Package 'TrialEmulation'

July 22, 2025

Title Causal Analysis of Observational Time-to-Event Data

Version 0.0.4.5

Description Implements target trial emulation methods to apply randomized clinical trial design and analysis in an observational setting. Using marginal structural models, it can estimate intention-to-treat and per-protocol effects in emulated trials using electronic health records. A description and application of the method can be found in Danaei et al (2013) <doi:10.1177/0962280211403603>.

License Apache License (>= 2)

URL https://causal-lda.github.io/TrialEmulation/,

https://github.com/Causal-LDA/TrialEmulation

BugReports https://github.com/Causal-LDA/TrialEmulation/issues

Depends R (>= 4.1.0)

Imports broom (>= 0.7.10), checkmate, data.table (>= 1.9.8), DBI, duckdb, formula.tools, lifecycle, lmtest, methods, mvtnorm, parglm, Rcpp, sandwich

Suggests knitr, parsnip, rmarkdown, rpart, testthat (>= 3.0.0), withr

LinkingTo Rcpp

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

LazyData true

LazyDataCompression xz

RoxygenNote 7.3.2.9000

Collate 'RcppExports.R' 'calculate_weights.R' 'data.R' 'data_extension.R' 'data_manipulation.R' 'data_preparation.R' 'data_simulation.R' 'data_utils.R' 'expand_trials.R' 'generics.R' 'initiators.R' 'lr_utils.R' 'te_model_fitter.R' 'te_outcome_model.R' 'te_datastore.R' 'te_weights.R'

Contents

'te_data.R' 'te_expansion.R' 'trial_sequence.R' 'modelling.R' 'package.R' 'predict.R' 'robust.R' 'sampling.R' 'te_datastore_csv.R' 'te_datastore_duckdb.R' 'te_parsnip.R' 'te_stats_glm_logit.R' 'utils.R' 'weighting.R'

NeedsCompilation yes

Author Isaac Gravestock [aut, cre] (ORCID:

<https://orcid.org/0000-0003-0283-2065>), Li Su [aut], Roonak Rezvani [aut] (ORCID: <https://orcid.org/0000-0001-5580-5058>, Original package author), Julia Moesch [aut], Medical Research Council (MRC) [fnd], F. Hoffmann-La Roche AG [cph, fnd]

Maintainer Isaac Gravestock <isaac.gravestock@roche.com>

Repository CRAN

Date/Publication 2025-06-13 10:10:08 UTC

Contents

calculate_weights
case_control_sampling_trials
data_censored
data_preparation
expand_trials
fit_msm
fit_weights_model
initiators
ipw_data
load_expanded_data
outcome_data
parsnip_model
predict_marginal
print.TE_weight_summary 23
read_expanded_data
sample_expanded_data
save_expanded_data
save_to_csv
save_to_datatable
save_to_duckdb
set_censor_weight_model
set_data
set_expansion_options
set_outcome_model
set_switch_weight_model
show_weight_models
stats_glm_logit

calculate_weights

summary.TE_data_prep	37
te_data-class	38
te_datastore-class	38
te_data_ex	39
te_model_ex	39
te_model_fitter-class	40
te_outcome_data-class	40
te_outcome_fitted-class	41
te_outcome_model-class	41
trial_example	42
trial_msm	42
trial_sequence	45
trial_sequence-class	46
vignette_switch_data	46
weight_model_data_indices	47
	49

3

Index

calculate_weights Calculate Inverse Probability of Censoring Weights

Description

[Experimental]

Usage

```
calculate_weights(object, ...)
```

```
## S4 method for signature 'trial_sequence_ITT'
calculate_weights(object, quiet = FALSE)
```

```
## S4 method for signature 'trial_sequence_AT'
calculate_weights(object, quiet = FALSE)
```

S4 method for signature 'trial_sequence_PP'
calculate_weights(object, quiet = FALSE)

Arguments

object	A trial_sequence object
	Other arguments used by methods.
quiet	Prints model summaries is TRUE.

Value

A trial_sequence object with updated censor_weights and/or switch_weights slots

Examples

```
save_dir <- file.path(tempdir(), "switch_models")</pre>
ts <- trial_sequence("PP") |>
  set_data(
   data = data_censored,
   id = "id",
   period = "period",
   treatment = "treatment",
   outcome = "outcome",
   eligible = "eligible"
  ) |>
  set_switch_weight_model(
   numerator = \sim age + x1 + x3,
   denominator = ~age,
   model_fitter = stats_glm_logit(save_path = save_dir)
  ) |>
  calculate_weights()
```

Description

[Stable]

Usage

```
case_control_sampling_trials(
   data_prep,
   p_control = NULL,
   subset_condition,
   sort = FALSE
)
```

Arguments

data_prep	Result from data_preparation().	
p_control	Control sampling probability for selecting potential controls at each follow-up time of each trial.	
subset_condition		
	Expression used to subset() the trial data before case-control sampling.	
sort	Sort data before applying case-control sampling to make sure that the resulting data are identical when sampling from the expanded data created with separate_files = TRUE or separate_files = FALSE.	

data_censored

Details

Perform case-control sampling of expanded data to create a data set of reduced size and calculate sampling weights to be used in trial_msm().

Value

A data.frame or a split() data.frame if length(p_control) > 1. An additional column sample_weight containing the sample weights will be added to the result. These can be included in the models fit with trial_msm().

Examples

```
# If necessary reduce the number of threads for data.table
data.table::setDTthreads(2)
```

```
data("te_data_ex")
samples <- case_control_sampling_trials(te_data_ex, p_control = 0.01)</pre>
```

```
data_censored
```

Example of longitudinal data for sequential trial emulation containing censoring

Description

This data contains data from 89 patients followed for up to 19 periods.

Usage

data_censored

Format

A data frame with 725 rows and 12 variables:

id patient identifier

period time period

treatment indicator for receiving treatment in this period, 1=treatment, 0=non-treatment

- x1 A time-varying categorical variable relating to treatment and the outcome
- x2 A time-varying numeric variable relating to treatment and the outcome
- x3 A fixed categorical variable relating to treatment and the outcome
- x4 A fixed categorical variable relating to treatment and the outcome

age patient age in years

age_s patient age

outcome indicator for outcome in this period, 1=event occurred, 0=no event

censored indicator for patient being censored in this period, 1=censored, 0=not censored

eligible indicator for eligibility for trial start in this period, 1=yes, 0=no

data_preparation

Description

[Stable]

Usage

```
data_preparation(
  data,
  id = "id",
  period = "period",
  treatment = "treatment",
 outcome = "outcome",
 eligible = "eligible",
 model_var = NULL,
 outcome_cov = \sim 1,
 estimand_type = c("ITT", "PP", "As-Treated"),
  switch_n_cov = \sim 1,
  switch_d_cov = ~1,
  first_period = NA,
  last_period = NA,
  use_censor_weights = FALSE,
  cense = NA,
  pool_cense = c("none", "both", "numerator"),
  cense_d_cov = ~1,
  cense_n_cov = \sim 1,
  eligible_wts_0 = NA,
  eligible_wts_1 = NA,
 where_var = NULL,
 data_dir,
  save_weight_models = FALSE,
 glm_function = "glm",
  chunk_size = 500,
  separate_files = FALSE,
  quiet = FALSE,
  . . .
```

)

Arguments

data	A data.frame containing all the required variables in the person-time format i.e., the 'long' format.
id	Name of the variable for identifiers of the individuals. Default is 'id'.
period	Name of the variable for the visit/period. Default is 'period'.

- treatment Name of the variable for the treatment indicator at that visit/period. Default is 'treatment'.
- outcome Name of the variable for the indicator of the outcome event at that visit/period. Default is 'outcome'.
- eligible Name of the variable for the indicator of eligibility for the target trial at that visit/period. Default is 'eligible'.
- model_var Treatment variables to be included in the marginal structural model for the emulated trials. model_var = "assigned_treatment" will create a variable assigned_treatment that is the assigned treatment at the trial baseline, typically used for ITT and per-protocol analyses. model_var = "dose" will create a variable dose that is the cumulative number of treatments received since the trial baseline, typically used in as-treated analyses.
- outcome_cov A RHS formula with baseline covariates to be adjusted for in the marginal structural model for the emulated trials. Note that if a time-varying covariate is specified in outcome_cov, only its value at each of the trial baselines will be included in the expanded data.
- estimand_type Specify the estimand for the causal analyses in the sequence of emulated trials. estimand_type = "ITT" will perform intention-to-treat analyses, where treatment switching after trial baselines are ignored. estimand_type = "PP" will perform per-protocol analyses, where individuals' follow-ups are artificially censored and inverse probability of treatment weighting is applied. estimand_type = "As-Treated" will fit a standard marginal structural model for all possible treatment sequences, where individuals' follow-ups are not artificially censored but treatment switching after trial baselines are accounted for by applying inverse probability of treatment weighting.
- switch_n_cov A RHS formula to specify the logistic models for estimating the numerator terms of the inverse probability of treatment weights. A derived variable named time_on_regime containing the duration of time that the individual has been on the current treatment/non-treatment is available for use in these models.
- switch_d_cov A RHS formula to specify the logistic models for estimating the denominator terms of the inverse probability of treatment weights.
- first_period First time period to be set as trial baseline to start expanding the data.
- last_period Last time period to be set as trial baseline to start expanding the data.

use_censor_weights

Require the inverse probability of censoring weights. If use_censor_weights = TRUE, then the variable name of the censoring indicator needs to be provided in the argument cense.

- cense Variable name for the censoring indicator. Required if use_censor_weights = TRUE.
- pool_cense Fit pooled or separate censoring models for those treated and those untreated at the immediately previous visit. Pooling can be specified for the models for the numerator and denominator terms of the inverse probability of censoring weights. One of "none", "numerator", or "both" (default is "none" except when estimand_type = "ITT" then default is "numerator").

- cense_d_cov A RHS formula to specify the logistic models for estimating the denominator terms of the inverse probability of censoring weights.
- cense_n_cov A RHS formula to specify the logistic models for estimating the numerator terms of the inverse probability of censoring weights.
- eligible_wts_0 See definition for eligible_wts_1
- eligible_wts_1 Exclude some observations when fitting the models for the inverse probability of treatment weights. For example, if it is assumed that an individual will stay on treatment for at least 2 visits, the first 2 visits after treatment initiation by definition have a probability of staying on the treatment of 1.0 and should thus be excluded from the weight models for those who are on treatment at the immediately previous visit. Users can define a variable that indicates that these 2 observations are ineligible for the weight model for those who are on treatment at the immediately previous visit and add the variable name in the argument eligible_wts_1. Similar definitions are applied to eligible_wts_0 for excluding observations when fitting the models for the inverse probability of treatment weights for those who are not on treatment at the immediately previous visit.
- where_var Specify the variable names that will be used to define subgroup conditions when fitting the marginal structural model for a subgroup of individuals. Need to specify jointly with the argument where_case.
- save_weight_models

Save model objects for estimating the weights in data_dir.

- glm_function Specify which glm function to use for the marginal structural model from the stats or parglm packages. The default function is the glm function in the stats package. Users can also specify glm_function = "parglm" such that the parglm function in the parglm package can be used for fitting generalized linear models in parallel. The default control setting for parglm is nthreads = 4 and method = "FAST", where four cores and Fisher information are used for faster computation. Users can change the default control setting by passing the arguments nthreads and method in the parglm.control function of the parglm package, or alternatively, by passing a control argument with a list produced by parglm.control(nthreads = , method =).
- chunk_size Number of individuals whose data to be processed in one chunk when separate_files = TRUE
- separate_files Save expanded data in separate CSV files for each trial.

quiet Suppress the printing of progress messages and summaries of the fitted models.

... Additional arguments passed to glm_function. This may be used to specify initial values of parameters or arguments to control. See stats::glm, parglm::parglm and parglm::parglm.control() for more information.

expand_trials

Details

This function expands observational data in the person-time format (i.e., the 'long' format) to emulate a sequence of target trials and also estimates the inverse probability of treatment and censoring weights as required.

The arguments chunk_size and separate_files allow for processing of large datasets that would not fit in memory once expanded. When separate_files = TRUE, the input data are processed in chunks of individuals and saved into separate files for each emulated trial. These separate files can be sampled by case-control sampling to create a reduced dataset for the modelling.

Value

An object of class TE_data_prep, which can either be sampled from (case_control_sampling_trials) or directly used in a model (trial_msm). It contains the elements

data the expanded dataset for all emulated trials. If separate_files = FALSE, it is a data.table; if separate_files = TRUE, it is a character vector with the file path of the expanded data as CSV files.

min_period index for the first trial in the expanded data

max period index for the last trial in the expanded data

N the total number of observations in the expanded data

data_template a zero-row data.frame with the columns and attributes of the expanded data

- switch_models a list of summaries of the models fitted for inverse probability of treatment weights, if estimand_type is "PP" or "As-Treated"
- **censor_models** a list of summaries of the models fitted for inverse probability of censoring weights, if use_censor_weights=TRUE

args a list contain the parameters used to prepare the data and fit the weight models

expand_trials Expand trials

Description

[Experimental]

Usage

```
expand_trials(object)
```

Arguments

object A trial_sequence object

Value

The trial_sequence object with a data set containing the full sequence of target trials. The data is stored according to the options set with set_expansion_options() and especially the save_to_* function.

fit_msm

Description

[Experimental]

Usage

```
fit_msm(
   object,
   weight_cols = c("weight", "sample_weight"),
   modify_weights = NULL
)
## S4 method for signature 'trial_sequence'
fit_msm(
   object,
   weight_cols = c("weight", "sample_weight"),
   modify_weights = NULL
)
```

Arguments

object	A trial_sequence object
weight_cols	character vector of column names in expanded outcome dataset, ie outcome_data(object). If multiple columns are specified, the element wise product will be used. Specify NULL if no weight columns should be used.
<pre>modify_weights</pre>	a function to transform the weights (or NULL for no transformation). Must take a numeric vector of weights and a vector of positive, finite weights of the same length. See examples for some possible function definitions.
	Before the outcome marginal structural model can be fit, the outcome model must be specified with set_outcome_model() and the data must be expanded into the trial sequence with expand_trials().
	The model is fit based on the model_fitter specified in set_outcome_model using the internal fit_outcome_model method.

Value

A modified trial_sequence object with updated outcome_model slot.

Examples

```
trial_seq_object <- trial_sequence("ITT") |>
  set_data(data_censored) |>
  set_outcome_model(
    adjustment_terms = ~age_s,
```

```
followup_time_terms = ~ stats::poly(followup_time, degree = 2)
  ) |>
  set_expansion_options(output = save_to_datatable(), chunk_size = 500) |>
  expand_trials() |>
  load_expanded_data()
fit_msm(trial_seq_object)
# Using modify_weights functions ----
# returns a function that truncates weights to limits
limit_weight <- function(lower_limit, upper_limit) {</pre>
  function(w) {
    w[w > upper_limit] <- upper_limit</pre>
    w[w < lower_limit] <- lower_limit</pre>
    W
  }
}
# calculate 1st and 99th percentile limits and truncate
p99_weight <- function(w) {</pre>
  p99 <- quantile(w, prob = c(0.01, 0.99), type = 1)
  limit_weight(p99[1], p99[2])(w)
}
# set all weights to 1
all_ones <- function(w) {</pre>
  rep(1, length(w))
}
fit_msm(trial_seq_object, modify_weights = limit_weight(0.01, 4))
fit_msm(trial_seq_object, modify_weights = p99_weight)
```

fit_weights_model Method for fitting weight models

Description

Method for fitting weight models

Usage

```
fit_weights_model(object, data, formula, label)
```

Arguments

object	The object determining which method should be used, containing any slots con- taining user defined parameters.
data	data.frame containing outcomes and covariates as defined in formula.
formula	formula describing the model.
label	A short string describing the model.

Value

An object of class te_weights_fitted

Examples

```
fitter <- stats_glm_logit(tempdir())
data(data_censored)
# Not usually called directly by a user
fitted <- fit_weights_model(
    object = fitter,
    data = data_censored,
    formula = 1 - censored ~ x1 + age_s + treatment,
    label = "Example model for censoring"
)
fitted
unlink(fitted@summary$save_path$path)</pre>
```

initiators

A wrapper function to perform data preparation and model fitting in a sequence of emulated target trials

Description

[Stable]

Usage

```
initiators(
 data,
  id = "id",
  period = "period",
  treatment = "treatment",
 outcome = "outcome",
  eligible = "eligible",
  outcome_cov = \sim 1,
  estimand_type = c("ITT", "PP", "As-Treated"),
 model_var = NULL,
  switch_n_cov = ~1,
  switch_d_cov = ~1,
  first_period = NA,
  last_period = NA,
  first_followup = NA,
  last_followup = NA,
  use_censor_weights = FALSE,
  save_weight_models = FALSE,
  analysis_weights = c("asis", "unweighted", "p99", "weight_limits"),
  weight_limits = c(0, Inf),
  cense = NA,
```

initiators

```
pool_cense = c("none", "both", "numerator"),
cense_d_cov = ~1,
cense_n_cov = ~1,
include_followup_time = ~followup_time + I(followup_time^2),
include_trial_period = ~trial_period + I(trial_period^2),
eligible_wts_0 = NA,
eligible_wts_1 = NA,
where_var = NULL,
where_case = NA,
data_dir,
glm_function = "glm",
quiet = FALSE,
...
```

Arguments

)

data	A data.frame containing all the required variables in the person-time format, i.e., the 'long' format.
id	Name of the variable for identifiers of the individuals. Default is 'id'.
period	Name of the variable for the visit/period. Default is 'period'.
treatment	Name of the variable for the treatment indicator at that visit/period. Default is 'treatment'.
outcome	Name of the variable for the indicator of the outcome event at that visit/period. Default is 'outcome'.
eligible	Name of the variable for the indicator of eligibility for the target trial at that visit/period. Default is 'eligible'.
outcome_cov	A RHS formula with baseline covariates to be adjusted for in the marginal struc- tural model for the emulated trials. Note that if a time-varying covariate is speci- fied in outcome_cov, only its value at each of the trial baselines will be included in the expanded data.
estimand_type	Specify the estimand for the causal analyses in the sequence of emulated tri- als. estimand_type = "ITT" will perform intention-to-treat analyses, where treatment switching after trial baselines are ignored. estimand_type = "PP" will perform per-protocol analyses, where individuals' follow-ups are artificially censored and inverse probability of treatment weighting is applied. estimand_type = "As-Treated" will fit a standard marginal structural model for all possible treatment sequences, where individuals' follow-ups are not artificially censored but treatment switching after trial baselines are accounted for by applying in- verse probability of treatment weighting.
model_var	Treatment variables to be included in the marginal structural model for the emulated trials. model_var = "assigned_treatment" will create a variable assigned_treatment that is the assigned treatment at the trial baseline, typ- ically used for ITT and per-protocol analyses. model_var = "dose" will create a variable dose that is the cumulative number of treatments received since the trial baseline, typically used in as-treated analyses.

switch_n_cov	A RHS formula to specify the logistic models for estimating the numerator terms of the inverse probability of treatment weights. A derived variable named time_on_regime containing the duration of time that the individual has been on the current treatment/non-treatment is available for use in these models.
switch_d_cov	A RHS formula to specify the logistic models for estimating the denominator terms of the inverse probability of treatment weights.
first_period	First time period to be set as trial baseline to start expanding the data.
last_period	Last time period to be set as trial baseline to start expanding the data.
first_followup	First follow-up time/visit in the trials to be included in the marginal structural model for the outcome event.
last_followup	Last follow-up time/visit in the trials to be included in the marginal structural model for the outcome event.
use_censor_weig	
	Require the inverse probability of censoring weights. If use_censor_weights = TRUE, then the variable name of the censoring indicator needs to be provided in the argument cense.
<pre>save_weight_mod</pre>	lels
	Save model objects for estimating the weights in data_dir.
analysis_weight	
	Choose which type of weights to be used for fitting the marginal structural model for the outcome event.
	• "asis": use the weights as calculated.
	• "p99": use weights truncated at the 1st and 99th percentiles (based on the distribution of weights in the entire sample).
	"weight_limits": use weights truncated at the values specified in weight_limits."unweighted": set all analysis weights to 1, even if treatment weights or censoring weights were calculated.
weight_limits	Lower and upper limits to truncate weights, given as c(lower, upper)
cense	Variable name for the censoring indicator. Required if use_censor_weights = TRUE.
pool_cense	Fit pooled or separate censoring models for those treated and those untreated at the immediately previous visit. Pooling can be specified for the models for the numerator and denominator terms of the inverse probability of censoring weights. One of "none", "numerator", or "both" (default is "none" except when estimand_type = "ITT" then default is "numerator").
cense_d_cov	A RHS formula to specify the logistic models for estimating the denominator terms of the inverse probability of censoring weights.
cense_n_cov	A RHS formula to specify the logistic models for estimating the numerator terms of the inverse probability of censoring weights.
include_followu	•
	The model to include the follow up time/visit of the trial (followup_time) in the marginal structural model, specified as a RHS formula.
include_trial_p	
	The model to include the trial period (trial_period) in the marginal structural model, specified as a RHS formula.

initiators

eligible_wts_0	See definition for eligible_wts_1
eligible_wts_1	Exclude some observations when fitting the models for the inverse probability of treatment weights. For example, if it is assumed that an individual will stay on treatment for at least 2 visits, the first 2 visits after treatment initiation by definition have a probability of staying on the treatment of 1.0 and should thus be excluded from the weight models for those who are on treatment at the im- mediately previous visit. Users can define a variable that indicates that these 2 observations are ineligible for the weight model for those who are on treatment at the immediately previous visit and add the variable name in the argument eligible_wts_1. Similar definitions are applied to eligible_wts_0 for ex- cluding observations when fitting the models for the inverse probability of treat- ment weights for those who are not on treatment at the immediately previous visit.
where_var	Specify the variable names that will be used to define subgroup conditions when fitting the marginal structural model for a subgroup of individuals. Need to specify jointly with the argument where_case.
where_case	Define conditions using variables specified in where_var when fitting a marginal structural model for a subgroup of the individuals. For example, if where_var= "age", where_case = "age >= 30" will only fit the marginal structural model to the subgroup of individuals. who are 30 years old or above.
data_dir	Directory to save model objects in.
glm_function	Specify which glm function to use for the marginal structural model from the stats or parglm packages. The default function is the glm function in the stats package. Users can also specify glm_function = "parglm" such that the parglm function in the parglm package can be used for fitting generalized linear models in parallel. The default control setting for parglm is nthreads = 4 and method = "FAST", where four cores and Fisher information are used for faster computation. Users can change the default control setting by passing the arguments nthreads and method in the parglm.control function of the parglm package, or alternatively, by passing a control argument with a list produced by parglm.control(nthreads = , method =).
quiet	Suppress the printing of progress messages and summaries of the fitted models.
	Additional arguments passed to glm_function. This may be used to spec- ify initial values of parameters or arguments to control. See stats::glm, par- glm::parglm and parglm::parglm.control() for more information.

Details

An all-in-one analysis using a sequence of emulated target trials. This provides a simplified interface to the main functions data_preparation() and trial_msm().

Value

Returns the result of trial_msm() from the expanded data. An object of class TE_msm containing

model a glm object

robust a list containing a summary table of estimated regression coefficients and the robust covariance matrix

ipw_data

Description

[Experimental]

Usage

```
ipw_data(object)
```

ipw_data(object) <- value</pre>

S4 method for signature 'trial_sequence'
ipw_data(object)

S4 replacement method for signature 'trial_sequence'
ipw_data(object) <- value</pre>

Arguments

object	trial_sequence object
value	data.table to replace and update in @data

Details

Generic function to access and update the data used for inverse probability weighting.

The setter method ipw_data(object) <- value does not perform the same checks and manipulations as set_data(). To completely replace the data please use set_data(). This ipw_data<method allows small changes such as adding a new column.

Value

The data from the @data slot of object used for inverse probability weighting.

Examples

```
ts <- trial_sequence("ITT")
ts <- set_data(ts, data_censored)
ipw_data(ts)
data.table::set(ipw_data(ts), j = "dummy", value = TRUE)
# or with the setter method:
new_data <- ipw_data(ts)
new_data$x2sq <- new_data$x2^2
ipw_data(ts) <- new_data</pre>
```

load_expanded_data Method to read, subset and sample expanded data

Description

[Experimental]

Usage

```
load_expanded_data(
   object,
   p_control = NULL,
   period = NULL,
   subset_condition = NULL,
   seed = NULL
)
## S4 method for signature 'trial_sequence'
load_expanded_data(
   object,
   p_control = NULL,
   period = NULL,
   subset_condition = NULL,
   seed = NULL
)
```

Arguments

object	An object of class trial_sequence.
p_control	Probability of selecting a control, NULL for no sampling (default).
period	An integerish vector of non-zero length to select trial period(s) or NULL (default) to select all trial periods.
subset_condition	n
	A string or NULL (default). subset_condition will be translated to a call (in case the expanded data is saved as a data.table or in the csv format) or to a SQL-query (in case the expanded data is saved as a duckdb file). The operators "==", "!=", ">", ">=", "<", "<=", %in%", "&", " " are supported. Numeric vectors can be written as c(1, 2, 3) or 1:3. Variables are not supported.
	<i>Note</i> : Make sure numeric vectors written as 1:3 are surrounded by spaces, e.g. a %in% c(1:4,6:9), otherwise the code will fail.
seed	An integer seed or NULL (default).
	<i>Note</i> : The same seed will return a different result depending on the class of the te_datastore object contained in the trial_sequence object.

Details

This method is used on trial_sequence objects to read, subset and sample expanded data.

Value

An updated trial_sequence object, the data is stored in slot @outcome_data as a te_outcome_data object.

Examples

```
# create a trial_sequence-class object
trial_itt_dir <- file.path(tempdir(), "trial_itt")
dir.create(trial_itt_dir)
trial_itt <- trial_sequence(estimand = "ITT") |>
set_data(data = data_censored) |>
set_outcome_model(adjustment_terms = ~ x1 + x2)
trial_itt_csv <- set_expansion_options(
    trial_itt,
    output = save_to_csv(file.path(trial_itt_dir, "trial_csvs")),
    chunk_size = 500
) |>
expand_trials()
```

load_expanded_data default behaviour returns all trial_periods and doesn't sample load_expanded_data(trial_itt_csv)

```
# load_expanded_data can subset the data before sampling
load_expanded_data(
    trial_itt_csv,
    p_control = 0.2,
    period = 1:20,
    subset_condition = "followup_time %in% 1:20 & x2 < 1",
)
# delete after use
unlink(trial_itt_dir, recursive = TRUE)
```

outcome_data

Outcome Data Accessor and Setter

Description

[Experimental]

parsnip_model

Usage

```
outcome_data(object)
```

outcome_data(object) <- value</pre>

S4 method for signature 'trial_sequence'
outcome_data(object)

S4 replacement method for signature 'trial_sequence'
outcome_data(object) <- value</pre>

Arguments

object	trial_sequence object
value	data.table to replace and update in @outcome_data

Details

Generic function to outcome data

Value

The object with updated outcome data

Examples

```
ts <- trial_sequence("ITT")
new_data <- data.table::data.table(vignette_switch_data[1:200, ])
new_data$weight <- 1
outcome_data(ts) <- new_data</pre>
```

parsnip_model Fit outcome models using parsnip models

Description

[Experimental]

Usage

parsnip_model(model_spec, save_path)

Arguments

model_spec	A parsnip model definition with mode = "classification".
save_path	Directory to save models. Set to NA if models should not be saved.

Details

Specify that the models should be fit using a classification model specified with the parsnip package.

Warning: This functionality is experimental and not recommended for use in analyses. *sqrtn*-consistency estimation and valid inference of the parameters in marginal structural models for emulated trials generally require that the weights for treatment switching and censoring be estimated at parametric rates, which is generally not possible when using data-adaptive estimation of high-dimensional regressions. Therefore, we only recommend using stats_glm_logit().

Value

An object of class te_parsnip_model inheriting from te_model_fitter which is used for dispatching methods for the fitting models.

See Also

Other model_fitter: stats_glm_logit(), te_model_fitter-class

Examples

```
## Not run:
if (
  requireNamespace("parsnip", quietly = TRUE) &&
    requireNamespace("rpart", quietly = TRUE)
) {
    # Use a decision tree model fitted with the rpart package
    parsnip_model(
        model_spec = parsnip::decision_tree(tree_depth = 30) |>
        set_mode("classification") |>
        set_engine("rpart"),
        save_path = tempdir()
    )
}
## End(Not run)
```

predict_marginal

Predict marginal cumulative incidences with confidence intervals for a target trial population

Description

[Stable] This function predicts the marginal cumulative incidences when a target trial population receives either the treatment or non-treatment at baseline (for an intention-to-treat analysis) or either sustained treatment or sustained non-treatment (for a per-protocol analysis). The difference between these cumulative incidences is the estimated causal effect of treatment. Currently, the predict function only provides marginal intention-to-treat and per-protocol effects, therefore it is only valid when estimand_type = "ITT" or estimand_type = "PP".

```
predict_marginal
```

Usage

```
predict(object, ...)
## S4 method for signature 'trial_sequence_ITT'
predict(
 object,
  newdata,
 predict_times,
 conf_int = TRUE,
 samples = 100,
  type = c("cum_inc", "survival")
)
## S4 method for signature 'trial_sequence_PP'
predict(
 object,
 newdata,
 predict_times,
  conf_int = TRUE,
 samples = 100,
  type = c("cum_inc", "survival")
)
## S3 method for class 'TE_msm'
predict(
 object,
 newdata,
 predict_times,
 conf_int = TRUE,
  samples = 100,
 type = c("cum_inc", "survival"),
  . . .
)
```

Arguments

object	Object from trial_msm() or initiators() or trial_sequence.
	Further arguments passed to or from other methods.
newdata	Baseline trial data that characterise the target trial population that marginal cu- mulative incidences or survival probabilities are predicted for. newdata must have the same columns and formats of variables as in the fitted marginal struc- tural model specified in trial_msm() or initiators(). If newdata contains rows with followup_time > 0 these will be removed.
predict_times	Specify the follow-up visits/times where the marginal cumulative incidences or survival probabilities are predicted.
conf_int	Construct the point-wise 95-percent confidence intervals of cumulative incidences for the target trial population under treatment and non-treatment and their

	a multivariate normal distribution with the mean equal to the marginal struc- tural model parameter estimates and the variance equal to the estimated robust covariance matrix.
samples	Number of samples used to construct the simulation-based confidence intervals.
type	Specify cumulative incidences or survival probabilities to be predicted. Either cumulative incidence ("cum_inc") or survival probability ("survival").

differences by simulating the parameters in the marginal structural model from

Value

A list of three data frames containing the cumulative incidences for each of the assigned treatment options (treatment and non-treatment) and the difference between them.

Examples

```
# Prediction for initiators() or trial_msm() objects -----
# If necessary set the number of `data.table` threads
data.table::setDTthreads(2)
data("te_model_ex")
predicted_ci <- predict(te_model_ex, predict_times = 0:30, samples = 10)</pre>
# Plot the cumulative incidence curves under treatment and non-treatment
plot(predicted_ci[[1]]$followup_time, predicted_ci[[1]]$cum_inc,
 type = "1",
 xlab = "Follow-up Time", ylab = "Cumulative Incidence",
 ylim = c(0, 0.7)
)
lines(predicted_ci[[1]]$followup_time, predicted_ci[[1]]$`2.5%`, lty = 2)
lines(predicted_ci[[1]]$followup_time, predicted_ci[[1]]$`97.5%`, lty = 2)
lines(predicted_ci[[2]]$followup_time, predicted_ci[[2]]$cum_inc, type = "1", col = 2)
lines(predicted_ci[[2]]$followup_time, predicted_ci[[2]]$`2.5%`, lty = 2, col = 2)
lines(predicted_ci[[2]]$followup_time, predicted_ci[[2]]$`97.5%`, lty = 2, col = 2)
legend("topleft", title = "Assigned Treatment", legend = c("0", "1"), col = 1:2, lty = 1)
# Plot the difference in cumulative incidence over follow up
plot(predicted_ci[[3]]$followup_time, predicted_ci[[3]]$cum_inc_diff,
 type = "1",
 xlab = "Follow-up Time", ylab = "Difference in Cumulative Incidence",
 ylim = c(0.0, 0.5)
)
lines(predicted_ci[[3]]$followup_time, predicted_ci[[3]]$`2.5%`, lty = 2)
lines(predicted_ci[[3]]$followup_time, predicted_ci[[3]]$`97.5%`, lty = 2)
```

print.TE_weight_summary

Print a weight summary object

Description

[Stable]

Usage

```
## S3 method for class 'TE_weight_summary'
print(x, full = TRUE, ...)
```

Arguments

Х	print TE_weight_summary object.
full	Print full or short summary.
	Arguments passed to print.data.frame.

Value

No return value, only for printing.

read_expanded_data Method to read expanded data

Description

This method is used on te_datastore objects to read selected data and return one data.table.

Usage

```
read_expanded_data(object, period = NULL, subset_condition = NULL)
```

```
## S4 method for signature 'te_datastore_datatable'
read_expanded_data(object, period = NULL, subset_condition = NULL)
```

Arguments

object	An object of class te_datastore.
period	An integerish vector of non-zero length to select trial period(s) or NULL (default) to select all files.
subset_condition	

A string of length 1 or NULL (default).

Value

A data.frame of class data.table.

Examples

```
# create a te_datastore_csv object and save some data
temp_dir <- tempfile("csv_dir_")
dir.create(temp_dir)
datastore <- save_to_csv(temp_dir)
data(vignette_switch_data)
expanded_csv_data <- save_expanded_data(datastore, vignette_switch_data[1:200, ])
# read expanded data
read_expanded_data(expanded_csv_data)
# delete after use
unlink(temp_dir, recursive = TRUE)
```

sample_expanded_data Internal method to sample expanded data

Description

Internal method to sample expanded data

Usage

```
sample_expanded_data(
    object,
    p_control,
    period = NULL,
    subset_condition = NULL,
    seed
)
## S4 method for signature 'te_datastore'
sample_expanded_data(
    object,
    p_control,
    period = NULL,
    subset_condition = NULL,
    seed
)
```

Arguments

object	An object of class te_datastore.	
p_control	Probability of selecting a control.	
period	An integerish vector of non-zero length to select trial period(s) or NULL (default) to select all trial periods.	
subset_condition		
	A string or NULL.	
seed	An integer seed or NULL (default).	

Value

A data.frame of class data.table.

Examples

```
# Data object normally created by [expand_trials]
datastore <- new("te_datastore_datatable", data = te_data_ex$data, N = 50139L)</pre>
```

sample_expanded_data(datastore, period = 260:275, p_control = 0.2, seed = 123)

save_expanded_data Method to save expanded data

Description

This method is used internally by expand_trials to save the data to the "datastore" defined in set_expansion_options.

Usage

```
save_expanded_data(object, data)
```

S4 method for signature 'te_datastore_datatable'
save_expanded_data(object, data)

Arguments

object	An object of class te_datastore or a child class.
data	A data frame containing the expanded trial data. The columns trial_period
	and id are present, which may be used in methods to save the data in an optimal
	way, such as with indexes, keys or separate files.

Value

An updated object with the data stored. Notably object@N should be increased

Examples

```
temp_dir <- tempfile("csv_dir_")
dir.create(temp_dir)
datastore <- save_to_csv(temp_dir)
data(vignette_switch_data)
save_expanded_data(datastore, vignette_switch_data[1:200, ])
# delete after use
unlink(temp_dir, recursive = TRUE)</pre>
```

save_to_csv Save expanded data as CSV

Description

[Experimental]

Usage

save_to_csv(path)

Arguments

path Directory to save CSV files in. Must be empty.

Value

A te_datastore_csv object.

See Also

Other save_to: save_to_datatable(), save_to_duckdb(), set_expansion_options()

Examples

```
csv_dir <- file.path(tempdir(), "expanded_trials_csv")
dir.create(csv_dir)
csv_datastore <- save_to_csv(path = csv_dir)</pre>
```

```
trial_to_expand <- trial_sequence("ITT") |>
   set_data(data = data_censored) |>
   set_expansion_options(output = csv_datastore, chunk_size = 500)
# Delete directory after use
unlink(csv_dir)
```

save_to_datatable Save expanded data as a data.table

Description

[Experimental]

Usage

save_to_datatable()

See Also

Other save_to: save_to_csv(), save_to_duckdb(), set_expansion_options()

Examples

```
trial_to_expand <- trial_sequence("ITT") |>
    set_data(data = data_censored) |>
    set_expansion_options(output = save_to_datatable(), chunk_size = 500)
```

save_to_duckdb Save expanded data to DuckDB

Description

[Experimental]

Usage

```
save_to_duckdb(path)
```

Arguments

path Directory to save DuckDB database file in.

Value

A te_datastore_duckdb object.

See Also

```
Other save_to: save_to_csv(), save_to_datatable(), set_expansion_options()
```

Examples

```
if (require(duckdb)) {
  duckdb_dir <- file.path(tempdir(), "expanded_trials_duckdb")
  trial_to_expand <- trial_sequence("ITT") |>
    set_data(data = data_censored) |>
    set_expansion_options(output = save_to_duckdb(path = duckdb_dir), chunk_size = 500)
  # Delete directory after use
  unlink(duckdb_dir)
}
```

set_censor_weight_model

Set censoring weight model

Description

[Experimental]

Usage

```
set_censor_weight_model(
 object,
  censor_event,
 numerator,
 denominator,
 pool_models = NULL,
 model_fitter
)
## S4 method for signature 'trial_sequence'
set_censor_weight_model(
 object,
 censor_event,
  numerator,
  denominator,
 pool_models = c("none", "both", "numerator"),
 model_fitter = stats_glm_logit()
)
## S4 method for signature 'trial_sequence_PP'
set_censor_weight_model(
 object,
  censor_event,
 numerator,
```

```
denominator,
 pool_models = "none",
 model_fitter = stats_glm_logit()
)
## S4 method for signature 'trial_sequence_ITT'
set_censor_weight_model(
 object,
  censor_event,
 numerator,
 denominator,
 pool_models = "numerator",
 model_fitter = stats_glm_logit()
)
## S4 method for signature 'trial_sequence_AT'
set_censor_weight_model(
 object,
  censor_event,
 numerator,
 denominator,
 pool_models = "none",
 model_fitter = stats_glm_logit()
)
```

Arguments

object	trial_sequence.
censor_event	string. Name of column containing censoring indicator.
numerator	A RHS formula to specify the logistic models for estimating the numerator terms of the inverse probability of censoring weights.
denominator	A RHS formula to specify the logistic models for estimating the denominator terms of the inverse probability of censoring weights.
pool_models	Fit pooled or separate censoring models for those treated and those untreated at the immediately previous visit. Pooling can be specified for the models for the numerator and denominator terms of the inverse probability of censoring weights. One of "none", "numerator", or "both" (default is "none" except when estimand = "ITT" then default is "numerator").
<pre>model_fitter</pre>	An object of class te_model_fitter which determines the method used for fitting the weight models. For logistic regression use stats_glm_logit().

Value

object is returned with @censor_weights set

Examples

trial_sequence("ITT") |>

```
set_data(data = data_censored) |>
set_censor_weight_model(
    censor_event = "censored",
    numerator = ~ age_s + x1 + x3,
    denominator = ~ x3 + x4,
    pool_models = "both",
    model_fitter = stats_glm_logit(save_path = tempdir())
)
```

set_data

Set the trial data

Description

[Experimental]

Usage

```
set_data(object, data, ...)
## S4 method for signature 'trial_sequence_ITT,data.frame'
set_data(
  object,
  data,
  id = "id",
  period = "period",
  treatment = "treatment",
  outcome = "outcome",
  eligible = "eligible"
)
## S4 method for signature 'trial_sequence_AT,data.frame'
set_data(
 object,
  data,
  id = "id",
  period = "period",
  treatment = "treatment",
  outcome = "outcome",
  eligible = "eligible"
)
## S4 method for signature 'trial_sequence_PP,data.frame'
set_data(
  object,
  data,
  id = "id",
  period = "period",
```

```
treatment = "treatment",
outcome = "outcome",
eligible = "eligible"
)
```

Arguments

object	A trial_sequence object
data	A data.frame containing all the required variables in the person-time format, i.e., the $\langle U+2018 \rangle$ long $\langle U+2019 \rangle$ format.
	Other arguments used by methods internally.
id	Name of the variable for identifiers of the individuals. Default is <u+2018>id<u+2019>.</u+2019></u+2018>
period	Name of the variable for the visit/period. Default is <u+2018>period<u+2019>.</u+2019></u+2018>
treatment	Name of the variable for the treatment indicator at that visit/period. Default is <u+2018>treatment<u+2019>.</u+2019></u+2018>
outcome	Name of the variable for the indicator of the outcome event at that visit/period. Default is <u+2018>outcome<u+2019>.</u+2019></u+2018>
eligible	Name of the variable for the indicator of eligibility for the target trial at that visit/period. Default is <u+2018>eligible<u+2019>.</u+2019></u+2018>

Value

An updated trial_sequence object with data

Examples

```
data(trial_example)
trial_sequence("ITT") |>
  set_data(
    data = trial_example,
    id = "id",
    period = "period",
    eligible = "eligible",
    treatment = "treatment"
)
```

set_expansion_options Set expansion options

Description

[Experimental]

Usage

```
set_expansion_options(object, ...)
## S4 method for signature 'trial_sequence_ITT'
set_expansion_options(
 object,
 output,
  chunk_size,
 first_period = 0,
 last_period = Inf
)
## S4 method for signature 'trial_sequence_PP'
set_expansion_options(
  object,
 output,
 chunk_size,
  first_period = 0,
  last_period = Inf
)
## S4 method for signature 'trial_sequence_ITT'
set_expansion_options(
 object,
 output,
  chunk_size,
 first_period = 0,
 last_period = Inf
)
```

Arguments

object	A trial_sequence object
	Arguments used in methods
output	A te_datastore object as created by a save_to_* function.
chunk_size	An integer specifying the number of patients to include in each expansion itera- tion
first_period	An integer specifying the first period to include in the expansion
last_period	An integer specifying the last period to include in the expansion

Value

object is returned with @expansion set

See Also

```
Other save_to: save_to_csv(), save_to_datatable(), save_to_duckdb()
```

set_outcome_model

Examples

```
output_dir <- file.path(tempdir(check = TRUE), "expanded_data")
ITT_trial <- trial_sequence("ITT") |>
    set_data(data = data_censored) |>
    set_expansion_options(output = save_to_csv(output_dir), chunk_size = 500)
# Delete directory
unlink(output_dir, recursive = TRUE)
```

set_outcome_model Specify the outcome model

Description

[Experimental]

The time-to-event model for outcome is specified with this method. Any adjustment terms can be specified. For ITT and PP estimands the treatment_var is not specified as it is automatically defined as assigned_treatment. Importantly, the modelling of "time" is specified in this model with arguments for trial start time and follow up time within the trial.

Usage

```
set_outcome_model(object, ...)
## S4 method for signature 'trial_sequence'
set_outcome_model(
  object,
  treatment_var = ~0,
  adjustment_terms = ~1,
  followup_time_terms = ~followup_time + I(followup_time^2),
  trial_period_terms = ~trial_period + I(trial_period^2),
 model_fitter = stats_glm_logit(save_path = NA)
)
## S4 method for signature 'trial_sequence_ITT'
set_outcome_model(
 object,
  adjustment_terms = ~1,
  followup_time_terms = ~followup_time + I(followup_time^2),
  trial_period_terms = ~trial_period + I(trial_period^2),
 model_fitter = stats_glm_logit(save_path = NA)
)
## S4 method for signature 'trial_sequence_PP'
set_outcome_model(
  object,
  adjustment_terms = ~1,
```

```
followup_time_terms = ~followup_time + I(followup_time^2),
    trial_period_terms = ~trial_period + I(trial_period^2),
    model_fitter = stats_glm_logit(save_path = NA)
)
## S4 method for signature 'trial_sequence_AT'
set_outcome_model(
    object,
    treatment_var = "dose",
    adjustment_terms = ~1,
    followup_time_terms = ~followup_time + I(followup_time^2),
    trial_period_terms = ~trial_period + I(trial_period^2),
    model_fitter = stats_glm_logit(save_path = NA)
)
```

Arguments

object	A trial_sequence object	
	Parameters used by methods	
treatment_var	The treatment term, only used for "as treated" estimands. PP and ITT are fixed to use "assigned_treatment".	
adjustment_terms		
	Formula terms for any covariates to adjust the outcome model.	
followup_time_terms		
	Formula terms for followup_time, the time period relative to the start of the trial.	
trial_period_terms		
	Formula terms for trial_period, the time period of the start of the trial.	
<pre>model_fitter</pre>	A te_model_fitter object, e.g. from stats_glm_logit().	

Value

A modified object with the outcome_model slot set

Examples

```
trial_sequence("ITT") |>
  set_data(data_censored) |>
  set_outcome_model(
    adjustment_terms = ~age_s,
    followup_time_terms = ~ stats::poly(followup_time, degree = 2)
)
```

set_switch_weight_model

Set switching weight model

Description

[Experimental]

Usage

```
set_switch_weight_model(object, numerator, denominator, model_fitter, ...)
## S4 method for signature 'trial_sequence'
set_switch_weight_model(
    object,
    numerator,
    denominator,
    model_fitter,
    eligible_wts_0 = NULL,
    eligible_wts_1 = NULL
)
## S4 method for signature 'trial_sequence_ITT'
```

```
set_switch_weight_model(object, numerator, denominator, model_fitter)
```

Arguments

object	A trial_sequence object.
numerator	Right hand side formula for the numerator model
denominator	Right hand side formula for the denominator model
<pre>model_fitter</pre>	A te_model_fitter object, such as stats_glm_logit
	Other arguments used by methods.
eligible_wts_0	Name of column containing indicator (0/1) for observation to be excluded/included in weight model.
eligible_wts_1	Exclude some observations when fitting the models for the inverse probability of treatment weights. For example, if it is assumed that an individual will stay on treatment for at least 2 visits, the first 2 visits after treatment initiation by definition have a probability of staying on the treatment of 1.0 and should thus be excluded from the weight models for those who are on treatment at the im- mediately previous visit. Users can define a variable that indicates that these 2 observations are ineligible for the weight model for those who are on treatment at the immediately previous visit and add the variable name in the argument eligible_wts_1. Similar definitions are applied to eligible_wts_0 for ex- cluding observations when fitting the models for the inverse probability of treat- ment weights for those who are not on treatment at the immediately previous visit.

Value

object is returned with @switch_weights set

Examples

```
trial_sequence("PP") |>
  set_data(data = data_censored) |>
  set_switch_weight_model(
    numerator = ~ age_s + x1 + x3,
    denominator = ~ x3 + x4,
    model_fitter = stats_glm_logit(tempdir())
)
```

show_weight_models Show Weight Model Summaries

Description

[Experimental]

Usage

show_weight_models(object)

Arguments

object A trial_sequence object after fitting weight models with calculate_weights()

Value

Prints summaries of the censoring models

stats_glm_logit Fit outcome models using stats::glm

Description

[Experimental]

Usage

```
stats_glm_logit(save_path)
```

Arguments

save_path Directory to save models. Set to NA if models should not be saved.

Details

Specify that the pooled logistic regression outcome models should be fit using stats::glm with family = binomial(link = "logit").

Outcome models additional calculate robust variance estimates using sandwich::vcovCL.

Value

An object of class te_stats_glm_logit inheriting from te_model_fitter which is used for dispatching methods for the fitting models.

See Also

Other model_fitter: parsnip_model(), te_model_fitter-class

Examples

stats_glm_logit(save_path = tempdir())

summary.TE_data_prep Summary methods

Description

[Stable] Print summaries of data and model objects produced by TrialEmulation.

Usage

```
## S3 method for class 'TE_data_prep'
summary(object, ...)
## S3 method for class 'TE_data_prep_sep'
summary(object, ...)
## S3 method for class 'TE_data_prep_dt'
summary(object, ...)
## S3 method for class 'TE_msm'
summary(object, ...)
## S3 method for class 'TE_robust'
summary(object, ...)
```

Arguments

object	Object to print summary
	Additional arguments passed to print methods.

Value

No value, displays summaries of object.

te_data-class TrialEmulation Data Class

Description

TrialEmulation Data Class

Slots

data A data.table object with columns "id", "period", "treatment", "outcome", "eligible"

te_datastore-class te_datastore

Description

This is the parent class for classes which define how the expanded trial data should be stored. To define a new storage type, a new class should be defined which inherits from te_datastore. In addition, methods save_expanded_data and read_expanded_data need to be defined for the new class.

Value

A 'te_datastore' object

Slots

N The number of observations in this data. Initially 0.

te_data_ex

Description

A small example object from data_preparation used in examples. It is created with the following code:

Usage

te_data_ex

Format

An object of class TE_data_prep_dt (inherits from TE_data_prep) of length 6.

Details

```
dat <- trial_example[trial_example$id < 200, ]</pre>
```

```
te_data_ex <- data_preparation(
data = dat,
  outcome_cov = c("nvarA", "catvarA"),
  first_period = 260,
  last_period = 280
)</pre>
```

See Also

te_model_ex

te_model_ex Example of a fitted marginal structural model object

Description

A small example object from trial_msm used in examples. It is created with the following code:

Usage

```
te_model_ex
```

Format

An object of class TE_msm of length 3.

Details

```
te_model_ex <- trial_msm(
  data = data_subset,
  outcome_cov = c("catvarA", "nvarA"),
  last_followup = 40,
  model_var = "assigned_treatment",
  include_followup_time = ~followup_time,
  include_trial_period = ~trial_period,
  use_sample_weights = FALSE,
  quiet = TRUE,
  glm_function = "glm"
  )
```

See Also

te_data_ex

te_model_fitter-class Outcome Model Fitter Class

Description

This is a virtual class which other outcome model fitter classes should inherit from. Objects of these class exist to define how the outcome models are fit. They are used for the dispatch of the internal methods fit_outcome_model, fit_weights_model and predict.

See Also

Other model_fitter: parsnip_model(), stats_glm_logit()

te_outcome_data-class TrialEmulation Outcome Data Class

Description

TrialEmulation Outcome Data Class

Slots

data A data.table object with columns "id", "period",

n_rows Number of rows

n_ids Number of IDs

periods Vector of periods "treatment", "outcome", "eligible"

40

te_outcome_fitted-class

Fitted Outcome Model Object

Description

Fitted Outcome Model Object

Slots

model list containing fitted model objects.

summary list of data.frames. Tidy model summaries a la broom() and glance()

te_outcome_model-class

Fitted Outcome Model Object

Description

Fitted Outcome Model Object

Slots

formula formula object for the model fitting

adjustment_vars character. Adjustment variables

treatment_var Variable used for treatment

stabilised_weights_terms formula. Adjustment terms from numerator models of stabilised weights. These must be included in the outcome model.

adjustment_terms formula. User specified terms to include in the outcome model

treatment_terms formula. Estimand defined treatment term

followup_time_terms formula. Terms to model follow up time within an emulated trial

trial_period_terms formula. Terms to model start time ("trial_period") of an emulated trial

model_fitter Model fitter object

fitted list. Saves the model objects

trial_example

Description

A dataset containing the treatment, outcomes and other attributes of 503 patients for sequential trial emulation. See vignette("Getting-Started").

Usage

trial_example

Format

A data frame with 48400 rows and 11 variables:

id patient identifier

eligible eligible for trial start in this period, 1=yes, 0=no

period time period

outcome indicator for outcome in this period, 1=event occurred, 0=no event

treatment indicator for receiving treatment in this period, 1=treatment, 0=no treatment

catvarA A categorical variable relating to treatment and the outcome

catvarB A categorical variable relating to treatment and the outcome

catvarC A categorical variable relating to treatment and the outcome

nvarA A numerical variable relating to treatment and the outcome

nvarB A numerical variable relating to treatment and the outcome

nvarC A numerical variable relating to treatment and the outcome

trial_msm

Fit the marginal structural model for the sequence of emulated trials

Description

[Stable]

trial_msm

Usage

```
trial_msm(
  data,
  outcome_cov = \sim 1,
 estimand_type = c("ITT", "PP", "As-Treated"),
 model_var = NULL,
  first_followup = NA,
  last_followup = NA,
  analysis_weights = c("asis", "unweighted", "p99", "weight_limits"),
 weight_limits = c(0, Inf),
  include_followup_time = ~followup_time + I(followup_time^2),
  include_trial_period = ~trial_period + I(trial_period^2),
 where_case = NA,
  glm_function = c("glm", "parglm"),
  use_sample_weights = TRUE,
  quiet = FALSE,
  . . .
)
```

Arguments

data	A data.frame containing all the required variables in the person-time format, i.e., the 'long' format.
outcome_cov	A RHS formula with baseline covariates to be adjusted for in the marginal struc- tural model for the emulated trials. Note that if a time-varying covariate is speci- fied in outcome_cov, only its value at each of the trial baselines will be included in the expanded data.
estimand_type	Specify the estimand for the causal analyses in the sequence of emulated tri- als. estimand_type = "ITT" will perform intention-to-treat analyses, where treatment switching after trial baselines are ignored. estimand_type = "PP" will perform per-protocol analyses, where individuals' follow-ups are artificially censored and inverse probability of treatment weighting is applied. estimand_type = "As-Treated" will fit a standard marginal structural model for all possible treatment sequences, where individuals' follow-ups are not artificially censored but treatment switching after trial baselines are accounted for by applying in- verse probability of treatment weighting.
model_var	Treatment variables to be included in the marginal structural model for the emulated trials. model_var = "assigned_treatment" will create a variable assigned_treatment that is the assigned treatment at the trial baseline, typ- ically used for ITT and per-protocol analyses. model_var = "dose" will create a variable dose that is the cumulative number of treatments received since the trial baseline, typically used in as-treated analyses.
first_followup	First follow-up time/visit in the trials to be included in the marginal structural model for the outcome event.
last_followup	Last follow-up time/visit in the trials to be included in the marginal structural model for the outcome event.

analysis_weights

Choose which type of weights to be used for fitting the marginal structural model for the outcome event.

- "asis": use the weights as calculated.
- "p99": use weights truncated at the 1st and 99th percentiles (based on the distribution of weights in the entire sample).
- "weight_limits": use weights truncated at the values specified in weight_limits.
- "unweighted": set all analysis weights to 1, even if treatment weights or censoring weights were calculated.

weight_limits Lower and upper limits to truncate weights, given as c(lower, upper)

include_followup_time

The model to include the follow up time/visit of the trial (followup_time) in the marginal structural model, specified as a RHS formula.

include_trial_period

The model to include the trial period (trial_period) in the marginal structural model, specified as a RHS formula.

- Define conditions using variables specified in where_var when fitting a marginal where_case structural model for a subgroup of the individuals. For example, if where_var= "age", where_case = "age >= 30" will only fit the marginal structural model to the subgroup of individuals. who are 30 years old or above.
- glm_function Specify which glm function to use for the marginal structural model from the stats or parglm packages. The default function is the glm function in the stats package. Users can also specify glm_function = "parglm" such that the parglm function in the parglm package can be used for fitting generalized linear models in parallel. The default control setting for parglm is nthreads = 4 and method = "FAST", where four cores and Fisher information are used for faster computation. Users can change the default control setting by passing the arguments nthreads and method in the parglm.control function of the parglm package, or alternatively, by passing a control argument with a list produced by parglm.control(nthreads = , method =).

use_sample_weights Use case-control sampling weights in addition to inverse probability weights for treatment and censoring. data must contain a column sample_weight. The final weights used in the pooled logistic regression are calculated as weight = weight * sample_weight. Suppress the printing of progress messages and summaries of the fitted models.

. . .

quiet Additional arguments passed to glm_function. This may be used to specify initial values of parameters or arguments to control. See stats::glm, parglm::parglm and parglm::parglm.control() for more information.

Details

Apply a weighted pooled logistic regression to fit the marginal structural model for the sequence of emulated trials and calculates the robust covariance matrix of parameter using the sandwich estimator.

The model formula is constructed by combining the arguments outcome_cov, model_var, include_followup_time, and include_trial_period.

trial_sequence

Value

Object of class TE_msm containing

model a glm object

robust a list containing a summary table of estimated regression coefficients and the robust covariance matrix

args a list contain the parameters used to prepare and fit the model

trial_sequence Create a sequence of emulated target trials object

Description

[Experimental]

Usage

trial_sequence(estimand, ...)

Arguments

estimand	The name of the estimand for this analysis, either one of "ITT", "PP", "AT" for
	intention-to-treat, per-protocol, as-treated estimands respectively, or the name
	of a class extending trial_sequence
	Other parameters used when creating object

Value

An estimand specific trial sequence object

Examples

trial_sequence("ITT")

trial_sequence-class Trial Sequence class

Description

Trial Sequence class

Slots

data te_data.
estimand character. Descriptive name of estimand.
expansion te_expansion
outcome_model te_outcome_model.
outcome_data te_outcome_data.
censor_weight te_weight. Object to define weighting to account for informative censoring
censor_weight te_weight. Object to define weighting to account for informative censoring due to
treatment switching

vignette_switch_data Example of expanded longitudinal data for sequential trial emulation

Description

This is the expanded dataset created in the vignette("Getting-Started") known as switch_data.

Usage

vignette_switch_data

Format

A data frame with 1939053 rows and 7 variables:

id patient identifier

trial_period trial start time period

followup_time follow up time within trial

outcome indicator for outcome in this period, 1=event occurred, 0=no event

- treatment indicator for receiving treatment in this period, 1=treatment, 0=non-treatment
- **assigned_treatment** indicator for assigned treatment at baseline of the trial, 1=treatment, 0=non-treatment

weight weights for use with model fitting

catvarA A categorical variable relating to treatment and the outcome

catvarB A categorical variable relating to treatment and the outcomecatvarC A categorical variable relating to treatment and the outcomenvarA A numerical variable relating to treatment and the outcomenvarB A numerical variable relating to treatment and the outcomenvarC A numerical variable relating to treatment and the outcome

weight_model_data_indices

Data used in weight model fitting

Description

[Experimental]

Usage

```
weight_model_data_indices(
   object,
   type = c("switch", "censor"),
   model,
   set_col = NULL
)
```

Arguments

object	A trial_sequence object
type	Select a censoring or switching model
model	The model name
<pre>set_col</pre>	A character string to specifying a new column to contain indicators for observa- tions used in fitting this model.

Value

If set_col is not specified a logical data.table column is returned. Otherwise

Examples

```
trial_pp <- trial_sequence("PP") |>
  set_data(data_censored) |>
  set_switch_weight_model(
    numerator = ~age,
    denominator = ~age + x1 + x3,
    model_fitter = stats_glm_logit(tempdir())
  ) |>
    calculate_weights()
ipw_data(trial_pp)
```

```
show_weight_models(trial_pp)
# get logical column for own processing
i <- weight_model_data_indices(trial_pp, "switch", "d0")
# set column in data
weight_model_data_indices(trial_pp, "switch", "d0", set_col = "sw_d0")
weight_model_data_indices(trial_pp, "switch", "d1", set_col = "sw_d1")
ipw_data(trial_pp)</pre>
```

Index

* datasets data_censored, 5 te_data_ex, 39 te_model_ex, 39 trial_example, 42 vignette_switch_data, 46 * model fitter parsnip_model, 19 stats_glm_logit, 36 te_model_fitter-class, 40 * save to save_to_csv, 26 save_to_datatable, 27 save_to_duckdb, 27 set_expansion_options, 31 calculate_weights, 3 calculate_weights(), 36 calculate_weights,trial_sequence_AT-method (calculate_weights), 3 calculate_weights,trial_sequence_ITT-method (calculate_weights), 3 calculate_weights,trial_sequence_PP-method (calculate_weights), 3

case_control_sampling_trials, 4, 9

data_censored, 5
data_preparation, 6, 39
data_preparation(), 4, 15

expand_trials, 9, 25
expand_trials(), 10

fit_msm, 10
fit_msm, trial_sequence-method
 (fit_msm), 10
fit_outcome_model, 40
fit_weights_model, 11, 40

initiators, 12
initiators(), 21

ipw_data, 16 ipw_data,trial_sequence-method (ipw_data), 16 ipw_data<- (ipw_data), 16</pre> ipw_data<-,trial_sequence-method</pre> (ipw_data), 16 load_expanded_data, 17 load_expanded_data,trial_sequence-method (load_expanded_data), 17 outcome_data, 18 outcome_data,trial_sequence-method (outcome_data), 18 outcome_data<- (outcome_data), 18</pre> outcome_data<-,trial_sequence-method</pre> (outcome_data), 18 parglm::parglm, 8, 15, 44

parglm::parglm.control(), 8, 15, 44
parsnip_model, 19, 37, 40
predict, 40
predict (predict_marginal), 20
predict,trial_sequence_ITT-method
 (predict_marginal), 20
predict,trial_sequence_PP-method
 (predict_marginal), 20
predict.TE_msm (predict_marginal), 20
predict.TE_msm (predict_marginal), 20
predict.TE_msm (predict_marginal), 20
predict_marginal, 20
print.data.frame, 23
print.TE_weight_summary, 23

sample_expanded_data, 24
sample_expanded_data,te_datastore-method
 (sample_expanded_data), 24
save_expanded_data, 25, 38

save_expanded_data,te_datastore_datatable-methodset(),4 (save_expanded_data), 25 summary.TE_data_prep, 37 save_to_csv, 26, 27, 32 summary.TE_data_prep_dt save_to_datatable, 26, 27, 27, 32 (summary.TE_data_prep), 37 save_to_duckdb, 26, 27, 27, 32 summary.TE_data_prep_sep (summary.TE_data_prep), 37 set_censor_weight_model, 28 set_censor_weight_model,trial_sequence-methodsummary.TE_msm(summary.TE_data_prep), (set_censor_weight_model), 28 37 set_censor_weight_model,trial_sequence_AT-methwamary.TE_robust (summary.TE_data_prep), 37 (set_censor_weight_model), 28 set_censor_weight_model,trial_sequence_ITT-method te_data-class, 38 (set_censor_weight_model), 28 set_censor_weight_model,trial_sequence_PP-method te_datastore, 17, 23, 25, 32 (set_censor_weight_model), 28 te_datastore-class, 38 set_data, 30 te_datastore_csv, 26 set_data(), 16 te_datastore_duckdb, 27 set_data,trial_sequence_AT,data.frame-method te_model_ex, 39, 39 (set_data), 30 set_data,trial_sequence_ITT,data.frame-method
te_model_fitter, 20, 35, 37 (set_data), 30 te_outcome_data, 18 set_data,trial_sequence_PP,data.frame-method te_outcome_data-class, 40 (set_data), 30 te_outcome_fitted-class, 41 set_expansion_options, 25-27, 31 te_outcome_model-class, 41 set_expansion_options(), 9 trial_example, 42 set_expansion_options, trial_sequence_ITT-method trial_msm, 9, 39, 42 (set_expansion_options), 31 trial_msm(), 5, 15, 21 set_expansion_options,trial_sequence_PP-method trial_sequence, 3, 9, 17, 18, 21, 31, 32, 35, (set_expansion_options), 31 36, 45, 45, 47 set_outcome_model, 10, 33 trial_sequence-class, 46 set_outcome_model(), 10 trial_sequence_AT-class set_outcome_model,trial_sequence-method (trial_sequence-class), 46 (set_outcome_model), 33 trial_sequence_ITT-class set_outcome_model,trial_sequence_AT-method (trial_sequence-class), 46 (set_outcome_model), 33 trial_sequence_PP-class set_outcome_model,trial_sequence_ITT-method (trial_sequence-class), 46 (set_outcome_model), 33 set_outcome_model,trial_sequence_PP-method vignette_switch_data, 46 (set_outcome_model), 33 weight_model_data_indices, 47 set_switch_weight_model, 35 set_switch_weight_model,trial_sequence-method (set_switch_weight_model), 35 set_switch_weight_model,trial_sequence_ITT-method (set_switch_weight_model), 35 show_weight_models, 36 split(), 5 stats::glm, 8, 15, 37, 44 stats_glm_logit, 20, 35, 36, 40 stats_glm_logit(), 20, 29

50