## ----echo=FALSE, results='hide', eval=TRUE, message=FALSE, warning=FALSE---- require(knitr) options(width=60) ## ----message=FALSE, warning=FALSE------------------------- library(TopKLists) data(breast) head(breast) ## ----eval=TRUE, echo=TRUE, results='hide', message=FALSE, warning=FALSE---- library(TopKLists) ## ----tidy=FALSE------------------------------------------- k = 30 set.seed(123) x = c(rep(1,k), rbinom(100, 1, 0.2)) x ## ----tidy=TRUE-------------------------------------------- v.vect=seq(2,length(x), by=2) #setting up a vector of the nu values resF=c() for (v in v.vect) { res=compute.stream(x, const=0.5, v) resF=rbind(resF,c(v,paste(res))) } colnames(resF)=c("v", "j0_est", "k","reason.break", "Js", "v.vector") head(resF) table(resF[,2]) ## ----truncPlot, out.width='8cm', out.height='8cm', fig.pos="ht!", fig.cap="Estimation of $j_0$ for different values of $\\nu$", fig.align='center'---- plot(resF[,1], resF[,2], pch=19, ylim=c(25, 40), xlab=substitute(nu), ylab=substitute(paste(hat(j)[0]))) abline(a=31, b=0, col="red") lines(resF[,1], resF[,2]) ## --------------------------------------------------------- set.seed(1234) L1=paste("Obj",1:30,sep="") L2=paste("Obj",c(1:10,31:40,11:15),sep="") L3=paste("Obj",c(1:10,16:20,11:15),sep="") input=list(L1,L2,L3) space1=space2=space3=paste("Obj",1:40,sep="") space=list(space1,space2,space3) ## --------------------------------------------------------- outBorda=Borda(input,space) # "space" is explicitly specified; underlying space-dependent ## --------------------------------------------------------- outBorda1=Borda(input) #"space" is not specified; all lists are assumed to come from the common space (objects Obj1-Obj40) ## --------------------------------------------------------- outBorda2=Borda(input,space=input) # "space = input" indicates that this is the top-k space ## --------------------------------------------------------- sum(outBorda$Scores-outBorda1$Scores) sum(outBorda$Scores-outBorda2$Scores) ## --------------------------------------------------------- as.list(outBorda$TopK) ## ----borda, fig.cap='Plotting Borda\'s scores', fig.subcap=c('Underlying space-dependent analysis','Top-k space analysis'), out.width='.49\\linewidth', fig.pos='ht!', fig.align='center'---- Borda.plot(outBorda, k=40) # plot scores from underlying space-dependent analysis Borda.plot(outBorda2, k=40) # plot scores from top-k space analysis ## --------------------------------------------------------- outMC=MC(input,space) # "space" is explicitly specified; underlying space-dependent ## --------------------------------------------------------- outMCa=MC(input,k=30) # "space" is not specified, so it is the same as common space (O1-O40) ## --------------------------------------------------------- outMCb=MC(input,space=input) # "space = input" indicates that this is the top-k space ## --------------------------------------------------------- sum(outMC$MC2.Prob-outMCa$MC2.Prob) ## --------------------------------------------------------- list(outMC$MC1.TopK, outMC$MC2.TopK, outMC$MC3.TopK) ## ----equil, include=TRUE, fig.cap='Equilibrium probabilities', fig.pos='ht!', out.width='9cm', out.height='9cm', fig.align='center'---- MC.plot(outMC) ## --------------------------------------------------------- set.seed(12345) outCEMC=CEMC(input,space,N=4000,N1=400) # "space" is explicitly specified; underlying space-dependent ## --------------------------------------------------------- list(outCEMC$TopK) outCEMC$ProbMatrix[1:5,1:5] ## --------------------------------------------------------- outCEMC$input.par ## --------------------------------------------------------- KendallMLists(input,space, outBorda$TopK[,1]) all.aggregates=list(outBorda$TopK[,1],outBorda$TopK[,2],outBorda$TopK[,3], outBorda$TopK[,4],outMC$MC1.TopK,outMC$MC2.TopK,outMC$MC3.TopK,outCEMC$TopK) ## ----plotKendall, include=TRUE, tidy=TRUE, echo=TRUE, out.width='8cm', out.height='8cm', fig.pos='H',fig.cap="Comparison of the modified Kendall distances across several algorithms", fig.align='center'---- Kendall.plot(input,all.aggregates,space,algorithm=c("ARM","MED","GEO","L2N","MC1","MC2","MC3","CEMC")) ## --------------------------------------------------------- deltaplot.dir = paste0(tempdir(), "/deltaplot") dir.create(deltaplot.dir, showWarnings = FALSE) subplot.dir = paste0(tempdir(), "/subplot") dir.create(subplot.dir, showWarnings = FALSE) ## ----fig.show='hide'-------------------------------------- library(TopKLists) data(breast) a=deltaplot(breast, deltas = seq(0,300, by=5), directory=deltaplot.dir) ## ----fig.show='hide'-------------------------------------- a=deltaplot(breast, deltas = 1:50, subset.lists=200, subplot = TRUE, perc.subplot=50, directory=subplot.dir) ## --------------------------------------------------------- library(TopKLists) data(breast) res = j0.multi(breast, d=6, v=10) sapply(res, head) ## --------------------------------------------------------- k = res$maxK TransBig=as.character(breast[1:k,1]) MDCC=as.character(breast[1:k,2]) Pusztai=as.character(breast[1:k,3]) input=list(TransBig,MDCC,Pusztai) ## --------------------------------------------------------- common=unique(unlist(input)) space=list(common,common,common) ## --------------------------------------------------------- outBorda=Borda(input,space) outMC=MC(input,space) outCEMC=CEMC(input,space,N=2000) outCEMC$TopK[1:k] ## --------------------------------------------------------- agg=list(ARM=outBorda$TopK[,1],MED=outBorda$TopK[,2],GEO=outBorda$TopK[,3], L2N=outBorda$TopK[,4],MC1=outMC$MC1.TopK, MC2=outMC$MC2.TopK,MC3=outMC$MC3.TopK,CEMC=outCEMC$TopK) head(do.call(cbind, agg)) ## ----aggplot, out.width='8cm', out.height='8cm', fig.pos="ht!", fig.cap="Results from different algorithms for the breast cancer example data", fig.align='center'---- Kendall.plot(input,agg,space,algorithm=c("ARM","MED","GEO","L2N","MC1","MC2","MC3","CEMC")) ## ----eval=FALSE------------------------------------------- # TopKListsGUI(breast)