Type: | Package |
Title: | Tukey g-&-h Distribution |
Version: | 0.1.4 |
Date: | 2025-03-15 |
Description: | Functions for density, cumulative density, quantile and simulation of Tukey g-and-h (1977) distributions. The quantile-based transformation (Hoaglin 1985 <doi:10.1002/9781118150702.ch11>) and its reverse transformation, as well as the letter-value based estimates (Hoaglin 1985), are also provided. |
License: | GPL-2 |
Depends: | R (≥ 4.4.0) |
Imports: | rstpm2, stats |
Suggests: | fitdistrplus |
Encoding: | UTF-8 |
Language: | en-US |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-03-15 18:02:15 UTC; tingtingzhan |
Author: | Tingting Zhan [aut, cre], Inna Chervoneva [ctb] |
Maintainer: | Tingting Zhan <tingtingzhan@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-03-15 22:10:15 UTC |
Tukey g
-&-h
Distribution
Description
Density, cumulative density, quantile and simulation of
the 4-parameter Tukey (1977) g
-&-h
distributions.
The quantile-based transformation (Hoaglin 1985)
and its reverse transformation,
as well as the letter-value based estimates (Hoaglin 1985),
are also provided.
Value
Returned values of individual functions are documented separately.
Author(s)
Maintainer: Tingting Zhan tingtingzhan@gmail.com
Other contributors:
Inna Chervoneva Inna.Chervoneva@jefferson.edu [contributor]
References
Tukey, J.W. (1977): Modern Techniques in Data Analysis. In: NSF-sponsored Regional Research Conference at Southeastern Massachusetts University, North Dartmouth, MA.
Hoaglin, D.C. (1985): Summarizing shape numerically: The g
-and-h
distributions.
Exploring data tables, trends, and shapes, pp. 461–513.
John Wiley & Sons, Ltd, New York.
doi:10.1002/9781118150702.ch11
Helper Functions
Description
Helper functions to be used in downstream packages.
Usage
.GH2z(
q,
q0 = (q - A)/B,
A = 0,
B = 1,
g = 0,
h = 0,
interval = c(-15, 15),
tol = .Machine$double.eps^0.25,
maxiter = 1000
)
.dGH(
x,
A,
B,
g,
h,
log,
interval = c(-50, 50),
tol = .Machine$double.eps^0.25,
maxiter = 1000
)
Arguments
q0 |
.. |
A , B , g , h |
.. |
interval |
.. |
tol , maxiter |
.. |
x , q |
.. |
log |
.. |
Value
Returns of the helper functions are not documented, for now.
Inverse of Tukey g
-&-h
Transformation
Description
To transform Tukey g
-&-h
quantiles to standard normal quantiles.
Usage
GH2z(q, q0 = (q - A)/B, A = 0, B = 1, ...)
Arguments
q |
|
q0 |
(optional) double vector,
standardized quantiles |
A , B |
(optional) double scalars, location and scale parameters of
Tukey |
... |
parameters of internal helper function |
Details
Unfortunately, function GH2z()
, the inverse of Tukey g
-&-h
transformation,
does not have a closed form and needs to be solved numerically.
For compute intensive jobs, use internal helper function .GH2z()
.
Value
Function GH2z()
returns a double vector of the same length as input q
.
Examples
z = rnorm(1e3L)
all.equal.numeric(.GH2z(z2GH(z, g = .3, h = .1), g = .3, h = .1), z)
all.equal.numeric(.GH2z(z2GH(z, g = 0, h = .1), g = 0, h = .1), z)
all.equal.numeric(.GH2z(z2GH(z, g = .2, h = 0), g = .2, h = 0), z)
Tukey g
-&-h
Distribution
Description
Density, distribution function, quantile function and simulation
for Tukey g
-&-h
distribution with
location parameter A
,
scale parameter B
,
skewness g
and
elongation h
.
Usage
dGH(x, A = 0, B = 1, g = 0, h = 0, log = FALSE, ...)
rGH(n, A = 0, B = 1, g = 0, h = 0)
qGH(p, A = 0, B = 1, g = 0, h = 0, lower.tail = TRUE, log.p = FALSE)
pGH(q, A = 0, B = 1, g = 0, h = 0, lower.tail = TRUE, log.p = FALSE, ...)
Arguments
x , q |
|
A |
double scalar, location parameter |
B |
double scalar, scale parameter |
g |
double scalar, skewness parameter |
h |
double scalar, elongation parameter |
log , log.p |
logical scalar, if |
... |
other parameters of function |
n |
integer scalar, number of observations |
p |
|
lower.tail |
logical scalar, if |
Value
Function dGH()
returns the density and accommodates vector arguments A
, B
, g
and h
.
The quantiles x
can be either vector or matrix.
This function takes about 1/5 time of gk::dgh
.
Function pGH()
returns the distribution function, only taking scalar arguments and vector quantiles q
.
This function takes about 1/10 time of function gk::pgh
.
Function qGH()
returns the quantile function, only taking scalar arguments and vector probabilities p
.
Function rGH()
generates random deviates, only taking scalar arguments.
Examples
(x = c(NA_real_, rGH(n = 5L, g = .3, h = .1)))
dGH(x, g = c(0,.1,.2), h = c(.1,.1,.1))
p0 = seq.int(0, 1, by = .2)
(q0 = qGH(p0, g = .2, h = .1))
range(pGH(q0, g = .2, h = .1) - p0)
q = (-2):3; q[2L] = NA_real_; q
(p1 = pGH(q, g = .3, h = .1))
range(qGH(p1, g = .3, h = .1) - q, na.rm = TRUE)
(p2 = pGH(q, g = .2, h = 0))
range(qGH(p2, g = .2, h = 0) - q, na.rm = TRUE)
curve(dGH(x, g = .3, h = .1), from = -2.5, to = 3.5)
Letter-Value Estimation of Tukey g
-&-h
Distribution
Description
Letter-value based estimation (Hoaglin, 1985) of
Tukey g
-, h
- and g
-&-h
distribution.
All equation numbers mentioned below refer to Hoaglin (1985).
Usage
letterValue(
x,
g_ = seq.int(from = 0.15, to = 0.25, by = 0.005),
h_ = seq.int(from = 0.15, to = 0.35, by = 0.005),
halfSpread = c("both", "lower", "upper"),
...
)
Arguments
x |
|
g_ |
double vector, probabilities used for estimating |
h_ |
double vector, probabilities used for estimating |
halfSpread |
character scalar,
either to use |
... |
additional parameters, currently not in use |
Details
Unexported function letterV_g()
estimates parameter g
using equation (10) for g
-distribution
and the equivalent equation (31) for g
-&-h
distribution.
Unexported function letterV_B()
estimates parameter B
for Tukey g
-distribution
(i.e., g\neq 0
, h=0
), using equation (8a) and (8b).
Unexported function letterV_Bh_g()
estimates parameters B
and h
when g\neq 0
, using equation (33).
Unexported function letterV_Bh()
estimates parameters B
and h
for Tukey h
-distribution,
i.e., when g=0
and h\neq 0
, using equation (26a), (26b) and (27).
Function letterValue()
plays a similar role as fitdistrplus:::start.arg.default
,
thus extends fitdistrplus::fitdist
for estimating Tukey g
-&-h
distributions.
Value
Function letterValue()
returns a 'letterValue'
object,
which is double vector of estimates (\hat{A}, \hat{B}, \hat{g}, \hat{h})
for a Tukey g
-&-h
distribution.
Note
Parameter g_
and h_
does not have to be truly unique; i.e., all.equal elements are allowed.
References
Hoaglin, D.C. (1985). Summarizing Shape Numerically: The g
-and-h
Distributions.
doi:10.1002/9781118150702.ch11
Examples
set.seed(77652); x = rGH(n = 1e3L, g = -.3, h = .1)
letterValue(x, g_ = FALSE, h_ = FALSE)
letterValue(x, g_ = FALSE)
letterValue(x, h_ = FALSE)
(m3 = letterValue(x))
library(fitdistrplus)
fit = fitdist(x, distr = 'GH', start = as.list.default(m3))
plot(fit) # fitdistrplus:::plot.fitdist
Vectorised One Dimensional Root (Zero) Finding
Description
To solve a monotone function y = f(x)
for a given vector of y
values.
Usage
vuniroot2(
y,
f,
interval = stop("must provide a length-2 `interval`"),
tol = .Machine$double.eps^0.25,
maxiter = 1000L
)
Arguments
y |
|
f |
monotone function |
interval |
|
tol |
double scalar, desired accuracy, i.e., convergence tolerance |
maxiter |
integer scalar, maximum number of iterations |
Details
Function vuniroot2()
, different from vuniroot, does
accept
NA_real_
as element(s) ofy
handle the case when the analytic root is at
lower
and/orupper
return a root of
Inf
(ifabs(f(lower)) >= abs(f(upper))
) or-Inf
(ifabs(f(lower)) < abs(f(upper))
), when the function valuef(lower)
andf(upper)
are not of opposite sign.
Value
Function vuniroot2()
returns a numeric vector x
as the solution of y = f(x)
with given vector y
.
Examples
library(rstpm2)
# ?rstpm2::vuniroot does not accept NA \eqn{y}
tryCatch(vuniroot(function(x) x^2 - c(NA, 2:9), lower = 1, upper = 3), error = identity)
# ?rstpm2::vuniroot not good when the analytic root is at `lower` or `upper`
f <- function(x) x^2 - 1:9
vuniroot(f, lower = .99, upper = 3.001) # good
tryCatch(vuniroot(f, lower = 1, upper = 3, extendInt = 'no'), warning = identity)
tryCatch(vuniroot(f, lower = 1, upper = 3, extendInt = 'yes'), warning = identity)
tryCatch(vuniroot(f, lower = 1, upper = 3, extendInt = 'downX'), error = identity)
tryCatch(vuniroot(f, lower = 1, upper = 3, extendInt = 'upX'), warning = identity)
vuniroot2(c(NA, 1:9), f = function(x) x^2, interval = c(1, 3)) # all good
Tukey g
-&-h
Transformation
Description
To transform standard normal quantiles to Tukey g
-&-h
quantiles.
Usage
z2GH(z, A = 0, B = 1, g = 0, h = 0)
Arguments
z |
|
A , B , g , h |
double scalar or vector,
parameters of Tukey |
Details
Function z2GH()
transforms standard normal quantiles to Tukey g
-&-h
quantiles.
Value
Function z2GH()
returns a double scalar or vector.
Note
Function gk:::z2gh
is not fully vectorized,
i.e., cannot take vector z
and vector A/B/g/h
,
as of 2023-07-20 (package gk
version 0.6.0)