix with the upper transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
time |
Vector of times where the transition probabilities are computed. |
s |
Start of the time interval. |
t |
End of the time interval. |
h |
The bandwidth used. If the estimator doesn't require a bandwidth, it's set to |
state.names |
A vector of characters giving the states names. |
n.boot |
Number of bootstrap samples used in the computation of the confidence band. |
conf.level |
Level of confidence used to compute the confidence band. |
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Aalen O. O., Johansen S. (1978) An Empirical Transition Matrix for Nonhomogeneous Markov Chains Based on Censored Observations. Scandinavian Journal of Statistics 5(3), 141–150. https://www.jstor.org/stable/4615704
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014) TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1–29. doi:10.18637/jss.v062.i04
Davison A. C., Hinkley D. V. (1997) Bootstrap Methods and their Application Chapter 5, Cambridge University Press.
See Also
transIPCW
,
transKMPW
,
transKMW
,
transLIN
,
transLS
,
transPAJ
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event) );
# Compute transition probabilities
transAJ(object=heartTP_obj, s=33, t=412);
# Compute transition probabilities with confidence band
transAJ(object=heartTP_obj, s=33, t=412, conf=TRUE, conf.level=0.9,
method.boot="percentile");
# Restore the number of threads
setThreadsTP(nth);
Inverse probability censoring weighted transition probabilities
Description
Provides estimates for the transition probabilities based on inverse probability censoring weighted estimators, IPCW.
Usage
transIPCW(object, s, t, x, bw="dpik", window="normal", method.weights="NW",
state.names=c("1", "2", "3"), conf=FALSE, n.boot=1000, conf.level=0.95,
method.boot="percentile", method.est=1, ...)
Arguments
object |
An object of class ‘survTP’. |
s |
The first time for obtaining estimates for the transition probabilities. If missing, 0 will be used. |
t |
The second time for obtaining estimates for the transition probabilities.
If missing, the maximum of |
x |
Covariate values for obtaining estimates for the conditional transition probabilities. If missing, unconditioned transition probabilities will be computed. |
bw |
A character string indicating a function to compute a kernel density bandwidth. Defaults to “dpik” from package KernSmooth. Alternatively a single numeric value can be specified. |
window |
A character string specifying the desired kernel. See details below for possible options. Defaults to “normal” where the gaussian density kernel will be used. |
method.weights |
A character string specifying the desired weights method. Possible options are “NW” for the Nadaraya-Watson weights and “LL” for local linear weights. Defaults to “NW”. |
state.names |
A vector of characters giving the state names. |
conf |
Provides pointwise confidence bands. Defaults to |
n.boot |
The number of bootstrap samples. Defaults to 1000 samples. |
conf.level |
Level of confidence. Defaults to 0.95 (corresponding to 95%). |
method.boot |
The method used to compute bootstrap confidence bands. Possible options are “percentile” and “basic”. Defaults to “percentile”. |
method.est |
The method used to compute the estimate. Possible options are 1 or 2. |
... |
Further arguments.
Typically these arguments are passed to the function specified by argument |
Details
If bw="dpik"
then possible options for argument window
are “normal”, “box”, “epanech”, “biweight” or “triweight”.
When argument bw
is numeric then argument window
accepts the same options as when bw="dpik"
plus one of “tricube”, “triangular” or “cosine”.
If method.est=1
then p_{11}(s,t|X)
, p_{12}(s,t|X)
and p_{22}(s,t|X)
are estimated according to the following expressions:
p_{11}(s,t|X)=\frac{1-P(Z \leq t|X)}{1-P(Z \leq s|X)}
,
p_{12}(s,t|X)=\frac{P(Z \leq t|X)-P(Z \leq s|X)-P(s<Z \leq t, T \leq t|X)}{1-P(Z \leq s|X)}
,
p_{22}(s,t|X) =\frac{P(Z \leq s|X)-P(Z \leq s,T \leq t|X)}{P(Z \leq s|X)-P(T \leq s|X)}
.
Then, p_{13}(s,t|X)=1-p_{11}(s,t|X)-p_{12}(s,t|X)
and p_{23}(s,t|X)=1-p_{22}(s,t|X)
.
If method.est=2
then p_{11}(s,t|X)
, p_{12}(s,t|X)
and p_{22}(s,t|X)
are estimated according to the following expressions:
p_{11}(s,t|X)=\frac{P(Z>t|X)}{P(Z>s|X)}
,
p_{12}(s,t|X)=\frac{P(s<Z \leq t,T>t|X)}{P(Z>s|X)}
,
p_{22}(s,t|X) =\frac{P(Z \leq s,T>t|X)}{P(Z \leq s, T>s|X)}
.
Then, p_{13}(s,t|X)=1-p_{11}(s,t|X)-p_{12}(s,t|X)
and p_{23}(s,t|X)=1-p_{22}(s,t|X)
.
Value
If argument x
is missing or if argument object
doesn't contain a covariate,
an object of class ‘TPmsm’ is returned. There are methods for contour
, image
, print
and plot
.
‘TPmsm’ objects are implemented as a list with elements:
method |
A string indicating the type of estimator used in the computation. |
est |
A matrix with transition probability estimates. The rows being the event times and the columns the 5 possible transitions. |
inf |
A matrix with the lower transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
sup |
A matrix with the upper transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
time |
Vector of times where the transition probabilities are computed. |
s |
Start of the time interval. |
t |
End of the time interval. |
h |
The bandwidth used. If the estimator doesn't require a bandwidth, it's set to |
state.names |
A vector of characters giving the states names. |
n.boot |
Number of bootstrap samples used in the computation of the confidence band. |
conf.level |
Level of confidence used to compute the confidence band. |
If argument x
is specified and argument object
contains a covariate,
an object of class ‘TPCmsm’ is returned. There are methods for print
and plot
.
‘TPCmsm’ objects are implemented as a list with elements:
method |
A string indicating the type of estimator used in the computation. |
est |
A 3 dimensional array with transition probability estimates. The first dimension being the event times, the second the covariate values and the last one the 5 possible transitions. |
inf |
A 3 dimensional array with the lower transition probabilities of the confidence band. The first dimension being the event times, the second the covariate values and the last one the 5 possible transitions. |
sup |
A 3 dimensional array with the upper transition probabilities of the confidence band. The first dimension being the event times, the second the covariate values and the last one the 5 possible transitions. |
time |
Vector of times where the transition probabilities are computed. |
covariate |
Vector of covariate values where the conditional transition probabilities are computed. |
s |
Start of the time interval. |
t |
End of the time interval. |
x |
Additional covariate values where the conditional transition probabilities are computed, which may or may not be present in the sample. |
h |
The bandwidth used. |
state.names |
A vector of characters giving the states names. |
n.boot |
Number of bootstrap samples used in the computation of the confidence band. |
conf.level |
Level of confidence used to compute the confidence band. |
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., de Uña-Álvarez J., Datta S. (2011). Conditional Transition Probabilities in a non-Markov Illness-death Model. Discussion Papers in Statistics and Operation Research n 11/03. Department of Statistics and Operations Research, University of Vigo (ISSN: 1888-5756, Deposito Legal VG 1402-2007). https://depc05.webs.uvigo.es/reports/12_05.pdf
Meira Machado L. F., de Uña-Álvarez J., Cadarso-Suárez C. (2006). Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Anal, 12(3), 325-344. doi:10.1007/s10985-006-9009-x
Davison, A. C., Hinkley, D. V. (1997). Bootstrap Methods and their Application, Chapter 5, Cambridge University Press.
See Also
transAJ
,
transKMPW
,
transKMW
,
transLIN
,
transLS
,
transPAJ
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object with age as covariate
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event, age=age) );
# Compute unconditioned transition probabilities
transIPCW(object=heartTP_obj, s=33, t=412);
# Compute unconditioned transition probabilities with confidence band
transIPCW(object=heartTP_obj, s=33, t=412, conf=TRUE, conf.level=0.9,
method.boot="basic", method.est=2);
# Compute conditional transition probabilities
transIPCW(object=heartTP_obj, s=33, t=412, x=0);
# Compute conditional transition probabilities with confidence band
transIPCW(object=heartTP_obj, s=33, t=412, x=0, conf=TRUE, conf.level=0.95,
n.boot=100, method.boot="percentile", method.est=2);
# Restore the number of threads
setThreadsTP(nth);
Presmoothed Kaplan-Meier weighted transition probabilities
Description
Provides estimates for the transition probabilities based on presmoothed Kaplan-Meier weighted estimators, KMPW.
Usage
transKMPW(object, s, t, state.names=c("1", "2", "3"), conf=FALSE, n.boot=1000,
conf.level=0.95, method.boot="percentile", method.est=3)
Arguments
object |
An object of class ‘survTP’. |
s |
The first time for obtaining estimates for the transition probabilities. If missing, 0 will be used. |
t |
The second time for obtaining estimates for the transition probabilities.
If missing, the maximum of |
state.names |
A vector of characters giving the state names. |
conf |
Provides pointwise confidence bands. Defaults to |
n.boot |
The number of bootstrap samples. Defaults to 1000 samples. |
conf.level |
Level of confidence. Defaults to 0.95 (corresponding to 95%). |
method.boot |
The method used to compute bootstrap confidence bands. Possible options are “percentile” and “basic”. Defaults to “percentile”. |
method.est |
The method used to compute the estimate. Possible options are 1, 2, 3 or 4. |
Details
If method.est=1
then p_{11}(s,t)
, p_{12}(s,t)
and p_{22}(s,t)
are estimated according to the following expressions:
p_{11}(s,t)=\frac{1-P(Z \leq t)}{1-P(Z \leq s)}
,
p_{12}(s,t)=\frac{P(Z \leq t)-P(Z \leq s)-P(s<Z \leq t, T \leq t)}{1-P(Z \leq s)}
,
p_{22}(s,t) =\frac{P(Z \leq s)-P(Z \leq s,T \leq t)}{P(Z \leq s)-P(T \leq s)}
.
Then, p_{13}(s,t)=1-p_{11}(s,t)-p_{12}(s,t)
and p_{23}(s,t)=1-p_{22}(s,t)
.
If method.est=2
then p_{11}(s,t)
, p_{12}(s,t)
and p_{22}(s,t)
are estimated according to the following expressions:
p_{11}(s,t)=\frac{P(Z>t)}{P(Z>s)}
,
p_{12}(s,t)=\frac{P(s<Z \leq t,T>t)}{P(Z>s)}
,
p_{22}(s,t) =\frac{P(Z \leq s,T>t)}{P(Z \leq s,T>s)}
.
Then, p_{13}(s,t)=1-p_{11}(s,t)-p_{12}(s,t)
and p_{23}(s,t)=1-p_{22}(s,t)
.
If method.est=3
then p_{11}(s,t)
, p_{13}(s,t)
and p_{23}(s,t)
are estimated according to the following expressions:
p_{11}(s,t)=\frac{1-P(Z \leq t)}{1-P(Z \leq s)}
,
p_{13}(s,t)=\frac{P(Z>s,T \leq t)}{1-P(Z \leq s)}
,
p_{23}(s,t) =\frac{P(Z \leq s,s<T \leq t)}{P(Z \leq s)-P(T \leq s)}
.
Then, p_{12}(s,t)=1-p_{11}(s,t)-p_{13}(s,t)
and p_{22}(s,t)=1-p_{23}(s,t)
.
If method.est=4
then p_{11}(s,t)
, p_{13}(s,t)
and p_{23}(s,t)
are estimated according to the following expressions:
p_{11}(s,t)=\frac{P(Z>t)}{P(Z>s)}
,
p_{13}(s,t)=\frac{P(Z>s,T \leq t)}{P(Z>s)}
,
p_{23}(s,t) =\frac{P(Z \leq s,s<T \leq t)}{P(Z \leq s,T>s)}
.
Then, p_{12}(s,t)=1-p_{11}(s,t)-p_{13}(s,t)
and p_{22}(s,t)=1-p_{23}(s,t)
.
Value
An object of class ‘TPmsm’. There are methods for contour
, image
, print
and plot
.
‘TPmsm’ objects are implemented as a list with elements:
method |
A string indicating the type of estimator used in the computation. |
est |
A matrix with transition probability estimates. The rows being the event times and the columns the 5 possible transitions. |
inf |
A matrix with the lower transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
sup |
A matrix with the upper transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
time |
Vector of times where the transition probabilities are computed. |
s |
Start of the time interval. |
t |
End of the time interval. |
h |
The bandwidth used. If the estimator doesn't require a bandwidth, it's set to |
state.names |
A vector of characters giving the states names. |
n.boot |
Number of bootstrap samples used in the computation of the confidence band. |
conf.level |
Level of confidence used to compute the confidence band. |
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Amorim A. P., de Uña-Álvarez J., Meira Machado L. F. (2011). Presmoothing the transition probabilities in the illness-death model. Statistics and Probability Letters, 81(7), 797-806. doi:10.1016/j.spl.2011.02.017
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Davison, A. C., Hinkley, D. V. (1997). Bootstrap Methods and their Application, Chapter 5, Cambridge University Press.
See Also
transAJ
,
transIPCW
,
transKMW
,
transLIN
,
transLS
,
transPAJ
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event) );
# Compute transition probabilities
transKMPW(object=heartTP_obj, s=33, t=412);
# Compute transition probabilities with confidence band
transKMPW(object=heartTP_obj, s=33, t=412, conf=TRUE, conf.level=0.9,
method.boot="percentile", method.est=4);
# Restore the number of threads
setThreadsTP(nth);
Kaplan-Meier weighted transition probabilities
Description
Provides estimates for the transition probabilities based on Kaplan-Meier weighted estimators, KMW.
Usage
transKMW(object, s, t, state.names=c("1", "2", "3"), conf=FALSE, n.boot=1000,
conf.level=0.95, method.boot="percentile", method.est=3)
Arguments
object |
An object of class ‘survTP’. |
s |
The first time for obtaining estimates for the transition probabilities. If missing, 0 will be used. |
t |
The second time for obtaining estimates for the transition probabilities.
If missing, the maximum of |
state.names |
A vector of characters giving the state names. |
conf |
Provides pointwise confidence bands. Defaults to |
n.boot |
The number of bootstrap samples. Defaults to 1000 samples. |
conf.level |
Level of confidence. Defaults to 0.95 (corresponding to 95%). |
method.boot |
The method used to compute bootstrap confidence bands. Possible options are “percentile” and “basic”. Defaults to “percentile”. |
method.est |
The method used to compute the estimate. Possible options are 1, 2, 3 or 4. |
Details
If method.est=1
then p_{11}(s,t)
, p_{12}(s,t)
and p_{22}(s,t)
are estimated according to the following expressions:
p_{11}(s,t)=\frac{1-P(Z \leq t)}{1-P(Z \leq s)}
,
p_{12}(s,t)=\frac{P(Z \leq t)-P(Z \leq s)-P(s<Z \leq t, T \leq t)}{1-P(Z \leq s)}
,
p_{22}(s,t) =\frac{P(Z \leq s)-P(Z \leq s,T \leq t)}{P(Z \leq s)-P(T \leq s)}
.
Then, p_{13}(s,t)=1-p_{11}(s,t)-p_{12}(s,t)
and p_{23}(s,t)=1-p_{22}(s,t)
.
If method.est=2
then p_{11}(s,t)
, p_{12}(s,t)
and p_{22}(s,t)
are estimated according to the following expressions:
p_{11}(s,t)=\frac{P(Z>t)}{P(Z>s)}
,
p_{12}(s,t)=\frac{P(s<Z \leq t,T>t)}{P(Z>s)}
,
p_{22}(s,t) =\frac{P(Z \leq s,T>t)}{P(Z \leq s,T>s)}
.
Then, p_{13}(s,t)=1-p_{11}(s,t)-p_{12}(s,t)
and p_{23}(s,t)=1-p_{22}(s,t)
.
If method.est=3
then p_{11}(s,t)
, p_{13}(s,t)
and p_{23}(s,t)
are estimated according to the following expressions:
p_{11}(s,t)=\frac{1-P(Z \leq t)}{1-P(Z \leq s)}
,
p_{13}(s,t)=\frac{P(Z>s,T \leq t)}{1-P(Z \leq s)}
,
p_{23}(s,t) =\frac{P(Z \leq s,s<T \leq t)}{P(Z \leq s)-P(T \leq s)}
.
Then, p_{12}(s,t)=1-p_{11}(s,t)-p_{13}(s,t)
and p_{22}(s,t)=1-p_{23}(s,t)
.
If method.est=4
then p_{11}(s,t)
, p_{13}(s,t)
and p_{23}(s,t)
are estimated according to the following expressions:
p_{11}(s,t)=\frac{P(Z>t)}{P(Z>s)}
,
p_{13}(s,t)=\frac{P(Z>s,T \leq t)}{P(Z>s)}
,
p_{23}(s,t) =\frac{P(Z \leq s,s<T \leq t)}{P(Z \leq s,T>s)}
.
Then, p_{12}(s,t)=1-p_{11}(s,t)-p_{13}(s,t)
and p_{22}(s,t)=1-p_{23}(s,t)
.
Value
An object of class ‘TPmsm’. There are methods for contour
, image
, print
and plot
.
‘TPmsm’ objects are implemented as a list with elements:
method |
A string indicating the type of estimator used in the computation. |
est |
A matrix with transition probability estimates. The rows being the event times and the columns the 5 possible transitions. |
inf |
A matrix with the lower transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
sup |
A matrix with the upper transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
time |
Vector of times where the transition probabilities are computed. |
s |
Start of the time interval. |
t |
End of the time interval. |
h |
The bandwidth used. If the estimator doesn't require a bandwidth, it's set to |
state.names |
A vector of characters giving the states names. |
n.boot |
Number of bootstrap samples used in the computation of the confidence band. |
conf.level |
Level of confidence used to compute the confidence band. |
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira Machado L. F., de Uña-Álvarez J., Cadarso-Suárez C. (2006). Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Anal, 12(3), 325-344. doi:10.1007/s10985-006-9009-x
Davison, A. C., Hinkley, D. V. (1997). Bootstrap Methods and their Application, Chapter 5, Cambridge University Press.
See Also
transAJ
,
transIPCW
,
transKMPW
,
transLIN
,
transLS
,
transPAJ
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event) );
# Compute transition probabilities
transKMW(object=heartTP_obj, s=33, t=412);
# Compute transition probabilities with confidence band
transKMW(object=heartTP_obj, s=33, t=412, conf=TRUE, conf.level=0.9,
method.boot="basic", method.est=2);
# Restore the number of threads
setThreadsTP(nth);
LIN based transition probabilities
Description
Provides estimates for the transition probabilities based on LIN estimators, LIN.
Usage
transLIN(object, s, t, x, bw="dpik", window="normal", method.weights="NW",
state.names=c("1", "2", "3"), conf=FALSE, n.boot=1000, conf.level=0.95,
method.boot="percentile", ...)
Arguments
object |
An object of class ‘survTP’. |
s |
The first time for obtaining estimates for the transition probabilities. If missing, 0 will be used. |
t |
The second time for obtaining estimates for the transition probabilities.
If missing, the maximum of |
x |
Covariate values for obtaining estimates for the conditional transition probabilities. If missing, unconditioned transition probabilities will be computed. |
bw |
A character string indicating a function to compute a kernel density bandwidth. Defaults to “dpik” from package KernSmooth. Alternatively a single numeric value can be specified. |
window |
A character string specifying the desired kernel. See details below for possible options. Defaults to “normal” where the gaussian density kernel will be used. |
method.weights |
A character string specifying the desired weights method. Possible options are “NW” for the Nadaraya-Watson weights and “LL” for local linear weights. Defaults to “NW”. |
state.names |
A vector of characters giving the state names. |
conf |
Provides pointwise confidence bands. Defaults to |
n.boot |
The number of bootstrap samples. Defaults to 1000 samples. |
conf.level |
Level of confidence. Defaults to 0.95 (corresponding to 95%). |
method.boot |
The method used to compute bootstrap confidence bands. Possible options are “percentile” and “basic”. Defaults to “percentile”. |
... |
Further arguments.
Typically these arguments are passed to the function specified by argument |
Details
If bw="dpik"
then possible options for argument window
are “normal”, “box”, “epanech”, “biweight” or “triweight”.
When argument bw
is numeric then argument window
accepts the same options as when bw="dpik"
plus one of “tricube”, “triangular” or “cosine”.
Value
If argument x
is missing or if argument object
doesn't contain a covariate,
an object of class ‘TPmsm’ is returned. There are methods for contour
, image
, print
and plot
.
‘TPmsm’ objects are implemented as a list with elements:
method |
A string indicating the type of estimator used in the computation. |
est |
A matrix with transition probability estimates. The rows being the event times and the columns the 5 possible transitions. |
inf |
A matrix with the lower transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
sup |
A matrix with the upper transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
time |
Vector of times where the transition probabilities are computed. |
s |
Start of the time interval. |
t |
End of the time interval. |
h |
The bandwidth used. If the estimator doesn't require a bandwidth, it's set to |
state.names |
A vector of characters giving the states names. |
n.boot |
Number of bootstrap samples used in the computation of the confidence band. |
conf.level |
Level of confidence used to compute the confidence band. |
If argument x
is specified and argument object
contains a covariate,
an object of class ‘TPCmsm’ is returned. There are methods for print
and plot
.
‘TPCmsm’ objects are implemented as a list with elements:
method |
A string indicating the type of estimator used in the computation. |
est |
A 3 dimensional array with transition probability estimates. The first dimension being the event times, the second the covariate values and the last one the 5 possible transitions. |
inf |
A 3 dimensional array with the lower transition probabilities of the confidence band. The first dimension being the event times, the second the covariate values and the last one the 5 possible transitions. |
sup |
A 3 dimensional array with the upper transition probabilities of the confidence band. The first dimension being the event times, the second the covariate values and the last one the 5 possible transitions. |
time |
Vector of times where the transition probabilities are computed. |
covariate |
Vector of covariate values where the conditional transition probabilities are computed. |
s |
Start of the time interval. |
t |
End of the time interval. |
x |
Additional covariate values where the conditional transition probabilities are computed, which may or may not be present in the sample. |
h |
The bandwidth used. |
state.names |
A vector of characters giving the states names. |
n.boot |
Number of bootstrap samples used in the computation of the confidence band. |
conf.level |
Level of confidence used to compute the confidence band. |
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., de Uña-Álvarez J., Datta S. (2011). Conditional Transition Probabilities in a non-Markov Illness-death Model. Discussion Papers in Statistics and Operation Research n 11/03. Department of Statistics and Operations Research, University of Vigo (ISSN: 1888-5756, Deposito Legal VG 1402-2007). https://depc05.webs.uvigo.es/reports/12_05.pdf
Meira Machado L. F., de Uña-Álvarez J., Cadarso-Suárez C. (2006). Nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Anal, 12(3), 325-344. doi:10.1007/s10985-006-9009-x
Davison, A. C., Hinkley, D. V. (1997). Bootstrap Methods and their Application, Chapter 5, Cambridge University Press.
See Also
transAJ
,
transIPCW
,
transKMPW
,
transKMW
,
transLS
,
transPAJ
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object with age as covariate
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event, age=age) );
# Compute unconditioned transition probabilities
transLIN(object=heartTP_obj, s=33, t=412);
# Compute unconditioned transition probabilities with confidence band
transLIN(object=heartTP_obj, s=33, t=412, conf=TRUE, conf.level=0.9,
method.boot="basic");
# Compute conditional transition probabilities
transLIN(object=heartTP_obj, s=33, t=412, x=0);
# Compute conditional transition probabilities with confidence band
transLIN(object=heartTP_obj, s=33, t=412, x=0, conf=TRUE, conf.level=0.95,
n.boot=100, method.boot="percentile");
# Restore the number of threads
setThreadsTP(nth);
Location-Scale transition probabilities
Description
Provides estimates for the transition probabilities based on the Location-Scale estimator, LS.
Usage
transLS(object, s, t, h, nh=40, ncv=10, window="normal", state.names=c("1", "2", "3"),
conf=FALSE, n.boot=1000, conf.level=0.95, method.boot="percentile", boot.cv=FALSE,
cv.full=TRUE)
Arguments
object |
An object of class ‘survTP’. |
s |
The first time for obtaining estimates for the transition probabilities. If missing, 0 will be used. |
t |
The second time for obtaining estimates for the transition probabilities.
If missing, the maximum of |
h |
A vector with 1 up to 4 values, indicating the minimum and maximum bandwidths to test by cross-validation. |
nh |
The number of bandwidth values to test by cross-validation. Defaults to 40. |
ncv |
The number of cross-validation samples. Defaults to 10. |
window |
A character string specifying the desired kernel. Possible options are “normal”, “epanech”, “biweight”, “triweight”, “box”, “tricube”, “triangular” or “cosine”. Defaults to “normal” where the gaussian density kernel will be used. |
state.names |
A vector of characters giving the state names. |
conf |
Provides pointwise confidence bands. Defaults to |
n.boot |
The number of bootstrap samples. Defaults to 1000 samples. |
conf.level |
Level of confidence. Defaults to 0.95 (corresponding to 95%). |
method.boot |
The method used to compute bootstrap confidence bands. Possible options are “percentile” and “basic”. Defaults to “percentile”. |
boot.cv |
If |
cv.full |
If |
Value
An object of class ‘TPmsm’. There are methods for contour
, image
, print
and plot
.
‘TPmsm’ objects are implemented as a list with elements:
method |
A string indicating the type of estimator used in the computation. |
est |
A matrix with transition probability estimates. The rows being the event times and the columns the 5 possible transitions. |
inf |
A matrix with the lower transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
sup |
A matrix with the upper transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
time |
Vector of times where the transition probabilities are computed. |
s |
Start of the time interval. |
t |
End of the time interval. |
h |
The bandwidth used. If the estimator doesn't require a bandwidth, it's set to |
state.names |
A vector of characters giving the states names. |
n.boot |
Number of bootstrap samples used in the computation of the confidence band. |
conf.level |
Level of confidence used to compute the confidence band. |
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Meira-Machado L., Roca-Pardiñas J., Van Keilegom I., Cadarso-Suárez C. (2013). Bandwidth Selection for the Estimation of Transition Probabilities in the Location-Scale Progressive Three-State Model. Computational Statistics, 28(5), 2185-2210. doi:10.1007/s00180-013-0402-0
Meira-Machado L., Roca-Pardiñas J., Van Keilegom I., Cadarso-Suárez C. (2010). Estimation of transition probabilities in a non-Markov model with successive survival times. https://sites.uclouvain.be/IAP-Stat-Phase-V-VI/ISBApub/dp2010/DP1053.pdf
Van Keilegom I., de Uña-Álvarez J., Meira-Machado L. (2011). Nonparametric location-scale models for successive survival times under dependent censoring. Journal of Statistical Planning and Inference, 141(3), 1118-1131. doi:10.1016/j.jspi.2010.09.010
Davison, A. C., Hinkley, D. V. (1997). Bootstrap Methods and their Application, Chapter 5, Cambridge University Press.
See Also
transAJ
,
transIPCW
,
transKMPW
,
transKMW
,
transLIN
,
transPAJ
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(bladderTP);
bladderTP_obj <- with( bladderTP, survTP(time1, event1, Stime, event) );
# Compute transition probabilities
LS0 <- transLS(object=bladderTP_obj, s=5, t=59, h=c(0.25, 2.5), nh=25, ncv=50, conf=FALSE);
print(LS0);
# Compute transition probabilities with confidence band
h <- with( LS0, c( rep(h[1], 2), rep(h[2], 2) ) );
transLS(object=bladderTP_obj, s=5, t=59, h=h, conf=TRUE,
conf.level=0.95, method.boot="percentile", boot.cv=FALSE);
# Restore the number of threads
setThreadsTP(nth);
Presmoothed Aalen-Johansen transition probabilities
Description
Provides estimates for the transition probabilities based on the presmoothed Aalen-Johansen estimator, PAJ.
Usage
transPAJ(object, s, t, state.names=c("1", "2", "3"), conf=FALSE, n.boot=1000,
conf.level=0.95, method.boot="percentile")
Arguments
object |
An object of class ‘survTP’. |
s |
The first time for obtaining estimates for the transition probabilities. If missing, 0 will be used. |
t |
The second time for obtaining estimates for the transition probabilities.
If missing, the maximum of |
state.names |
A vector of characters giving the state names. |
conf |
Provides pointwise confidence bands. Defaults to |
n.boot |
The number of bootstrap samples. Defaults to 1000 samples. |
conf.level |
Level of confidence. Defaults to 0.95 (corresponding to 95%). |
method.boot |
The method used to compute bootstrap confidence bands. Possible options are “percentile” and “basic”. Defaults to “percentile”. |
Value
An object of class ‘TPmsm’. There are methods for contour
, image
, print
and plot
.
‘TPmsm’ objects are implemented as a list with elements:
method |
A string indicating the type of estimator used in the computation. |
est |
A matrix with transition probability estimates. The rows being the event times and the columns the 5 possible transitions. |
inf |
A matrix with the lower transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
sup |
A matrix with the upper transition probabilities of the confidence band. The rows being the event times and the columns the 5 possible transitions. |
time |
Vector of times where the transition probabilities are computed. |
s |
Start of the time interval. |
t |
End of the time interval. |
h |
The bandwidth used. If the estimator doesn't require a bandwidth, it's set to |
state.names |
A vector of characters giving the states names. |
n.boot |
Number of bootstrap samples used in the computation of the confidence band. |
conf.level |
Level of confidence used to compute the confidence band. |
Author(s)
Artur Araújo, Javier Roca-Pardiñas and Luís Meira-Machado
References
Araújo A, Meira-Machado L, Roca-Pardiñas J (2014). TPmsm: Estimation of the Transition Probabilities in 3-State Models. Journal of Statistical Software, 62(4), 1-29. doi:10.18637/jss.v062.i04
Moreira A., de Uña-Álvarez J. and Meira-Machado L. (2011). Presmoothing the Aalen-Johansen estimator of transition probabilities. Discussion Papers in Statistics and Operation Research n 11/03. Department of Statistics and Operations Research, University of Vigo (ISSN: 1888-5756, Deposito Legal VG 1402-2007). https://depc05.webs.uvigo.es/reports/11_03.pdf
Davison A. C., Hinkley D. V. (1997). Bootstrap Methods and their Application, Chapter 5, Cambridge University Press.
See Also
transAJ
,
transIPCW
,
transKMPW
,
transKMW
,
transLIN
,
transLS
.
Examples
# Set the number of threads
nth <- setThreadsTP(2);
# Create survTP object
data(heartTP);
heartTP_obj <- with( heartTP, survTP(time1, event1, Stime, event) );
# Compute transition probabilities
transPAJ(object=heartTP_obj, s=33, t=412);
# Compute transition probabilities with confidence band
transPAJ(object=heartTP_obj, s=33, t=412, conf=TRUE, conf.level=0.9,
method.boot="percentile");
# Restore the number of threads
setThreadsTP(nth);