Type: | Package |
Title: | Melting Temperature of Nucleic Acid Sequences |
Version: | 1.0.3 |
Date: | 2022-02-20 |
Author: | Junhui Li |
Maintainer: | Junhui Li <junhuili@cau.edu.cn> |
Description: | This tool is extended from methods in Bio.SeqUtils.MeltingTemp of python. The melting temperature of nucleic acid sequences can be calculated in three method, the Wallace rule (Thein & Wallace (1986) <doi:10.1016/S0140-6736(86)90739-7>), empirical formulas based on G and C content (Marmur J. (1962) <doi:10.1016/S0022-2836(62)80066-7>, Schildkraut C. (2010) <doi:10.1002/bip.360030207>, Wetmur J G (1991) <doi:10.3109/10409239109114069>, Untergasser,A. (2012) <doi:10.1093/nar/gks596>, von Ahsen N (2001) <doi:10.1093/clinchem/47.11.1956>) and nearest neighbor thermodynamics (Breslauer K J (1986) <doi:10.1073/pnas.83.11.3746>, Sugimoto N (1996) <doi:10.1093/nar/24.22.4501>, Allawi H (1998) <doi:10.1093/nar/26.11.2694>, SantaLucia J (2004) <doi:10.1146/annurev.biophys.32.110601.141800>, Freier S (1986) <doi:10.1073/pnas.83.24.9373>, Xia T (1998) <doi:10.1021/bi9809425>, Chen JL (2012) <doi:10.1021/bi3002709>, Bommarito S (2000) <doi:10.1093/nar/28.9.1929>, Turner D H (2010) <doi:10.1093/nar/gkp892>, Sugimoto N (1995) <doi:10.1016/S0048-9697(98)00088-6>, Allawi H T (1997) <doi:10.1021/bi962590c>, Santalucia N (2005) <doi:10.1093/nar/gki918>), and it can also be corrected with salt ions and chemical compound (SantaLucia J (1996) <doi:10.1021/bi951907q>, SantaLucia J(1998) <doi:10.1073/pnas.95.4.1460>, Owczarzy R (2004) <doi:10.1021/bi034621r>, Owczarzy R (2008) <doi:10.1021/bi702363u>). |
BugReports: | https://github.com/JunhuiLi1017/TmCalculator/issues |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Depends: | R (≥ 2.10) |
NeedsCompilation: | no |
Repository: | CRAN |
RoxygenNote: | 7.1.2 |
Packaged: | 2022-02-21 03:44:19 UTC; junhuili |
Date/Publication: | 2022-02-21 04:10:03 UTC |
Calculate G and C content of nucleotide sequences
Description
Calculate G and C content of nucleotide sequences. The number of G and C in sequence is divided by length of sequence(when totalnt is TRUE) or the number of all A,T,C,G and ambiguous base.
Usage
GC(ntseq, ambiguous = FALSE, totalnt = TRUE)
Arguments
ntseq |
Sequence (5' to 3') of one strand of the nucleic acid duplex as string or vector of characters. |
ambiguous |
Ambiguous bases are taken into account to compute the G and C content when ambiguous is TRUE. |
totalnt |
Sum of 'G' and 'C' bases divided by the length of the sequence when totalnt is TRUE. |
Value
Content of G and C(range from 0 to 100
Author(s)
Junhui Li
Examples
GC(c("a","t","c","t","g","g","g","c","c","a","g","t","a"))#53.84615
GC("GCATSWSYK",ambiguous = TRUE)#55.55556
Calculate the melting temperature using empirical formulas based on GC content
Description
Calculate the melting temperature using empirical formulas based on GC content with different options
Usage
Tm_GC(
ntseq,
ambiguous = FALSE,
userset = NULL,
variant = c("Primer3Plus", "Chester1993", "QuikChange", "Schildkraut1965",
"Wetmur1991_MELTING", "Wetmur1991_RNA", "Wetmur1991_RNA/DNA", "vonAhsen2001"),
Na = 0,
K = 0,
Tris = 0,
Mg = 0,
dNTPs = 0,
saltcorr = c("Schildkraut2010", "Wetmur1991", "SantaLucia1996", "SantaLucia1998-1",
"Owczarzy2004", "Owczarzy2008"),
mismatch = TRUE,
DMSO = 0,
fmd = 0,
DMSOfactor = 0.75,
fmdfactor = 0.65,
fmdmethod = c("concentration", "molar"),
outlist = TRUE
)
Arguments
ntseq |
Sequence (5' to 3') of one strand of the nucleic acid duplex as string or vector of characters. |
ambiguous |
Ambiguous bases are taken into account to compute the G and C content when ambiguous is TRUE. |
userset |
A vector of four coefficient values. Usersets override value sets. |
variant |
Empirical constants coefficient with 8 variant: Chester1993, QuikChange, Schildkraut1965, Wetmur1991_MELTING, Wetmur1991_RNA, Wetmur1991_RNA/DNA, Primer3Plus and vonAhsen2001 |
Na |
Millimolar concentration of Na, default is 0 |
K |
Millimolar concentration of K, default is 0 |
Tris |
Millimolar concentration of Tris, default is 0 |
Mg |
Millimolar concentration of Mg, default is 0 |
dNTPs |
Millimolar concentration of dNTPs, default is 0 |
saltcorr |
Salt correction method should be chosen when provide 'userset'. Options are "Schildkraut2010", "Wetmur1991","SantaLucia1996","SantaLucia1998-1","Owczarzy2004","Owczarzy2008". Note that "SantaLucia1998-2" is not available for this function. |
mismatch |
If 'True' (default) every 'X' in the sequence is counted as mismatch |
DMSO |
Percent DMSO |
fmd |
Formamide concentration in percentage (fmdmethod="concentration") or molar (fmdmethod="molar"). |
DMSOfactor |
Coeffecient of Tm decreases per percent DMSO. Default=0.75 von Ahsen N (2001) <PMID:11673362>. Other published values are 0.5, 0.6 and 0.675. |
fmdfactor |
Coeffecient of Tm decrease per percent formamide. Default=0.65. Several papers report factors between 0.6 and 0.72. |
fmdmethod |
"concentration" method for formamide concentration in percentage and "molar" for formamide concentration in molar |
outlist |
output a list of Tm and options or only Tm value, default is TRUE. |
Details
Empirical constants coefficient with 8 variant:
Chester1993: Tm = 69.3 + 0.41(Percentage_GC) - 650/N
QuikChange: Tm = 81.5 + 0.41(Percentage_GC) - 675/N - Percentage_mismatch
Schildkraut1965: Tm = 81.5 + 0.41(Percentage_GC) - 675/N + 16.6 x log[Na+]
Wetmur1991_MELTING: Tm = 81.5 + 0.41(Percentage_GC) - 500/N + 16.6 x log([Na+]/(1.0 + 0.7 x [Na+])) - Percentage_mismatch
Wetmur1991_RNA: Tm = 78 + 0.7(Percentage_GC) - 500/N + 16.6 x log([Na+]/(1.0 + 0.7 x [Na+])) - Percentage_mismatch
Wetmur1991_RNA/DNA: Tm = 67 + 0.8(Percentage_GC) - 500/N + 16.6 x log([Na+]/(1.0 + 0.7 x [Na+])) - Percentage_mismatch
Primer3Plus: Tm = 81.5 + 0.41(Percentage_GC) - 600/N + 16.6 x log[Na+]
vonAhsen2001: Tm = 77.1 + 0.41(Percentage_GC) - 528/N + 11.7 x log[Na+]
Author(s)
Junhui Li
References
Marmur J , Doty P . Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature.[J]. Journal of Molecular Biology, 1962, 5(1):109-118.
Schildkraut C . Dependence of the melting temperature of DNA on salt concentration[J]. Biopolymers, 2010, 3(2):195-208.
Wetmur J G . DNA Probes: Applications of the Principles of Nucleic Acid Hybridization[J]. CRC Critical Reviews in Biochemistry, 1991, 26(3-4):33.
Untergasser A , Cutcutache I , Koressaar T , et al. Primer3–new capabilities and interfaces[J]. Nucleic Acids Research, 2012, 40(15):e115-e115.
von Ahsen N, Wittwer CT, Schutz E , et al. Oligonucleotide melting temperatures under PCR conditions: deoxynucleotide Triphosphate and Dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. Clin Chem 2001, 47:1956-1961.
Examples
ntseq <- c("ATCGTGCGTAGCAGTACGATCAGTAG")
out <- Tm_GC(ntseq,ambiguous=TRUE,variant="Primer3Plus",Na=50,mismatch=TRUE)
out
out$Tm
out$Options
Calculate melting temperature using nearest neighbor thermodynamics
Description
Calculate melting temperature using nearest neighbor thermodynamics
Usage
Tm_NN(
ntseq,
ambiguous = FALSE,
comSeq = NULL,
shift = 0,
nn_table = c("DNA_NN4", "DNA_NN1", "DNA_NN2", "DNA_NN3", "RNA_NN1", "RNA_NN2",
"RNA_NN3", "R_DNA_NN1"),
tmm_table = "DNA_TMM1",
imm_table = "DNA_IMM1",
de_table = c("DNA_DE1", "RNA_DE1"),
dnac1 = 25,
dnac2 = 25,
selfcomp = FALSE,
Na = 0,
K = 0,
Tris = 0,
Mg = 0,
dNTPs = 0,
saltcorr = c("Schildkraut2010", "Wetmur1991", "SantaLucia1996", "SantaLucia1998-1",
"SantaLucia1998-2", "Owczarzy2004", "Owczarzy2008"),
DMSO = 0,
fmd = 0,
DMSOfactor = 0.75,
fmdfactor = 0.65,
fmdmethod = c("concentration", "molar"),
outlist = TRUE
)
Arguments
ntseq |
Sequence (5' to 3') of one strand of the nucleic acid duplex as string or vector of characters. |
ambiguous |
Ambiguous bases are taken into account to compute the G and C content when ambiguous is TRUE.Default is FALSE. |
comSeq |
Complementary sequence. The sequence of the template/target in 3'->5' direction |
shift |
Shift of the primer/probe sequence on the template/target sequence, default=0. for example: when shift=0, the first nucleotide base at 5' end of primer align to first one at 3' end of template. When shift=-1, the second nucleotide base at 5' end of primer align to first one at 3' end of template. When shift=1, the first nucleotide base at 5' end of primer align to second one at 3' end of template. The shift parameter is necessary to align primer/probe and template/target if they have different lengths or if they should have dangling ends. |
nn_table |
Thermodynamic NN values, eight tables are implemented. For DNA/DNA hybridizations: DNA_NN1,DNA_NN2,DNA_NN3,DNA_NN4 For RNA/RNA hybridizations: RNA_NN1,RNA_NN2,RNA_NN3 For RNA/DNA hybridizations: R_DNA_NN1 |
tmm_table |
Thermodynamic values for terminal mismatches. Default: DNA_TMM1 |
imm_table |
Thermodynamic values for internal mismatches, may include insosine mismatches. Default: DNA_IMM1 |
de_table |
Thermodynamic values for dangling ends. DNA_DE1(default) and RNA_DE1 |
dnac1 |
Concentration of the higher concentrated strand [nM]. Typically this will be the primer (for PCR) or the probe. Default=25. |
dnac2 |
Concentration of the lower concentrated strand [nM]. |
selfcomp |
Sequence self-complementary, default=False. If 'True' the primer is thought binding to itself, thus dnac2 is not considered. |
Na |
Millimolar concentration of Na, default is 0 |
K |
Millimolar concentration of K, default is 0 |
Tris |
Millimolar concentration of Tris, default is 0 |
Mg |
Millimolar concentration of Mg, default is 0 |
dNTPs |
Millimolar concentration of dNTPs, default is 0 |
saltcorr |
Salt correction method should be chosen when provide 'userset' Options are "Schildkraut2010", "Wetmur1991","SantaLucia1996","SantaLucia1998-1", "SantaLucia1998-2","Owczarzy2004","Owczarzy2008". Note that NA means no salt correction. |
DMSO |
Percent DMSO |
fmd |
Formamide concentration in percentage (fmdmethod="concentration") or molar (fmdmethod="molar"). |
DMSOfactor |
Coeffecient of Tm decreases per percent DMSO. Default=0.75 von Ahsen N (2001) <PMID:11673362>. Other published values are 0.5, 0.6 and 0.675. |
fmdfactor |
Coeffecient of Tm decrease per percent formamide. Default=0.65. Several papers report factors between 0.6 and 0.72. |
fmdmethod |
"concentration" method for formamide concentration in percentage and "molar" for formamide concentration in molar. |
outlist |
output a list of Tm and options or only Tm value, default is TRUE. |
Details
DNA_NN1: Breslauer K J (1986) <doi:10.1073/pnas.83.11.3746>
DNA_NN2: Sugimoto N (1996) <doi:10.1093/nar/24.22.4501>
DNA_NN3: Allawi H (1998) <doi:10.1093/nar/26.11.2694>
DNA_NN4: SantaLucia J (2004) <doi:10.1146/annurev.biophys.32.110601.141800>
RNA_NN1: Freier S (1986) <doi:10.1073/pnas.83.24.9373>
RNA_NN2: Xia T (1998) <doi:10.1021/bi9809425>
RNA_NN3: Chen JL (2012) <doi:10.1021/bi3002709>
R_DNA_NN1: Sugimoto N (1995)<doi:10.1016/S0048-9697(98)00088-6>
DNA_TMM1: Bommarito S (2000) <doi:10.1093/nar/28.9.1929>
DNA_IMM1: Peyret N (1999) <doi:10.1021/bi9825091> & Allawi H T (1997) <doi:10.1021/bi962590c> & Santalucia N (2005) <doi:10.1093/nar/gki918>
DNA_DE1: Bommarito S (2000) <doi:10.1093/nar/28.9.1929>
RNA_DE1: Turner D H (2010) <doi:10.1093/nar/gkp892>
Author(s)
Junhui Li
References
Breslauer K J , Frank R , Blocker H , et al. Predicting DNA duplex stability from the base sequence.[J]. Proceedings of the National Academy of Sciences, 1986, 83(11):3746-3750.
Sugimoto N , Nakano S , Yoneyama M , et al. Improved Thermodynamic Parameters and Helix Initiation Factor to Predict Stability of DNA Duplexes[J]. Nucleic Acids Research, 1996, 24(22):4501-5.
Allawi, H. Thermodynamics of internal C.T mismatches in DNA[J]. Nucleic Acids Research, 1998, 26(11):2694-2701.
Hicks L D , Santalucia J . The thermodynamics of DNA structural motifs.[J]. Annual Review of Biophysics & Biomolecular Structure, 2004, 33(1):415-440.
Freier S M , Kierzek R , Jaeger J A , et al. Improved free-energy parameters for predictions of RNA duplex stability.[J]. Proceedings of the National Academy of Sciences, 1986, 83(24):9373-9377.
Xia T , Santalucia , J , Burkard M E , et al. Thermodynamic Parameters for an Expanded Nearest-Neighbor Model for Formation of RNA Duplexes with Watson-Crick Base Pairs,[J]. Biochemistry, 1998, 37(42):14719-14735.
Chen J L , Dishler A L , Kennedy S D , et al. Testing the Nearest Neighbor Model for Canonical RNA Base Pairs: Revision of GU Parameters[J]. Biochemistry, 2012, 51(16):3508-3522.
Bommarito S, Peyret N, Jr S L. Thermodynamic parameters for DNA sequences with dangling ends[J]. Nucleic Acids Research, 2000, 28(9):1929-1934.
Turner D H , Mathews D H . NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure[J]. Nucleic Acids Research, 2010, 38(Database issue):D280-D282.
Sugimoto N , Nakano S I , Katoh M , et al. Thermodynamic Parameters To Predict Stability of RNA/DNA Hybrid Duplexes[J]. Biochemistry, 1995, 34(35):11211-11216.
Allawi H, SantaLucia J: Thermodynamics and NMR of internal G-T mismatches in DNA. Biochemistry 1997, 36:10581-10594.
Santalucia N E W J . Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes[J]. Nucleic Acids Research, 2005, 33(19):6258-67.
Peyret N , Seneviratne P A , Allawi H T , et al. Nearest-Neighbor Thermodynamics and NMR of DNA Sequences with Internal A-A, C-C, G-G, and T-T Mismatches, [J]. Biochemistry, 1999, 38(12):3468-3477.
Examples
ntseq <- c("AAAATTTTTTTCCCCCCCCCCCCCCGGGGGGGGGGGGTGTGCGCTGC")
out <- Tm_NN(ntseq,Na=50)
out
out$Options
Calculate the melting temperature using the 'Wallace rule'
Description
The Wallace rule is often used as rule of thumb for approximate melting temperature calculations for primers with 14 to 20 nt length.
Usage
Tm_Wallace(ntseq, ambiguous = FALSE, outlist = TRUE)
Arguments
ntseq |
Sequence (5' to 3') of one strand of the DNA nucleic acid duplex as string or vector of characters (Note: Non-DNA characters are ignored by this method). |
ambiguous |
Ambiguous bases are taken into account to compute the G and C content when ambiguous is TRUE. |
outlist |
output a list of Tm and options or only Tm value, default is TRUE. |
Author(s)
Junhui Li
References
Thein S L , Lynch J R , Weatherall D J , et al. DIRECT DETECTION OF HAEMOGLOBIN E WITH SYNTHETIC OLIGONUCLEOTIDES[J]. The Lancet, 1986, 327(8472):93.
Examples
ntseq = c('acgtTGCAATGCCGTAWSDBSY') #for wallace rule
out <- Tm_Wallace(ntseq,ambiguous = TRUE)
out
out$Options
convert a vector of characters into a string
Description
Simply convert a vector of characters such as c("H","e","l","l","o","W","o","r","l","d") into a single string "HelloWorld".
Usage
c2s(characters)
Arguments
characters |
A vector of characters |
Value
Retrun a strings
Author(s)
Junhui Li
References
citation("TmCalculator")
Examples
c2s(c("H","e","l","l","o","W","o","r","l","d"))
Check and filter invalid base of nucleotide sequences
Description
In general, whitespaces and non-base characters are removed and characters are converted to uppercase in given method.
Usage
check_filter(ntseq, method)
Arguments
ntseq |
Sequence (5' to 3') of one strand of the DNA nucleic acid duplex as string or vector of characters |
method |
TM_Wallace: check and return "A","B","C","D","G","H","I","K","M","N","R","S","T","V","W" and "Y" TM_GC: check and return "A","B","C","D","G","H","I","K","M","N","R","S","T","V","W", "X" and "Y" TM_NN: check and return "A","C","G","I" and "T" |
Value
Return a sequence which fullfils the requirements of the given method.
Author(s)
Junhui Li
References
citation("TmCalculator")
Examples
ntseq <- c("ATCGBDHKMNRVYWSqq")
check_filter(ntseq,method='Tm_Wallace')
check_filter(ntseq,method='Tm_NN')
Corrections of melting temperature with chemical substances
Description
Corrections coefficient of melting temperature with DMSO and formamide and these corrections are rough approximations.
Usage
chem_correction(
DMSO = 0,
fmd = 0,
DMSOfactor = 0.75,
fmdmethod = c("concentration", "molar"),
fmdfactor = 0.65,
ptGC
)
Arguments
DMSO |
Percent DMSO |
fmd |
Formamide concentration in percentage (fmdmethod="concentration") or molar (fmdmethod="molar"). |
DMSOfactor |
Coefficient of Tm decreases per percent DMSO. Default=0.75 von Ahsen N (2001) <PMID:11673362>. Other published values are 0.5, 0.6 and 0.675. |
fmdmethod |
"concentration" method for formamide concentration in percentage and "molar" for formamide concentration in molar |
fmdfactor |
Coefficient of Tm decrease per percent formamide. Default=0.65. Several papers report factors between 0.6 and 0.72. |
ptGC |
Percentage of GC(%). |
Details
fmdmethod = "concentration"
Correction = - factor*percentage_of_formamide
fmdmethod = "molar"
Correction = (0.453*GC/100 - 2.88) x formamide
Author(s)
Junhui Li
References
von Ahsen N, Wittwer CT, Schutz E , et al. Oligonucleotide melting temperatures under PCR conditions: deoxynucleotide Triphosphate and Dimethyl sulfoxide concentrations with comparison to alternative empirical formulas. Clin Chem 2001, 47:1956-C1961.
Examples
chem_correction(DMSO=3)
chem_correction(fmd=1.25, fmdmethod="molar", ptGC=50)
complement and reverse complement base of nucleotide sequences
Description
get reverse complement and complement base of nucleotide sequences
Usage
complement(ntseq, reverse = FALSE)
Arguments
ntseq |
Sequence (5' to 3') of one strand of the nucleic acid duplex as string or vector of characters |
reverse |
Logical value, TRUE is reverse complement sequence, FALSE is not. |
Author(s)
Junhui Li
References
citation("TmCalculator")
Examples
complement("ATCGYCGYsWwsaVv")
complement("ATCGYCGYsWwsaVv",reverse=TRUE)
Prints melting temperature from a TmCalculator
object
Description
print.TmCalculator
prints to console the melting temperature value from an object of
class TmCalculator
.
Usage
## S3 method for class 'TmCalculator'
print(x, ...)
Arguments
x |
An object of class |
... |
Unused |
Value
The melting temperature value.
convert a string into a vector of characters
Description
Simply convert a single string such as "HelloWorld" into a vector of characters such as c("H","e","l","l","o","W","o","r","l","d")
Usage
s2c(strings)
Arguments
strings |
A single string such as "HelloWorld" |
Value
Retrun a vector of characters
Author(s)
Junhui Li
References
citation("TmCalculator")
Examples
s2c(c("HelloWorld"))
Corrections of melting temperature with salt ions
Description
Corrections coefficient of melting temperature or entropy with different operations
Usage
salt_correction(
Na = 0,
K = 0,
Tris = 0,
Mg = 0,
dNTPs = 0,
method = c("Schildkraut2010", "Wetmur1991", "SantaLucia1996", "SantaLucia1998-1",
"SantaLucia1998-2", "Owczarzy2004", "Owczarzy2008"),
ntseq,
ambiguous = FALSE
)
Arguments
Na |
Millimolar concentration of Na |
K |
Millimolar concentration of K |
Tris |
Millimolar concentration of Tris |
Mg |
Millimolar concentration of Mg |
dNTPs |
Millimolar concentration of dNTPs |
method |
Method to be applied including "Schildkraut2010", "Wetmur1991","SantaLucia1996", "SantaLucia1998-1", "SantaLucia1998-2","Owczarzy2004","Owczarzy2008". First fourth methods correct Tm, fifth method corrects deltaS, sixth and seventh methods correct 1/Tm. See details for the method description. |
ntseq |
Sequence (5' to 3') of one strand of the nucleic acid duplex as string or vector of characters. |
ambiguous |
Ambiguous bases are taken into account to compute the G and C content when ambiguous is TRUE. |
Details
The methods are:
1 Schildkraut C (2010) <doi:10.1002/bip.360030207>
2 Wetmur J G (1991) <doi:10.3109/10409239109114069>
3 SantaLucia J (1996) <doi:10.1021/bi951907q>
4 SantaLucia J (1998) <doi:10.1073/pnas.95.4.1460>
5 SantaLucia J (1998) <doi:10.1073/pnas.95.4.1460>
6 Owczarzy R (2004) <doi:10.1021/bi034621r>
7 Owczarzy R (2008) <doi:10.1021/bi702363u>
methods 1-4: Tm(new) = Tm(old) + correction
method 5: deltaS(new) = deltaS(old) + correction
methods 6+7: Tm(new) = 1/(1/Tm(old) + correction)
Author(s)
Junhui Li
References
Schildkraut C . Dependence of the melting temperature of DNA on salt concentration[J]. Biopolymers, 2010, 3(2):195-208.
Wetmur J G . DNA Probes: Applications of the Principles of Nucleic Acid Hybridization[J]. CRC Critical Reviews in Biochemistry, 1991, 26(3-4):3
Santalucia , J , Allawi H T , Seneviratne P A . Improved Nearest-Neighbor Parameters for Predicting DNA Duplex Stability, [J]. Biochemistry, 1996, 35(11):3555-3562.
SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics[J]. Proceedings of the National Academy of Sciences, 1998, 95(4):1460-1465.
Owczarzy R , You Y , Moreira B G , et al. Effects of Sodium Ions on DNA Duplex Oligomers: Improved Predictions ofMelting Temperatures[J]. Biochemistry, 2004, 43(12):3537-3554.
Owczarzy R , Moreira B G , You Y , et al. Predicting Stability of DNA Duplexes in Solutions Containing Magnesium and Monovalent Cations[J]. Biochemistry, 2008, 47(19):5336-5353.
Examples
ntseq <- c("acgtTGCAATGCCGTAWSDBSYXX")
salt_correction(Na=390, K=20, Tris=0, Mg=10, dNTPs=25, method="Owczarzy2008", ntseq)