## ----eval=FALSE--------------------------------------------------------------- # devtools::install_github("clarkevansteenderen/ThermalSampleR") ## ----eval=FALSE--------------------------------------------------------------- # library(ThermalSampleR) ## ----eval=FALSE--------------------------------------------------------------- # shiny::runUrl("https://github.com/clarkevansteenderen/ThermalSampleR_Shiny/archive/main.tar.gz") ## ----------------------------------------------------------------------------- head(ThermalSampleR::coreid_data) ## ----eval=FALSE--------------------------------------------------------------- # # Set a seed to make the results reproducible, for illustrative purposes. # set.seed(2012) # # # Perform simulations # bt_one = boot_one( # # Which dataframe does the data come from? # data = coreid_data, # # Provide the column name containing the taxon ID # groups_col = col, # # Provide the name of the taxon to be tested # groups_which = "Catorhintha schaffneri_APM", # # Provide the name of the column containing the response variable (e.g CTmin data) # response = response, # # Maximum sample sample to extrapolate to # n_max = 49, # # How many bootstrap resamples should be drawn? # iter = 299) # dplyr::glimpse(bt_one) ## ----eval=FALSE--------------------------------------------------------------- # plot_one_group( # # Variable containing the output from running `boot_one` function # x = bt_one, # # Minimum sample size to plot # n_min = 3, # # Actual size of your existing dataset # n_max = 15, # # Colour for your experimental data # colour_exp = "forestgreen", # # Colour for the extrapolated predictions # colour_extrap = "orange", # # Position of the legend # legend.position = "right", # # Change the degree of shading on the graph # alpha_val = 0.25) ## ----eval=FALSE--------------------------------------------------------------- # # Set a seed to make the results reproducible, for illustrative purposes. # set.seed(2012) # # # Perform simulations # bt_two <- boot_two( # # Which dataframe does the data come from? # data = coreid_data, # # Provide the column name containing the taxon ID # groups_col = col, # # Provide the name of the column containing the response variable (e.g CTmin data) # response = response, # # Provide the name of the first taxon to be compared # group1 = "Catorhintha schaffneri_APM", # # Provide the name of the second taxon to be compared # group2 = "Catorhintha schaffneri_NPM", # # Maximum sample sample to extrapolate to # n_max = 49, # # How many bootstrap resamples should be drawn? # iter = 299) # dplyr::glimpse(bt_two) ## ----eval=FALSE--------------------------------------------------------------- # plot_two_groups( # # Variable containing the output from running `boot_two` function # x = bt_two, # # Minimum sample size to plot # n_min = 3, # # Actual size of your existing dataset # n_max = 30, # # Colour for your experimental data # colour_exp = "blue", # # Colour for the extrapolated predictions # colour_extrap = "red", # # Position of the legend # legend.position = "right", # # Change the degree of shading on the graph # alpha_val = 0.25) ## ----eval=FALSE--------------------------------------------------------------- # tte = equiv_tost( # # Which dataframe does the data come from? # data = coreid_data, # # Provide the column name containing the taxon ID # groups_col = col, # # Provide the name of the taxon to be tested # groups_which = "Catorhintha schaffneri_APM", # # Provide the name of the column containing the response variable (e.g CTmin data) # response = response, # # Define the skewness parameters # skews = c(1,10), # # Define the equivalence of subsets to full population CT estimate (unit = degree Celcius) # equiv_margin = 1, # # Size of the population to sample (will test subsamples of size pop_n - x against pop_n for equivalence). Defaults to population size = 30 # pop_n = 30 # ) # # # Inspect ouput # tte