
Package ‘UBStats’
July 21, 2025

Type Package

Title Basic Statistics

Version 0.2.2

Date 2024-08-21

Description Basic statistical analyses. The package has been developed
to be used in statistics courses at Bocconi University (Milan, Italy).
Currently, the package includes some exploratory and inferential analyses
usually presented in introductory statistics courses.

Maintainer Sergio Venturini <sergio.venturini@unicatt.it>

License GPL-3

NeedsCompilation no

Repository CRAN

LazyData true

Imports graphics, grDevices, stats

Depends R (>= 3.5.0), utils

BugReports https://github.com/raffaellapiccarreta/UBStats/issues

Encoding UTF-8

RoxygenNote 7.3.2

Author Raffaella Piccarreta [aut],
Sergio Venturini [cre]

Date/Publication 2024-08-26 16:00:07 UTC

Contents
CI.diffmean . 2
CI.diffprop . 5
CI.mean . 8
CI.prop . 10
distr.plot.x . 12
distr.plot.xy . 16

1

https://github.com/raffaellapiccarreta/UBStats/issues

2 CI.diffmean

distr.summary.x . 20
distr.table.x . 24
distr.table.xy . 27
LM.output . 30
MktDATA . 31
MktDATA.Orig . 31
summaries.plot.x . 33
TEST.diffmean . 36
TEST.diffprop . 40
TEST.diffvar . 43
TEST.mean . 45
TEST.prop . 47

Index 50

CI.diffmean Confidence intervals for the difference between means

Description

CI.diffmean() builds confidence intervals for the difference between the means of two indepen-
dent or paired populations.

Usage

CI.diffmean(
x,
y,
type = "independent",
sigma.x = NULL,
sigma.y = NULL,
conf.level = 0.95,
by,
sigma.by = NULL,
sigma.d = NULL,
var.test = FALSE,
digits = 2,
force.digits = FALSE,
use.scientific = FALSE,
data,
...

)

Arguments

x, y Unquoted strings identifying two numeric variables with the same length whose
means have to be compared. x and y can be the names of vectors in the workspace
or the names of columns in the data frame specified in the data argument. It is
possible to use a mixed specification (e.g, one vector and one column in data).

CI.diffmean 3

type A length-one character vector specifying the type of samples. Allowed values
are "independent" or "paired".

sigma.x, sigma.y
Optional numeric values specifying the possibly known populations’ standard
deviations (when x and y are specified). If NULL (default) standard deviations
are estimated using the data.

conf.level Numeric value specifying the required confidence level; default to 0.95.
by Optional unquoted string, available only when type = "independent", identi-

fying a variable (of any type), defined same way as x, taking only two values
used to split x into two independent samples. Given the two ordered values
taken by by (alphabetical or numerical order, or order of the levels for factors),
say by1 and by2, the confidence interval is built for the difference between the
populations means in the by1- and in the by2-group. Note that only one between
y and by can be specified.

sigma.by Optional numeric value specifying the possibly known standard deviations for
the two independent samples identified via by (when x and by are specified).
sigma.by can be a single value indicating the same standard deviation in the
two by-groups, or a vector with two values, specifying the standard deviations
in the two by-groups. To avoid errors, in the latter case the vector should be
named, with names coinciding with the two levels of by.

sigma.d Optional numeric value specifying the possibly known standard deviation of the
difference when samples are paired.

var.test Logical value indicating whether to run a test on the equality of variance for two
(independent) samples or not (default).

digits Integer value specifying the number of decimals used to round statistics; default
to 2. If the chosen rounding formats some non-zero values as zero, the number
of decimals is increased so that all values have at least one significant digit,
unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether reported values should be forcedly rounded to
the number of decimals specified in digits even if non-zero values are rounded
to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x and/or y. If not found in data, the variables
are taken from the environment from which CI.diffmean() is called.

... Additional arguments to be passed to low level functions.

Value

A table reporting the confidence intervals for the difference between the populations’ means. For
independent samples in the case of unknown variances, the intervals are built both under the as-
sumption that the variances are equal and under the assumption that they differ, using percentiles
from both the normal and the Student’s t distribution. If

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

4 CI.diffmean

See Also

TEST.diffmean() to test hypotheses on the difference between two populations’ means.

Examples

data(MktDATA, package = "UBStats")

Independent samples (default type), UNKNOWN variances
CI for the difference between means of males and females
- Using x,y: build vectors with data on the two groups
AOV_M <- MktDATA$AOV[MktDATA$Gender == "M"]
AOV_F <- MktDATA$AOV[MktDATA$Gender == "F"]
CI.diffmean(x = AOV_M, y = AOV_F)
- Change confidence level
CI.diffmean(x = AOV_M, y = AOV_F, conf.level = 0.99)
- Using x,by: groups identified by ordered levels of by
CI.diffmean(x = AOV, by = Gender, conf.level = 0.99, data = MktDATA)
Since order is F, M, CI is for mean(F) - mean(M)
To get the interval for mean(M) - mean(F)
Gender.R <- factor(MktDATA$Gender, levels = c("M", "F"))
CI.diffmean(x = AOV, by = Gender.R, conf.level = 0.99,

data = MktDATA)
- Testing hypotheses on equality of unknown variances
CI.diffmean(x = AOV_M, y = AOV_F, conf.level = 0.99,

var.test = TRUE)

- Output results: only information on the CI
out.ci_diffM<-CI.diffmean(x = AOV_M, y = AOV_F)
- Output results: list with information on CI and test on var
out.ci_diffM.V<-CI.diffmean(x = AOV_M, y = AOV_F, var.test = TRUE)

Independent samples (default type), KNOWN variances
CI for the difference between means of males and females
- Using x,y: build vectors with data on the two groups
AOV_M <- MktDATA$AOV[MktDATA$Gender == "M"]
AOV_F <- MktDATA$AOV[MktDATA$Gender == "F"]
CI.diffmean(x = AOV_M, y = AOV_F,

sigma.x = 10, sigma.y = 20)
- Using x,by: groups identified by ordered levels of by
CI.diffmean(x = AOV, by = Gender,

sigma.by = c("M" = 10, "F"=20), data = MktDATA)
To change the sign, order levels as desired
Gender.R <- factor(MktDATA$Gender, levels = c("M", "F"))
CI.diffmean(x = AOV, by = Gender.R,

sigma.by = c("M" = 10, "F"=20), data = MktDATA)
- Output results
out.ci_diffM<-CI.diffmean(x = AOV_M, y = AOV_F,

sigma.x = 10, sigma.y = 20)

Paired samples: UNKNOWN variances
- Default settings
CI.diffmean(x = NStore_Purch, y = NWeb_Purch,

CI.diffprop 5

type = "paired", data=MktDATA)
- Change confidence level
CI.diffmean(x = NStore_Purch, y = NWeb_Purch,

type = "paired", conf.level = 0.9, data = MktDATA)
Paired: KNOWN variances
CI.diffmean(x = NStore_Purch, y = NWeb_Purch,

type = "paired", conf.level = 0.9,
sigma.d = 2, data = MktDATA)

- Output results
out.ci_diffM<-CI.diffmean(x = NStore_Purch, y = NWeb_Purch,

type = "paired", conf.level = 0.9,
sigma.d = 2, data = MktDATA)

Arguments force.digits and use.scientific
An input variable taking very low values
SmallX<-MktDATA$AOV/5000
SmallX_M <- SmallX[MktDATA$Gender == "M"]
SmallX_F <- SmallX[MktDATA$Gender == "F"]
- Default: manages possible excess of rounding
CI.diffmean(x = SmallX_M, y = SmallX_F)
- Force to the requested nr of digits (default, 2)
CI.diffmean(x = SmallX_M, y = SmallX_F,

force.digits = TRUE)
- Allow scientific notation
CI.diffmean(x = SmallX_M, y = SmallX_F,

use.scientific = TRUE)

CI.diffprop Confidence intervals for the difference between proportions

Description

CI.diffprop() builds confidence intervals for the difference between the proportion of successes
in two independent populations.

Usage

CI.diffprop(
x,
y,
success.x = NULL,
success.y = NULL,
conf.level = 0.95,
by,
digits = 2,
force.digits = FALSE,
use.scientific = FALSE,
data,

6 CI.diffprop

...
)

Arguments

x, y Unquoted strings identifying the variables of interest. x and y can be the names
of vectors or factors in the workspace or the names of columns in the data frame
specified in the data argument. It is possible to use a mixed specification (e.g,
one vector and one column in data).

success.x, success.y
If x,y are factors, character vectors, or numeric non-binary vectors, success
must be used to indicate the category/value corresponding to success in the pop-
ulations. These arguments can be omitted (NULL, default) if x,y are binary nu-
meric vectors (taking values 0 or 1 only; in this case success is assumed to corre-
spond to 1) or a logical vector (in these cases success is assumed to correspond
to TRUE).

conf.level Numeric value specifying the required confidence level; default to 0.95.

by Optional unquoted string identifying a variable (of any type), defined same way
as x, taking only two values used to split x into two independent samples. Given
the two ordered values taken by by (alphabetical or numerical order, or order of
the levels for factors), say by1 and by2, the confidence interval is built for the
difference between the populations proportions in the by1- and in the by2-group.
Note that only one between y and by can be specified.

digits Integer value specifying the number of decimals used to round statistics; default
to 2. If the chosen rounding formats some non-zero values as zero, the number
of decimals is increased so that all values have at least one significant digit,
unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether reported values should be forcedly rounded to
the number of decimals specified in digits even if non-zero values are rounded
to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x and/or y. If not found in data, the variables
are taken from the environment from which CI.diffprop() is called.

... Additional arguments to be passed to low level functions.

Value

A table reporting the confidence intervals for the difference between the proportions of successes in
two independent populations.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

CI.diffprop 7

See Also

TEST.diffprop() to test hypotheses on the difference between the proportions of successes in two
populations.

Examples

data(MktDATA, package = "UBStats")

Proportions of success defined on non-binary and
non-logical vectors; 'success' coded same way
for both vectors
- Using x,y: build vectors with data on the two groups
WouldSuggest_F <- MktDATA$WouldSuggest[MktDATA$Gender == "F"]
WouldSuggest_M <- MktDATA$WouldSuggest[MktDATA$Gender == "M"]
CI.diffprop(x = WouldSuggest_M, y = WouldSuggest_F,

success.x = "Yes")

PastCampaigns_F<-MktDATA$PastCampaigns[MktDATA$Gender=="F"]
PastCampaigns_M<-MktDATA$PastCampaigns[MktDATA$Gender=="M"]
CI.diffprop(x = PastCampaigns_M, y = PastCampaigns_F,

success.x = 0, conf.level = 0.99)

- Using x,by: groups identified by ordered levels of by
CI.diffprop(x = PastCampaigns, by = Gender,

success.x=0, conf.level = 0.99,
data = MktDATA)

Since order is F, M, CI is for prop(F) - prop(M)
To get the interval for prop(M) - prop(F)
Gender.R <- factor(MktDATA$Gender, levels = c("M", "F"))
CI.diffprop(x = PastCampaigns, by = Gender.R,

success.x=0, conf.level = 0.99, data = MktDATA)

Proportions of success defined based on
binary or logical vectors; 'success'
coded same way for both vectors
- Binary variable (success=1): based on x,y
LastCampaign_F<-MktDATA$LastCampaign[MktDATA$Gender=="F"]
LastCampaign_M<-MktDATA$LastCampaign[MktDATA$Gender=="M"]
CI.diffprop(x = LastCampaign_M, y = LastCampaign_F)
- Binary variable (success=1): based on x,y
see above for recoding of levels of Gender
Gender.R <- factor(MktDATA$Gender, levels = c("M", "F"))
CI.diffprop(x = LastCampaign, by = Gender.R, data = MktDATA)
- Logical variable (success=TRUE): based on x,y
Deals_w_child <- MktDATA$Deals.ge50[MktDATA$Children>0]
Deals_no_child <- MktDATA$Deals.ge50[MktDATA$Children==0]
CI.diffprop(x = Deals_w_child, y = Deals_no_child, conf.level = 0.9)

Proportions defined on
non-binary and non-logical vectors, with 'success'
coded differently (only specification x,y is reasonable here)
WouldSuggest_Other<-c(rep("OK",310),rep("KO",650-310))

8 CI.mean

CI.diffprop(x = WouldSuggest, y = WouldSuggest_Other,
success.x = "Yes", success.y = "OK",
data = MktDATA)

Proportions based on combined conditions
- Build logical vector/s indicating whether a condition
is satisfied
IsTop<-MktDATA$AOV>80
IsTop_OK<-IsTop[MktDATA$WouldSuggest == "Yes"]
IsTop_KO<-IsTop[MktDATA$WouldSuggest == "No"]
CI.diffprop(x = IsTop_OK, y = IsTop_KO, conf.level = 0.9)

Deals<-MktDATA$NDeals>=5
Deals_Married <- Deals[MktDATA$Marital_Status=="Married" &

MktDATA$Children==0]
Deals_Single <- Deals[MktDATA$Marital_Status=="Single"]
CI.diffprop(x = Deals_Married, y = Deals_Single, conf.level = 0.9)

Output results
Gender.R <- factor(MktDATA$Gender, levels = c("M", "F"))
out.ci_diffP<-CI.diffprop(x = PastCampaigns, by = Gender.R,

success.x=0, conf.level = 0.99,
data = MktDATA)

Arguments force.digits and use.scientific
An input variable taking very low values
HighAOV <- MktDATA$AOV>150
- Default: manages possible excess of rounding
CI.diffprop(x = HighAOV[MktDATA$Gender=="M"],

y = HighAOV[MktDATA$Gender=="F"])
- Force to the exact number of digits (default, 2)
CI.diffprop(x = HighAOV[MktDATA$Gender=="M"],

y = HighAOV[MktDATA$Gender=="F"],
force.digits = TRUE)

- Allow scientific notation
CI.diffprop(x = HighAOV[MktDATA$Gender=="M"],

y = HighAOV[MktDATA$Gender=="F"],
use.scientific = TRUE)

CI.mean Confidence intervals for the mean

Description

CI.mean() builds confidence intervals for the mean of a population.

Usage

CI.mean(

CI.mean 9

x,
sigma = NULL,
conf.level = 0.95,
digits = 2,
force.digits = FALSE,
use.scientific = FALSE,
data,
...

)

Arguments

x An unquoted string identifying the numeric variable whose mean is of interest. x
can be the name of a vector in the workspace or the name of one of the columns
in the data frame specified in the data argument.

sigma An optional numeric value specifying the population standard deviation. If NULL
(default) the population standard deviation is estimated using the data.

conf.level Numeric value specifying the required confidence level; default to 0.95.

digits Integer value specifying the number of decimals used to round statistics; default
to 2. If the chosen rounding formats some non-zero values as zero, the number
of decimals is increased so that all values have at least one significant digit,
unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether reported values should be forcedly rounded to
the number of decimals specified in digits even if non-zero values are rounded
to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x. If not found in data, x is taken from the
environment from which CI.mean() is called.

... Additional arguments to be passed to low level functions.

Value

A table reporting the confidence interval for the population mean. If the variance is unknown, the
interval is built using percentiles from both the normal and the Student’s t distribution.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

See Also

TEST.mean() to test hypotheses on a population mean.

10 CI.prop

Examples

data(MktDATA, package = "UBStats")

CI for the mean with KNOWN variance; default options
CI.mean(AOV, sigma = 30, data = MktDATA)

CI for the mean with UNKNOWN variance;
- change digits and confidence level 0.99
CI.mean(AOV, conf.level = 0.99, digits = 3, data = MktDATA)

Arguments force.digits and use.scientific
A variable taking very small values
SmallX<-MktDATA$AOV/5000
- Default: manages possible excess of rounding
CI.mean(SmallX)
- Forcing digits to the default values (2)
CI.mean(SmallX, force.digits = TRUE)
- Allow scientific notation
CI.mean(SmallX, use.scientific = TRUE)

Output the table with the requested interval
out.ci_mean<-CI.mean(AOV, data = MktDATA)

CI.prop Confidence intervals for the proportion

Description

CI.prop() builds confidence intervals for the proportion of successes in a population.

Usage

CI.prop(
x,
success = NULL,
conf.level = 0.95,
digits = 2,
force.digits = FALSE,
use.scientific = FALSE,
data,
...

)

Arguments

x An unquoted string identifying the variable of interest. x can be the name of a
vector or a factor in the workspace or the name of one of the columns in the data
frame specified in the data argument.

CI.prop 11

success If x is a factor, a character vector, or a numeric non-binary vector, success must
be used to indicate the category/value corresponding to success. The argument
can be omitted (NULL, default) if x is a binary numeric vector (takes values 0 or
1 only; in this case success is assumed to be 1) or a logical vector (in these cases
success is assumed to be TRUE).

conf.level Numeric value specifying the required confidence level; default to 0.95.

digits Integer value specifying the number of decimals used to round statistics; default
to 2. If the chosen rounding formats some non-zero values as zero, the number
of decimals is increased so that all values have at least one significant digit,
unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether reported values should be forcedly rounded to
the number of decimals specified in digits even if non-zero values are rounded
to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x. If not found in data, x is taken from the
environment from which CI.prop() is called.

... Additional arguments to be passed to low level functions.

Value

A table reporting the confidence intervals for the population proportion of successes.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

See Also

TEST.prop() to test hypotheses on the proportion of successes in a population.

Examples

data(MktDATA, package = "UBStats")

Success = one value of a character vector or factor
CI.prop(WouldSuggest, success = "Yes", data = MktDATA)

- change confidence level and rounding
CI.prop(Education, success = "Post-Grad",

conf.level = 0.9, digits = 4,
data = MktDATA)

Success = numeric value
CI.prop(Children, success = 2, data = MktDATA)

Binary variable ('success' is 1 by default)
CI.prop(LastCampaign, digits = 3, data = MktDATA)

12 distr.plot.x

Logical variable ('success' is TRUE by default)
CI.prop(RespCampaign, conf.level = 0.9, digits = 3, data = MktDATA)

Success based on combined conditions
- Build a (logical) vector indicating whether a condition is satisfied
IsTop <- MktDATA$CustClass == "Gold" | MktDATA$CustClass == "Platinum"
CI.prop(IsTop, conf.level = 0.9)
- A very rare event
HighAOV <- MktDATA$AOV>150
CI.prop(HighAOV, conf.level = 0.9)

Arguments force.digits, use.scientific
- Default: manages possible excess of rounding
CI.prop(HighAOV)
- Forcing digits to the default values (2)
CI.prop(HighAOV, force.digits = TRUE)
- Allow scientific notation
CI.prop(HighAOV, use.scientific = TRUE)

Output results
out_ci_prop<-CI.prop(HighAOV)

distr.plot.x Analysis of a univariate distribution using plots

Description

distr.plot.x() generates plots of a univariate distribution.

Usage

distr.plot.x(
x,
freq = "counts",
plot.type,
ord.freq = "none",
breaks,
adj.breaks = TRUE,
interval = FALSE,
bw = FALSE,
color = NULL,
use.scientific = FALSE,
data,
...

)

distr.plot.x 13

Arguments

x An unquoted string identifying the variable whose distribution has to be anal-
ysed. x can be the name of a vector or a factor in the workspace or the name of
one of the columns in the data frame specified in the data argument.

freq A single character specifying the frequencies to be displayed. Allowed op-
tions (possibly abbreviated) are "counts", "percentages", "proportions",
"densities" (for histograms and density plots).

plot.type A single character specifying the type of plot to build. Allowed options are
"pie", "bars", "spike", "histogram", "density", "boxplot", and "cumulative".

ord.freq A single character vector that can be specified when plot.type = "pie" or
plot.type = "bars". It indicates whether the levels of x should be displayed
in a standard order (ord.freq = "none", the default) or in an increasing or de-
creasing order (ord.freq = "increasing" or ord.freq = "decreasing").

breaks Allows to classify a numerical variable x into intervals. It can be an integer
indicating the number of intervals of equal width used to classify x, or a vector
of increasing numeric values defining the endpoints of intervals (closed on the
left and open on the right; the last interval is closed on the right too). To cover
the entire range of values the maximum and the minimum values should be
included between the first and the last break. It is possible to specify a set of
breaks covering only a portion of the x range.

adj.breaks Logical value indicating whether the endpoints of intervals of a numerical vari-
able x when classified into intervals should be displayed avoiding scientific no-
tation; default to TRUE.

interval Logical value indicating whether x is a variable measured in intervals (TRUE). If
the detected intervals are not consistent (e.g. overlapping intervals, or intervals
with upper endpoint higher than the lower one), the variable is analyzed as it is,
even if results are not necessarily consistent; default to FALSE.

bw Logical value indicating whether plots should be colored in scale of greys (TRUE)
rather than using a standard palette (FALSE, default).

color Optional string vector allowing to specify colors to use in the plot rather than a
standard palette (NULL, default).

use.scientific Logical value indicating whether numbers on axes should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x. If not found in data, x is taken from the
environment from which distr.plot.x() is called.

... Additional arguments to be passed to low level functions.

Value

No return value, called for side effects.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

14 distr.plot.x

See Also

distr.table.x() for tabulating a univariate distribution.

distr.table.xy() for tabulating a bivariate distribution.

distr.plot.xy() for plotting a bivariate distribution.

Examples

data(MktDATA, package = "UBStats")

Pie charts
- A character variable: grey scale
distr.plot.x(x = LikeMost, plot.type = "pie", bw = TRUE, data = MktDATA)
- A discrete numeric variable: user-defined palette
distr.plot.x(x = Children, plot.type = "pie",

color=c("red","gold","green","forestgreen"),
data = MktDATA)

Bar charts
- A factor: standard order of levels
distr.plot.x(x = Education, plot.type = "bars",

freq = "percentage", data = MktDATA)
- A factor: levels arranged by decreasing percentage
distr.plot.x(x = Education, plot.type = "bars",

freq = "perc", ord.freq = "dec", data = MktDATA)
- A discrete variable (note: distance between values
not taken into account)
distr.plot.x(x = NPickUp_Purch, plot.type = "bars",

freq = "percentage", data = MktDATA)

Spike plots
- A discrete variable
distr.plot.x(x = NPickUp_Purch, plot.type = "spike",

freq = "percent", data = MktDATA)
- A factor (levels placed at the same distance)
distr.plot.x(x = Education, plot.type = "spike",

freq = "prop",data = MktDATA)
- A variable measured in classes (levels placed at the
same distance)
distr.plot.x(x = Income.S, interval = TRUE,

plot.type = "spike",
freq = "prop",data = MktDATA)

- A numeric variable classified into intervals
(levels placed at the same distance)
distr.plot.x(x = AOV, breaks = 5, plot.type = "spike",

data = MktDATA)

Cumulative distribution plots
- A discrete variable
distr.plot.x(x = Children, plot.type = "cum", data = MktDATA)
- A continuous numerical variable
distr.plot.x(x = AOV, plot.type = "cum",

distr.plot.x 15

freq = "perc", data = MktDATA)
- A numeric variable classified into intervals
distr.plot.x(AOV, plot.type = "cum",

breaks = c(0,20,40,60,80,100,180), data = MktDATA)
- A variable measured in classes
distr.plot.x(Income, plot.type = "cum", interval = TRUE,

freq = "percent", data = MktDATA)
- A factor
distr.plot.x(x = Education, plot.type = "cum",

freq = "prop",data = MktDATA)

Histograms
- A continuous numerical variable: no breaks provided
default classes built by R
distr.plot.x(x = AOV, plot.type = "histogram", data = MktDATA)
- A continuous numerical variable: equal width intervals
distr.plot.x(x = AOV, plot.type = "histogram",

breaks = 10, data = MktDATA)
- A continuous numerical variable: specified breaks
distr.plot.x(AOV, plot.type = "histogram",

breaks = c(0,20,40,60,80,100,180),
data = MktDATA)

- A variable measured in classes
distr.plot.x(Income, plot.type = "histogram",

interval = TRUE, data = MktDATA)

Density plots
- A numerical variable
distr.plot.x(x = AOV, plot.type = "density", data = MktDATA)
- A numerical variable: breaks are ignored
distr.plot.x(AOV, plot.type = "density",

breaks = c(0,20,40,60,80,100,180),
data = MktDATA)

- A variable measured in classes
distr.plot.x(Income, plot.type = "density",

interval = TRUE, data = MktDATA)

Boxplots (only for numerical unclassified variables)
- A numerical variable
distr.plot.x(x = TotVal, plot.type = "boxplot", data = MktDATA)
- A numerical variable: with specified breaks
the plot is not built
distr.plot.x(AOV, plot.type = "boxplot",
breaks = c(0,20,40,60,80,100,180),
data = MktDATA)

Arguments adj.breaks, use.scientific
A variable with a very wide range (very small densities)
LargeX<-MktDATA$AOV*5000000
- Default formatting for intervals' endpoints
distr.plot.x(LargeX, breaks = 5, plot.type = "spike")
- Scientific notation for intervals' endpoints
distr.plot.x(LargeX, breaks = 5,plot.type = "spike",

16 distr.plot.xy

adj.breaks = FALSE)
- Default formatting for axes
distr.plot.x(LargeX, breaks = 5,plot.type = "histogram",

freq = "densities")
- Scientific notation for axes
distr.plot.x(LargeX, breaks = 5,plot.type = "histogram",

freq = "densities",use.scientific = TRUE)

distr.plot.xy Analysis of a bivariate distribution using plots

Description

distr.plot.xy() generates plots of a bivariate distribution.

Usage

distr.plot.xy(
x,
y,
plot.type,
bar.type = "stacked",
freq = "counts",
freq.type = "joint",
breaks.x,
breaks.y,
interval.x = FALSE,
interval.y = FALSE,
bw = FALSE,
color = NULL,
var.c,
breaks.c,
interval.c = FALSE,
adj.breaks = TRUE,
fitline = FALSE,
legend = TRUE,
use.scientific = FALSE,
data,
...

)

Arguments

x, y Unquoted strings identifying the variables whose distribution has to be graphi-
cally displayed. x and y can be the name of a vector or a factor in the workspace
or the name of one of the columns in the data frame specified in the data argu-
ment. Note that in the plot x is reported on the horizontal axis while y is reported
on the vertical axis.

distr.plot.xy 17

plot.type A single character specifying the type of plot to build. Allowed options are
"bars", "scatter", and "boxplot". If both x and y are character vectors or
factors and bar.type = "scatter" a bubble plot is built, with dots having a size
proportional to the joint frequency of each pair of observed values. If bar.type
= "boxplot", at least one input variable must be numeric; when both the vari-
ables are numeric the conditional distributions of y|x are displayed, unless oth-
erwise specified using freq.type="x|y".

bar.type A single character indicating whether in a bar plot stacked (bar.type = "stacked",
default) or side-by-side (bar.type = "beside") bars should be displayed.

freq A single character specifying the frequencies to be displayed when a bar plot
is requested (plot.type="bars"). Allowed options (possibly abbreviated) are
"counts", "percentages" and "proportions".

freq.type A single character specifying the type of frequencies to be displayed when a bar
plot is requested (plot.type="bars"). Allowed options are joint (default) for
joint frequencies, x|y for the distributions of x conditioned to y, and y|x for
the distributions of y conditioned to x. The option x|y can also be used when
plot.type="boxplot".

breaks.x, breaks.y
Allow to classify the variables x and/or y, if numerical, into intervals. They can
be integers indicating the number of intervals of equal width used to classify x
and/or y, or vectors of increasing numeric values defining the endpoints of the
intervals (closed on the left and open on the right; the last interval is closed on
the right too). To cover the entire range of values taken by one variable, the
maximum and the minimum values should be included between the first and the
last break. It is possible to specify a set of breaks covering only a portion of the
variable’s range.

interval.x, interval.y
Logical values indicating whether x and/or y are variables measured in classes
(TRUE). If the detected intervals are not consistent (e.g. overlapping intervals, or
intervals with upper endpoint higher than the lower one), the variable is analyzed
as it is, even if results are not necessarily consistent; default to FALSE.

bw Logical value indicating whether plots should be colored in scale of greys (TRUE)
rather than using a standard palette (FALSE, default).

color Optional string vector allowing to specify colors to use in the plot rather than a
standard palette (NULL, default).

var.c An optional unquoted string identifying one variable used to color points in a
scatter plot (plot.type="scatter"), that can be defined same way as x. This
is allowed only when at least one of the input variables x and y is numeric.

breaks.c Allows to classify the variable var.c, if numerical, into intervals. It can be
defined as breaks.x.

interval.c Logical value indicating whether var.c is a variable measured in intervals (TRUE)
or not, as described for interval.x; default to FALSE.

adj.breaks Logical value indicating whether the endpoints of intervals of a numerical vari-
able (x, or y, or var.c) when classified into intervals should be displayed avoid-
ing scientific notation; default to TRUE.

18 distr.plot.xy

fitline Logical value indicating whether the line of best fit (also called trend line or re-
gression line) should be added to a scatter plot (fitline = TRUE) or not (fitline
= FALSE; default).

legend Logical value indicating whether a legend should be displayed in the plot (legend
= TRUE; default) or not (legend = FALSE).

use.scientific Logical value indicating whether numbers on axes should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x and/or y and/or var.c (the variable used to
color points in scatter plots). If not found in data, the variables are taken from
the environment from which distr.plot.xy() is called.

... Additional arguments to be passed to low level functions.

Value

No return value, called for side effects.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

See Also

distr.table.xy() for tabulating a bivariate distribution.

distr.table.x() for tabulating a univariate distribution.

distr.plot.x() for plotting a univariate distribution.

Examples

data(MktDATA, package = "UBStats")

Bivariate bar plots
- Two discrete variables (factor or vector with few levels)
Joint counts
distr.plot.xy(CustClass, Children,plot.type = "bars",

freq = "Counts", freq.type = "joint",
data = MktDATA)

- Two discrete variables (factor or vector with few levels)
Joint percentages, side-by-side bars
User-defined colors
distr.plot.xy(Children,CustClass, plot.type = "bars",

bar.type = "beside",
freq = "percent", freq.type = "joint",
color = c("red","gold","green","forestgreen"),
data = MktDATA)

- One numeric variable classified into intervals
and one variable measured in classes
Conditional percentages of x|y
distr.plot.xy(TotPurch, Income, plot.type = "bars",

freq = "percent",freq.type = "x|y",

distr.plot.xy 19

breaks.x = c(0,5,10,15,20,35),
interval.y = TRUE, data = MktDATA)

Conditional percentages of y|x
distr.plot.xy(TotPurch, Income, plot.type = "bars",

freq = "percent",freq.type = "y|x",
breaks.x = c(0,5,10,15,20,35),
interval.y = TRUE, data = MktDATA)

Side-by-side boxplots
- A continuous variable conditioned to a factor,
a character, or a classified variable
The distributions of the numeric variable conditioned
to the factor (or character) are displayed
distr.plot.xy(x = AOV, y = Education, plot.type = "boxplot",

data = MktDATA)
distr.plot.xy(x = Income.S, y = AOV, plot.type = "boxplot",

interval.x = TRUE, data = MktDATA)
distr.plot.xy(x = Baseline, y = TotPurch, plot.type = "boxplot",

breaks.y = c(0,5,10,15,20,35),
data = MktDATA)

- Two numerical variables. By default distributions
of y|x are displayed unless differently
specified in freq.type
distr.plot.xy(x = NPickUp_Purch, y = NWeb_Purch,

plot.type = "boxplot", data = MktDATA)
distr.plot.xy(x = NPickUp_Purch, y = NWeb_Purch,

plot.type = "boxplot",freq.type = "x|y",
data = MktDATA)

Scatter plots
- Two numerical variables: default options
distr.plot.xy(Baseline, TotVal, plot.type = "scatter",

fitline = TRUE, data = MktDATA)
- Two numerical variables: colors based on discrete var
distr.plot.xy(Baseline, TotVal, plot.type = "scatter",

var.c = Marital_Status,
fitline = TRUE, data = MktDATA)

distr.plot.xy(Baseline, TotVal, plot.type = "scatter",
var.c = Income, interval.c = TRUE,
fitline = TRUE, data = MktDATA)

distr.plot.xy(Baseline, TotVal, plot.type = "scatter",
var.c = TotPurch, breaks.c = 10,
fitline = TRUE, data = MktDATA)

- Two numerical variables: colors based
on a continuous numerical variable
distr.plot.xy(Baseline, TotVal, plot.type = "scatter",

var.c = AOV, fitline = TRUE, data = MktDATA)

- One numerical variable and one factor or character
distr.plot.xy(Baseline, Marital_Status, plot.type = "scatter",

fitline = TRUE, data = MktDATA)
distr.plot.xy(Income.S, Baseline, plot.type = "scatter",

interval.x = TRUE,

20 distr.summary.x

fitline = TRUE, data = MktDATA)
color based on a third variable
distr.plot.xy(TotPurch, TotVal, plot.type = "scatter",

breaks.x = c(0,5,10,15,20,35),
var.c = AOV,
fitline = TRUE, data = MktDATA)

- Two factors or character vectors: bubble plots
distr.plot.xy(Education, LikeMost, plot.type = "scatter",

data = MktDATA)
- Two classified variables (i.e. not properly numerical):
bubble plots, changed color
distr.plot.xy(Income.S, TotPurch, plot.type = "scatter",

interval.x = TRUE,
breaks.y = c(0,5,10,15,20,35),
color = "orchid", data = MktDATA)

Arguments adj.breaks and use.scientific
Variable with very wide ranges
LargeC<-MktDATA$AOV*5000000
LargeX<-MktDATA$Baseline*1000000
LargeY<-MktDATA$TotVal*1000000
- Default: no scientific notation
distr.plot.xy(LargeX, LargeY, plot.type = "scatter",

var.c = LargeC, data = MktDATA)
distr.plot.xy(LargeX, LargeY, plot.type = "scatter",

breaks.x = 10, var.c = LargeC,
data = MktDATA)

- Scientific notation for axes
distr.plot.xy(LargeX, LargeY, plot.type = "scatter",

breaks.x = 10, var.c = LargeC,
use.scientific = TRUE,
data = MktDATA)

- Scientific notation for intervals' endpoints
distr.plot.xy(LargeX, LargeY, plot.type = "scatter",

breaks.x = 10, var.c = LargeC,
adj.breaks = FALSE,
data = MktDATA)

- Scientific notation for intervals endpoints and axes
distr.plot.xy(LargeX, LargeY, plot.type = "scatter",

var.c = LargeC, fitline = TRUE,
adj.breaks = FALSE, use.scientific = TRUE,
data = MktDATA)

distr.plot.xy(LargeX, LargeY, plot.type = "scatter",
breaks.x = 10, var.c = LargeC,
adj.breaks = FALSE, use.scientific = TRUE,
data = MktDATA)

distr.summary.x Summary statistics for a single variable

distr.summary.x 21

Description

distr.summary.x() computes summary statistics of a vector or a factor.

Usage

distr.summary.x(
x,
stats = c("summary"),
by1,
by2,
breaks.by1,
interval.by1 = FALSE,
breaks.by2,
interval.by2 = FALSE,
adj.breaks = TRUE,
digits = 2,
f.digits = 4,
force.digits = FALSE,
use.scientific = FALSE,
data,
...

)

Arguments

x An unquoted string identifying the variable whose distribution has to be sum-
marized. x can be the name of a vector or a factor in the workspace or the name
of one of the columns in the data frame specified in the data argument.

stats A character vector specifying the summary statistics to compute (more sum-
maries can be specified). Specific types of summaries can be requested with the
following options:

• "summary": min, q1, median, mean, q3, max, sd, var;
• "central": central tendency measures;
• "dispersion": measures of dispersion;
• "fivenumbers": five-number summary;
• "quartiles", "quintiles", "deciles", "percentiles": set of quan-

tiles.

It is also possible to request the following statistics: "q1", "q2", "q3", "mean",
"median", "mode" (which returns the mode, the number of modes and the pro-
portion of cases with modal value respectively), "min", "max", "sd", "var",
"cv" (coefficient of variation), "range", "IQrange" (interquartile range), and
"p1", "p2",..., "p100" (i.e. specific percentiles).

by1, by2 Unquoted strings identifying optional variables (typically taking few values/levels)
used to build conditional summaries, that can be defined same way as x.

breaks.by1, breaks.by2
Allow classifying the variables by1 and/or by2, if numerical, into intervals.
They can be integers indicating the number of intervals of equal width used

22 distr.summary.x

to classify by1 and/or by2, or vectors of increasing numeric values defining the
endpoints of intervals (closed on the left and open on the right; the last interval
is closed on the right too). To cover the entire range of values the maximum and
the minimum values should be included between the first and the last break. It
is possible to specify a set of breaks covering only a portion of the range of by1
and/or by2.

interval.by1, interval.by2
Logical values indicating whether by1 and/or by2 are variables measured in
classes (TRUE). If the intervals for one variable are not consistent (e.g. over-
lapping intervals, or intervals with upper endpoint higher than the lower one),
the variable is analysed as it is, even if results are not necessarily consistent;
default to FALSE.

adj.breaks Logical value indicating whether the endpoints of intervals of the numerical
variables by1 or by2, when classified into intervals, should be displayed avoid-
ing scientific notation; default to TRUE.

digits, f.digits
Integer values specifying the number of decimals used to round respectively
summary statistics (default: digits=4) and proportions percentages (default:
f.digits=2). If the chosen rounding formats some non-zero values as zero, the
number of decimals is increased so that all values have at least one significant
digit, unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether the requested summaries should be forcedly
rounded to the number of decimals specified in digits and f.digits even if
non-zero values are rounded to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x and/or the variables specifying the layers,
by1 and by2. If not found in data, the variables are taken from the environment
from which distr.summary.x() is called.

... Additional arguments to be passed to low level functions.

Value

A list whose elements are tables (converted to dataframes) with the requested summaries, possibly
conditioned to by1 and/or by2. The values taken by the conditioning variables are arranged in stan-
dard order (logical, alphabetical or numerical order for vectors, order of levels for factors, ordered
intervals for classified variables or for variables measured in classes).

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

See Also

summaries.plot.x() to graphically display conditioned tendency summaries of a univariate dis-
tribution.

distr.table.x() for tabulating a univariate distribution.

distr.plot.x() for plotting a univariate distribution.

distr.summary.x 23

Examples

data(MktDATA, package = "UBStats")

Marginal summaries
- Numerical variable: Default summaries
distr.summary.x(x = AOV, data = MktDATA)
- Numerical variable: More summaries
distr.summary.x(x = AOV,

stats = c("central","dispersion","fivenum"),
data = MktDATA)

distr.summary.x(x = AOV, stats = c("mode","mean","sd","cv","fivenum"),
data = MktDATA)

- Character or factor (only proper statistics calculated)
distr.summary.x(x = LikeMost, stats = c("mode","mean","sd","cv","fivenum"),

data = MktDATA)
distr.summary.x(x = Education, stats = c("mode","mean","sd","cv","fivenum"),

data = MktDATA)

Measures conditioned to a single variable
- Numerical variable by a character vector
distr.summary.x(x = TotVal,

stats = c("p5","p10","p25","p50","p75","p90","p95"),
by1 = Gender, digits = 1, data = MktDATA)

- Numerical variable by a numerical variable
classified into intervals
distr.summary.x(x = TotVal,

stats = c("central","dispersion"),
by1 = AOV, breaks.by1 = 5,
digits = 1, data = MktDATA)

- Numerical variable by a variable measured in classes
distr.summary.x(x = TotVal,

stats = c("central","dispersion"),
by1 = Income.S,
interval.by1 = TRUE,
digits = 1, data = MktDATA)

Measures conditioned to two variables
distr.summary.x(x = TotVal, stats = "fivenumbers",

by1 = Gender, by2 = Kids, data = MktDATA)
distr.summary.x(x = TotVal, stats = "fivenumbers",

by1 = Income.S, by2 = Gender,
interval.by1 = TRUE, data = MktDATA)

distr.summary.x(x = TotVal, stats = "fivenumbers",
by1 = Gender, by2 = AOV,
breaks.by2 = 5, data = MktDATA)

Arguments adj.breaks and use.scientific
Variables with a very wide range
LargeX<-MktDATA$TotVal*1000000
LargeBY<-MktDATA$AOV*5000000
- Default: no scientific notation
distr.summary.x(LargeX, by1=LargeBY, breaks.by1 = 5,

24 distr.table.x

data = MktDATA)
- Scientific notation for summaries
distr.summary.x(LargeX, by1=LargeBY, breaks.by1 = 5,

use.scientific = TRUE, data = MktDATA)
- Scientific notation for intervals endpoints
distr.summary.x(LargeX, by1=LargeBY, breaks.by1 = 5,

adj.breaks = FALSE, data = MktDATA)
- Scientific notation for intervals endpoints and summaries
distr.summary.x(LargeX, by1=LargeBY, breaks.by1 = 5,

adj.breaks = FALSE, use.scientific = TRUE,
data = MktDATA)

Output the list with the requested summaries
Out_TotVal<-distr.summary.x(x = TotVal,

by1 = Income.S, by2 = Gender,
interval.by1 = TRUE,
stats = c("central","fivenum","dispersion"),
data = MktDATA)

distr.table.x Analysis of a univariate distribution using frequency tables

Description

distr.table.x() computes the frequency table of a vector or a factor.

Usage

distr.table.x(
x,
freq = c("counts", "proportions"),
total = TRUE,
breaks,
adj.breaks = TRUE,
interval = FALSE,
f.digits = 2,
p.digits = 0,
d.digits = 5,
force.digits = FALSE,
use.scientific = FALSE,
data,
...

)

Arguments

x An unquoted string identifying the variable whose distribution has to be anal-
ysed. x can be the name of a vector or a factor in the workspace or the name of
one of the columns in the data frame specified in the data argument.

distr.table.x 25

freq A character vector specifying the set of frequencies to be displayed (more op-
tions are allowed). Allowed options (possibly abbreviated) are "counts", "percentages",
"proportions", "densities" (only for variables classified into intervals or
measured in classes), and "cumulative". If no frequency is specified, "counts"
and "proportions" are displayed by default. If only "cumulative" is speci-
fied, counts and proportions are displayed too, with their respective cumulative
frequencies.

total Logical value indicating whether the sum of the requested frequencies should be
added to the table; default to TRUE.

breaks Allows to classify a numerical variable x into intervals. It can be an integer
indicating the number of intervals of equal width used to classify x, or a vector
of increasing numeric values defining the endpoints of intervals (closed on the
left and open on the right; the last interval is closed on the right too). To cover
the entire range of values the maximum and the minimum values should be
included between the first and the last break. It is possible to specify a set of
breaks covering only a portion of the x range.

adj.breaks Logical value indicating whether the endpoints of intervals of a numerical vari-
able x when classified into intervals should be displayed avoiding scientific no-
tation; default to TRUE.

interval Logical value indicating whether x is a variable measured in intervals (TRUE). If
the detected intervals are not consistent (e.g. overlapping intervals, or intervals
with upper endpoint higher than the lower one), the variable is tabulated as it is,
even if results are not necessarily consistent; default to FALSE.

f.digits, p.digits, d.digits
Integer values specifying the number of decimals used to round respectively pro-
portions (default: f.digits=2), percentages (default: p.digits=0), and densi-
ties (default: d.digits=5). If the chosen rounding formats some non-zero val-
ues as zero, the number of decimals is increased so that all values have at least
one significant digit, unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether frequencies and densities should be forcedly
rounded to the number of decimals specified in f.digits, p.digits, and d.digits
even if non-zero values are rounded to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables (typically densities) should
be displayed using scientific notation (TRUE); default to FALSE.

data An optional data frame containing x. If not found in data, x is taken from the
environment from which distr.table.x() is called.

... Additional arguments to be passed to low level functions.

Value

A table (converted to dataframe) listing the values taken by the variable, arranged in standard order
(logical, alphabetical or numerical order for vectors, order of levels for factors, ordered intervals for
classified variables or for variables measured in classes), and the requested set of frequencies.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

26 distr.table.x

See Also

distr.plot.x() for plotting a univariate distribution.

distr.table.xy() for tabulating a bivariate distribution.

distr.plot.xy() for plotting a bivariate distribution.

Examples

data(MktDATA, package = "UBStats")

Character vectors, factors, and discrete numeric vectors
distr.table.x(Education, data = MktDATA)

distr.table.x(Children, freq = c("count","prop","cum"),
data = MktDATA)

Numerical variable classified into intervals
- Classes of equal width
distr.table.x(AOV, breaks = 6, freq = c("Count","Prop","Perc","Cum"),

p.digits = 2, data = MktDATA)
- Classes with specified endpoints
distr.table.x(AOV, breaks = c(0,20,30,50,100,180),

freq = c("Count","Perc","Cum","Densities"),
p.digits = 2, data = MktDATA)

Numerical variable measured in classes
- Variable measured in classes
distr.table.x(Income, freq = c("count","prop","cum","dens"),

interval = TRUE, data = MktDATA)
- An example of non-consistent intervals.
Densities are not calculated
x.inconsistent <- c(rep("0;10",30),rep("10;20",25),rep("25;8",25),

rep("15;31",15),rep("20;45",16),rep("30;40",18))
distr.table.x(x.inconsistent, freq = c("count","prop","cum","dens"),

interval = TRUE)

Arguments adj.breaks, use.scientific, and force.digits
A variable with a very wide range (very small densities)
LargeX <- MktDATA$AOV*5000000
- Default: manages possible excess of rounding
distr.table.x(LargeX, breaks = 5,

freq = c("count","percent","densities"))
- Forcing digits to the default values
distr.table.x(LargeX, breaks = 5,

freq=c("count","percent","dens"),
force.digits = TRUE)

- Scientific notation for frequencies/densities
distr.table.x(LargeX, breaks = 5,

freq = c("count","percent","dens"),
use.scientific = TRUE)

- Scientific notation both for intervals’ endpoints
and for frequencies/densities
distr.table.x(LargeX, breaks = 5, adj.breaks = FALSE,

distr.table.xy 27

freq = c("count","percent","dens"),
use.scientific = TRUE)

Output a dataframe with the table
table.AOV<-distr.table.x(AOV, breaks = c(0,20,30,50,100,180),

freq = c("Count","Perc","Cum","Dens"),
data = MktDATA)

distr.table.xy Analysis of a bivariate distribution using cross-tables

Description

distr.table.xy() displays tables of joint or conditional distributions.

Usage

distr.table.xy(
x,
y,
freq = "counts",
freq.type = "joint",
total = TRUE,
breaks.x,
breaks.y,
adj.breaks = TRUE,
interval.x = FALSE,
interval.y = FALSE,
f.digits = 2,
p.digits = 0,
force.digits = FALSE,
data,
...

)

Arguments

x, y Unquoted strings identifying the variables whose joint distribution has to be
analysed. x and y can be the name of a vector or a factor in the workspace or the
name of one of the columns in the data frame specified in the data argument.
Note that in the table x is displayed on the rows and y on the columns.

freq A character vector specifying the set of frequencies to be displayed (more op-
tions are allowed). Allowed options (possibly abbreviated) are "counts", "percentages"
and "proportions".

28 distr.table.xy

freq.type A character vector specifying the types of frequencies to be displayed (more
types are allowed). Allowed options are joint (default) for joint frequencies,
x|y (or column) for the distributions of x conditioned to y, and y|x (or row) for
the distributions of y conditioned to x.

total Logical value indicating whether the sum of the requested frequencies should be
added to the table; default to TRUE.

breaks.x, breaks.y
Allow to classify the variables x and/or y, if numerical, into intervals. They can
be integers indicating the number of intervals of equal width used to classify x
and/or y, or vectors of increasing numeric values defining the endpoints of the
intervals (closed on the left and open on the right; the last interval is closed on
the right too). To cover the entire range of values taken by one variable, the
maximum and the minimum values should be included between the first and the
last break. It is possible to specify a set of breaks covering only a portion of the
variable’s range.

adj.breaks Logical value indicating whether the endpoints of intervals of a numerical vari-
able (x or y) when classified into intervals should be displayed avoiding scien-
tific notation; default to TRUE.

interval.x, interval.y
Logical values indicating whether x and/or y are variables measured in classes
(TRUE). If the detected intervals are not consistent (e.g. overlapping intervals, or
intervals with upper endpoint higher than the lower one), the variable is tabulated
as it is, even if results are not necessarily consistent; default to FALSE.

f.digits, p.digits
Integer values specifying the number of decimals used to round respectively
proportions (default: f.digits=2) and percentages (default: p.digits=0). If
the chosen rounding formats some non-zero values as zero, the number of deci-
mals is increased so that all values have at least one significant digit, unless the
argument force.digits is set to TRUE.

force.digits Logical value indicating whether proportions and percentages should be forcedly
rounded to the number of decimals specified in f.digits and p.digits even if
non-zero values are rounded to zero (default to FALSE).

data An optional data frame containing x and/or y. If not found in data, the variables
are taken from the environment from which distr.table.xy() is called.

... Additional arguments to be passed to low level functions.

Value

A list whose elements are the requested tables (converted to dataframes) listing the values taken by
the two variables arranged in standard order (logical, alphabetical or numerical order for vectors,
order of levels for factors, ordered intervals for classified variables or for variables measured in
classes) and the specified joint or conditional types of frequencies.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

distr.table.xy 29

See Also

distr.plot.xy() for plotting a bivariate distribution.

distr.table.x() for tabulating a univariate distribution.

distr.plot.x() for plotting a univariate distribution.

Examples

data(MktDATA, package = "UBStats")

Character vectors, factors, and discrete numeric vectors
- Default: joint counts
distr.table.xy(LikeMost, Children, data = MktDATA)

- Joint and conditional distribution of x|y
counts and proportions, no totals
distr.table.xy(LikeMost, Education, freq = c("counts","Prop"),

freq.type = c("joint","x|y"), total = FALSE,
data = MktDATA)

- Joint and conditional row and column distributions (%)
distr.table.xy(CustClass, Children, freq = "Percentages",

freq.type = c("joint","row","column"),
data = MktDATA)

Numerical variables classified or measured in classes
- A numerical variable classified into intervals
and a factor
distr.table.xy(CustClass, TotPurch,

breaks.y = c(0,5,10,15,20,35),
freq = c("Counts","Prop"), freq.type = "y|x",
data = MktDATA)

- Two numerical variables, one measured in classes
and the other classified into intervals
distr.table.xy(Income.S, TotPurch, interval.x = TRUE,

breaks.y = c(0,5,10,15,20,35),
freq = c("Counts","Prop"),
freq.type = c("row","col"), data = MktDATA)

Argument force.digits
- Default: manages possible excess of rounding
distr.table.xy(CustClass, Children, freq = "Percentages",

freq.type = c("x|y"),data = MktDATA)
- Force to the required rounding
distr.table.xy(CustClass, Children, freq = "Percentages",

freq.type = c("x|y"),
force.digits = TRUE, data = MktDATA)

Output the list with the requested tables
tables.xy<-distr.table.xy(Income.S, TotPurch,

interval.x = TRUE,
breaks.y = c(0,5,10,15,20,35),

30 LM.output

freq = c("Counts","Prop"),
freq.type = c("joint","row","col"),
data = MktDATA)

LM.output Extract Model Residuals and other Regression Diagnostics

Description

LM.output() Provides fitted values, residuals and other basic quantities used to check the quality
of regression fits.

Usage

LM.output(object, data)

Arguments

object An object returned by function lm.

data An optional data frame containing the data frame possibly specified in the call
of function lm.

Value

A dataframe containing the variables in the model and the model’s fitted values, residuals and
influence statistics, merged with the dataframe specified in the call of function lm, or with the
dataframe possibly specified in data (if it is consistent with the model’s output)

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

Examples

data(MktDATA, package = "UBStats")

Model and output based on a given dataframe
mod1 <- lm(TotVal ~ Baseline + Kids + Age, data = MktDATA)
Equivalent calls (since data is specified in lm()
mod1_out <- LM.output(mod1, data = MktDATA)
dim(mod1_out)
mod1_out <- LM.output(mod1)
dim(mod1_out) # same as above

Model based on a dataframe's columns
mod2 <- lm(MktDATA$TotVal ~ MktDATA$Baseline +

MktDATA$Kids + MktDATA$Age)
mod2_out <- LM.output(mod2)

MktDATA 31

note: colnames in mod2_out
colnames(mod2_out)
note that the dataframe in 'data' is not considered
as compatible, because the names of columns differ
mod2_out <- LM.output(mod2, data = MktDATA)

MktDATA Data: MktDATA

Description

This dataset is a modification of the original MktDATA.Orig dataset and it is provided for user
convenience.

Usage

data(MktDATA)

Format

A data frame with 2224 observations and 26 variables.

MktDATA.Orig Data: MktDATA.Orig

Description

This dataset contains the variables from a survey on a set of customers of a company operating in
the retail food sector. The company sells products from 3 major categories (referred to as A, B,
C) The customers can order and acquire products in the company physical stores, or through the
company’s website (in this case, they can order on the website and pick up the order in one store).
Information is collected on customers’ activity in the last two years (observation period), as well as
some information retrieved through questionnaires or fidelity cards. During such period different
marketing strategies were adopted to improve customers’ fidelization, and 5 marketing campaigns
were launched; a last campaign was launched at the end of the observation period.

Usage

data(MktDATA.Orig)

32 MktDATA.Orig

Format

A data frame with 2224 observations and the following 19 variables (levels of the variables listed
in alphabetical order):

• CustId (num): customer’s identification label

• Gender (chr): customer’s gender (F, M)

• Age (num): customer’s age (in years)

• Education (chr): customer’s level of education(College, Graduate, HighSchool, Post-Grad)

• Marital_Status (chr): customer’s marital status (Divorced, Married, Single, Together,
Widow)

• Children (num): number of children in the household

• Kids (num): number of kids aged less than 12 in the household

• Income (chr): customer’s income (measured in classes)

• Baseline (num): index (from 0 to 1) assigned by the marketing dept indicating how promising
the customer was judged at the beginning of the observation period

• LikeMost (chr): Most frequently bought category in the last two years (P.A, P.B, P.C)

• TotVal (num): amount spent in the last 2 years

• NPickUp_Purch (num): number of purchases made through company’s website and picked up
in physical store

• NWeb_Purch (num): number of purchases made through company’s website and delivered at
home

• NStore_Purch (num): number of purchases made in a physical store

• NDeals (num): number of products purchases with discount

• CustClass (chr): customer’s classification (assigned by the marketing dept) based on past
profitability (Bronze, Gold, Platinum, Silver)

• PastCampaigns (num): number of offers accepted by the customer in the last 2 years’ market-
ing campaigns

• LastCampaign (num): binary variable (0/1) indicating whether (1) or not (0) the customer
accepted the offer in the campaign launched at the end of the observation period

• WouldSuggest (chr): variable signalling whether (Yes) or not (No) the customer declared they
would suggest the company’s products to friends and family

Source

The data set has been adapted from https://www.kaggle.com/code/dmitryuarov/customers-clustering-
eda.

https://www.kaggle.com/code/dmitryuarov/customers-clustering-eda
https://www.kaggle.com/code/dmitryuarov/customers-clustering-eda

summaries.plot.x 33

summaries.plot.x Plot of central and non-central conditional tendency measures for a
single numeric variable

Description

summaries.plot.x() plots location statistics for a numeric vector conditioned to the levels of one
or more variables.

Usage

summaries.plot.x(
x,
stats = "mean",
plot.type = "bars",
conf.level = 0.95,
by1,
by2,
breaks.by1,
interval.by1 = FALSE,
breaks.by2,
interval.by2 = FALSE,
adj.breaks = TRUE,
bw = FALSE,
color = NULL,
legend = TRUE,
use.scientific = FALSE,
data,
...

)

Arguments

x An unquoted string identifying a numerical variable whose tendency measures
have to be graphically displayed. x can be the name of a vector in the workspace
or the name of one of the columns in the data frame specified in the data argu-
ment.

stats A single character specifying the conditioned tendency measure/s to display in
the plot. The available options are "mean", "median", "ci.mean" (to plot the
means and the confidence intervals for the means), and specific sets of quantiles,
namely "quartiles", "quintiles", "deciles", and "percentiles" (note
that for quantiles only one single layer can be specified).

plot.type A single character specifying the type of plot used to compare the requested
measures conditioned to the levels of one variable, by1, possibly broken down
by the levels of a second variable, by2, if specified. The available options are:

34 summaries.plot.x

• "bars": Available only when stats is "mean", "median", or "ci.mean"
and one single layer (by1) is specified. For each level of by1 a bar is built
whose height coincides with the conditional mean or median. Confidence
intervals for the means are reported when stats = "ci.mean".

• "points": Available only when stats is "mean", "median", and "ci.mean".
Confidence intervals for the means are reported when stats = "ci.mean"
and one single layer is specified.

• "lines": Points joined by lines; this is the unique option available for
quantiles.

conf.level A number between 0 and 1 indicating the confidence level of the intervals for
the conditional means when stats = "ci.mean" is specified (default to 0.95).

by1, by2 Unquoted strings identifying variables (typically taking few values/levels) used
to build conditional summaries, that can be defined same way as x. At least one
layer has to be specified. The conditional measures are plotted against the values
of by1, broken down by the levels of by2, if specified.

breaks.by1, breaks.by2
Allow classifying the variables by1 and/or by2, if numerical, into intervals.
They can be integers indicating the number of intervals of equal width used
to classify by1 and/or by2, or vectors of increasing numeric values defining the
endpoints of intervals (closed on the left and open on the right; the last interval
is closed on the right too). To cover the entire range of values the maximum and
the minimum values should be included between the first and the last break. It
is possible to specify a set of breaks covering only a portion of the range of by1
and/or by2.

interval.by1, interval.by2
Logical values indicating whether by1 and/or by2 are variables measured in
classes (TRUE). If the intervals for one variable are not consistent (e.g. over-
lapping intervals, or intervals with upper endpoint higher than the lower one),
the variable is analysed as it is, even if results are not necessarily consistent;
default to FALSE.

adj.breaks Logical value indicating whether the endpoints of intervals of the numerical
variables by1 or by2, when classified into intervals, should be displayed avoid-
ing scientific notation; default to TRUE.

bw Logical value indicating whether plots should be colored in scale of greys (TRUE)
rather than using a standard palette (FALSE, default).

color Optional string vector to specify colors to use in the plot rather than a standard
palette (NULL, default).

legend Logical value indicating whether a legend should be displayed in the plot (legend
= TRUE; default) or not (legend = FALSE).

use.scientific Logical value indicating whether numbers on axes should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x and/or the variables specifying the layers,
by1 and by2. If not found in data, the variables are taken from the environment
from which distr.summary.x() is called.

... Additional arguments to be passed to low level functions.

summaries.plot.x 35

Value

A table (converted to dataframe) reporting the requested statistics conditioned to the levels of the
specified layers.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

See Also

distr.summary.x() for tabulating summary measures of a univariate distribution.

distr.plot.x() for plotting a univariate distribution.

distr.table.x() for tabulating a univariate distribution.

Examples

data(MktDATA, package = "UBStats")

Means (and their CI) or medians by a single variable
- Barplot of means (default) by a character
summaries.plot.x(x = TotVal, stats = "mean",

by1 = Gender, data = MktDATA)
- Barplot of medians by a numerical variable
classified into intervals: user-defined color
summaries.plot.x(x = TotVal, stats = "median",

by1 = AOV, breaks.by1 = 5,
color = "purple", data = MktDATA)

- Lineplot of means and their CI by a variable
measured in classes
summaries.plot.x(x = TotVal,

stats = "ci.mean", plot.type = "lines",
by1 = Income.S, interval.by1 = TRUE,
data = MktDATA)

- Barplot of means and their CI by a
numerical variable; change the confidence level
summaries.plot.x(x = TotVal,

stats = "ci.mean", conf.level = 0.90,
plot.type = "bars",
by1 = NWeb_Purch, data = MktDATA)

- Note: no plot built for a variable with
too many levels (>20)
summaries.plot.x(x = TotVal,
stats = "ci.mean", plot.type = "lines",
by1 = AOV, data = MktDATA)

Quantiles by a single variable
- Only lines plots allowed for quantiles
summaries.plot.x(x = Baseline,

stats = "deciles", plot.type = "lines",
by1 = NDeals, data = MktDATA)

summaries.plot.x(x = Baseline,

36 TEST.diffmean

stats = "quartiles", plot.type = "lines",
by1 = Marital_Status, data = MktDATA)

Means and medians by two variables
- Default: only lines allowed
summaries.plot.x(x = TotVal, stats = "mean",

by1 = Education, by2 = Kids,
data = MktDATA)

summaries.plot.x(x = TotVal, stats = "median",
by1 = Income.S, by2 = Gender,
interval.by1 = TRUE,
data = MktDATA)

summaries.plot.x(x = Baseline, stats = "mean",
by1 = CustClass, by2 = AOV,
breaks.by2 = 5, data = MktDATA)

- "ci.mean" not allowed with two layers
CustClass_Kids<-paste0(MktDATA$CustClass,"-",MktDATA$Kids)
summaries.plot.x(x = Baseline, stats = "ci.mean",

conf.level = 0.99, by1 = CustClass_Kids,
color = "gold", data = MktDATA)

Arguments adj.breaks and use.scientific
Variables with a very wide range
LargeX<-MktDATA$TotVal*1000000
LargeBY<-MktDATA$AOV*5000000
- Default: no scientific notation
summaries.plot.x(LargeX, plot.type = "bars",

by1=LargeBY, breaks.by1 = 5, data = MktDATA)
- Scientific notation for summaries (axes)
summaries.plot.x(LargeX, plot.type = "lines",

by1=LargeBY, breaks.by1 = 5,
use.scientific = TRUE, data = MktDATA)

- Scientific notation for intervals endpoints
summaries.plot.x(LargeX, stats = "ci.mean",

plot.type = "lines",
by1=LargeBY, breaks.by1 = 5,
adj.breaks = FALSE, data = MktDATA)

- Scientific notation for intervals endpoints and summaries
summaries.plot.x(LargeX, stats = "quartiles",

plot.type = "lines",
by1=LargeBY, breaks.by1 = 5,
adj.breaks = FALSE, use.scientific = TRUE,
data = MktDATA)

Output the table with the requested summaries
Out_TotVal<-summaries.plot.x(x = TotVal, stats = "ci.mean",

by1 = Education, data = MktDATA)

TEST.diffmean Tests on the difference between means

TEST.diffmean 37

Description

TEST.diffmean() tests hypotheses on the difference between the means of two independent or
paired populations.

Usage

TEST.diffmean(
x,
y,
type = "independent",
mdiff0 = 0,
alternative = "two.sided",
sigma.x = NULL,
sigma.y = NULL,
by,
sigma.by = NULL,
sigma.d = NULL,
var.test = FALSE,
digits = 2,
force.digits = FALSE,
use.scientific = FALSE,
data,
...

)

Arguments

x, y Unquoted strings identifying the numeric variables with the same length whose
means have to be compared. x and y can be the names of vectors in the workspace
or the names of columns in the data frame specified in the data argument. It is
possible to use a mixed specification (e.g, one vector and one column in data).

type A length-one character vector specifying the type of samples. Allowed values
are "independent" or "paired".

mdiff0 Numeric value that specifies the null hypothesis to test for (default is 0).

alternative A length-one character vector specifying the direction of the alternative hy-
pothesis. Allowed values are "two.sided" (difference between populations’
means differs from mdiff0; default), or "less" (difference between popula-
tions’ means is lower than mdiff0), or "greater" (difference between popula-
tions’ means is higher than mdiff0).

sigma.x, sigma.y
Optional numeric values specifying the possibly known populations’ standard
deviations (when x and y are specified). If NULL (default) standard deviations
are estimated using the data.

by Optional unquoted string, available only when type = "independent", identi-
fying a variable (of any type), defined same way as x, taking only two values
used to split x into two independent samples. Given the two ordered values
taken by by (alphabetical or numerical order, or order of the levels for factors),

38 TEST.diffmean

say by1 and by2, hypotheses are tested on the difference between the popula-
tions means in the by1- and in the by2-group. Note that only one between y and
by can be specified.

sigma.by Optional numeric value specifying the possibly known standard deviations for
the two independent samples identified via by (when x and by are specified).
sigma.by can be a single value indicating the same standard deviation in the
two by-groups, or a vector with two values, specifying the standard deviations
in the two by-groups. To avoid errors, in the latter case the vector should be
named, with names coinciding with the two levels of by.

sigma.d Optional numeric value specifying the possibly known standard deviation of the
difference when samples are paired.

var.test Logical value indicating whether to run a test on the equality of variance for two
(independent) samples or not (default).

digits Integer value specifying the number of decimals used to round statistics; default
to 2. If the chosen rounding formats some non-zero values as zero, the number
of decimals is increased so that all values have at least one significant digit,
unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether reported values should be forcedly rounded to
the number of decimals specified in digits even if non-zero values are rounded
to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x and/or y or by. If not found in data,
the variables are taken from the environment from which TEST.diffmean()
is called.

... Additional arguments to be passed to low level functions.

Value

A table reporting the results of the test on the difference between the populations’ means. For
independent samples in the case of unknown variances the test is run both under the assumption
that the variances are equal and under the assumption that they differ, using percentiles from both
the normal and the Student’s t distribution.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

See Also

CI.diffmean() to build confidence intervals for the difference between two populations’ means.

Examples

data(MktDATA, package = "UBStats")

Independent samples (default type), UNKNOWN variances

TEST.diffmean 39

Bilateral test on difference between means of males and females
- Using x,y: build vectors with data on the two groups
AOV_M <- MktDATA$AOV[MktDATA$Gender == "M"]
AOV_F <- MktDATA$AOV[MktDATA$Gender == "F"]
TEST.diffmean(x = AOV_M, y = AOV_F, mdiff0 = 0)
- Using x,by: groups identified by ordered levels of by
TEST.diffmean(x = AOV, by = Gender, mdiff0 = 0, data = MktDATA)
Since order is F, M, hypothesis are on mean(F) - mean(M)
To test hypotheses on mean(M) - mean(F)
Gender.R <- factor(MktDATA$Gender, levels = c("M", "F"))
TEST.diffmean(x = AOV, by = Gender.R , mdiff0 = 0,

data = MktDATA)
- Testing also hypotheses on equality of unknown variances
TEST.diffmean(x = AOV_M, y = AOV_F, mdiff0 = 0,

var.test = TRUE)

- Output results: test on differences
out.test_diffM<-TEST.diffmean(x = AOV_M, y = AOV_F)
- Output results: list with both test on means and variances
out.test_diffM.V<-TEST.diffmean(x = AOV_M, y = AOV_F, var.test = TRUE)

Independent samples (default type), KNOWN variances
Test hypotheses on the difference between means of males and females
- Using x,y: build vectors with data on the two groups
AOV_M <- MktDATA$AOV[MktDATA$Gender == "M"]
AOV_F <- MktDATA$AOV[MktDATA$Gender == "F"]
TEST.diffmean(x = AOV_M, y = AOV_F, mdiff0 = 10,

alternative = "greater", sigma.x = 10, sigma.y = 20)
- Using x,by: groups identified by ordered levels of by
Adjust considering the ordering of levels
TEST.diffmean(x = AOV, by = Gender, mdiff0 = -10,

alternative = "less",
sigma.by = c("M" = 10, "F"=20), data = MktDATA)

To change the sign, order levels as desired
Gender.R <- factor(MktDATA$Gender, levels = c("M", "F"))
TEST.diffmean(x = AOV, by = Gender.R, mdiff0 = 10,

alternative = "greater",
sigma.by = c("M" = 10, "F"=20), data = MktDATA)

- Output results
out.test_diffM<-TEST.diffmean(x = AOV_M, y = AOV_F, mdiff0 = 10,

alternative = "greater",
sigma.x = 10, sigma.y = 20)

Paired samples: UNKNOWN variances
- Default settings
TEST.diffmean(x = NStore_Purch, y = NWeb_Purch,

type = "paired",
mdiff0 = 1.5, alternative = "greater", data=MktDATA)

Paired: KNOWN variances
TEST.diffmean(x = NStore_Purch, y = NWeb_Purch,

type = "paired", mdiff0 = 1.5, alternative = "greater",
sigma.d = 2, data = MktDATA)

- Output results

40 TEST.diffprop

out.test_diffM<-TEST.diffmean(x = NStore_Purch,
y = NWeb_Purch,
type = "paired", mdiff0 = 1.5, alternative = "greater",
sigma.d = 2, data = MktDATA)

Arguments force.digits and use.scientific
An input variable taking very low values
SmallX<-MktDATA$AOV/50000
SmallX_M <- SmallX[MktDATA$Gender == "M"]
SmallX_F <- SmallX[MktDATA$Gender == "F"]
- Default output
TEST.diffmean(x = SmallX_M, y = SmallX_F)
- Request to use the exact number of digits (default, 2)
TEST.diffmean(x = SmallX_M, y = SmallX_F,

force.digits = TRUE)
- Request to allow scientific notation
TEST.diffmean(x = SmallX_M, y = SmallX_F,

use.scientific = TRUE)

TEST.diffprop Tests on the difference between proportions

Description

TEST.diffprop() tests hypotheses on the difference between the proportion of successes in two
independent populations.

Usage

TEST.diffprop(
x,
y,
success.x = NULL,
success.y = NULL,
pdiff0 = 0,
alternative = "two.sided",
by,
digits = 2,
force.digits = FALSE,
use.scientific = FALSE,
data,
...

)

Arguments

x, y Unquoted strings identifying the variables of interest. x and y can be the names
of vectors or factors in the workspace or the names of columns in the data frame

TEST.diffprop 41

specified in the data argument. It is possible to use a mixed specification (e.g,
one vector and one column in data).

success.x, success.y
If x,y are factors, character vectors, or numeric non-binary vectors, success
must be used to indicate the category/value corresponding to success in the pop-
ulations. These arguments can be omitted (NULL, default) if x,y are binary nu-
meric vectors (taking values 0 or 1 only; in this case success is assumed to corre-
spond to 1) or a logical vector (in these cases success is assumed to correspond
to TRUE).

pdiff0 Numeric value that specifies the null hypothesis to test for (default is 0).
alternative A length-one character vector specifying the direction of the alternative hypoth-

esis. Allowed values are "two.sided" (difference between populations’ propor-
tions differs from pdiff0; default), or "less" (difference between populations’
proportions is lower than pdiff0), or "greater" (difference between popula-
tions’ proportions is higher than pdiff0).

by Optional unquoted string identifying a variable (of any type), defined same way
as x, taking only two values used to split x into two independent samples. Given
the two ordered values taken by by (alphabetical or numerical order, or order of
the levels for factors), say by1 and by2, hypotheses are tested on the difference
between the populations proportions in the by1- and in the by2-group. Note that
only one between y and by can be specified.

digits Integer value specifying the number of decimals used to round statistics; default
to 2. If the chosen rounding formats some non-zero values as zero, the number
of decimals is increased so that all values have at least one significant digit,
unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether reported values should be forcedly rounded to
the number of decimals specified in digits even if non-zero values are rounded
to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x and/or y or by. If not found in data,
the variables are taken from the environment from which TEST.diffprop()
is called.

... Additional arguments to be passed to low level functions.

Value

A table reporting the results of the test on the difference between the proportions of successes in
two independent populations.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

See Also

CI.diffprop() to build confidence intervals for the difference between two populations’ propor-
tions of successes.

42 TEST.diffprop

Examples

data(MktDATA, package = "UBStats")

Proportions of success defined on non-binary and
non-logical vectors; 'success' coded same way
for both vectors
- Using x,y: build vectors with data on the two groups
WouldSuggest_F <- MktDATA$WouldSuggest[MktDATA$Gender == "F"]
WouldSuggest_M <- MktDATA$WouldSuggest[MktDATA$Gender == "M"]
TEST.diffprop(x = WouldSuggest_M, y = WouldSuggest_F,

success.x = "Yes", pdiff0 = 0.1, alternative = "less")

PastCampaigns_F<-MktDATA$PastCampaigns[MktDATA$Gender=="F"]
PastCampaigns_M<-MktDATA$PastCampaigns[MktDATA$Gender=="M"]
TEST.diffprop(x = PastCampaigns_M, y = PastCampaigns_F,

success.x = 0, pdiff0 = 0.2)

- Using x,by: groups identified by ordered levels of by
TEST.diffprop(x = PastCampaigns, by = Gender,

success.x=0, pdiff0 = 0.2, data = MktDATA)
Since order is F, M, test is on prop(F) - prop(M)
To get the interval for prop(M) - prop(F)
Gender.R <- factor(MktDATA$Gender, levels = c("M", "F"))
TEST.diffprop(x = PastCampaigns, by = Gender.R,

success.x=0, pdiff0 = 0.2, data = MktDATA)

Proportions of success defined based on
binary or logical vectors; 'success'
coded same way for both vectors
- Binary variable (success=1): based on x,y
LastCampaign_F<-MktDATA$LastCampaign[MktDATA$Gender=="F"]
LastCampaign_M<-MktDATA$LastCampaign[MktDATA$Gender=="M"]
TEST.diffprop(x = LastCampaign_M, y = LastCampaign_F)
- Binary variable (success=1): based on x,y
see above for recoding of levels of Gender
TEST.diffprop(x = LastCampaign, by = Gender, data = MktDATA)
Gender.R <- factor(MktDATA$Gender, levels = c("M", "F"))
TEST.diffprop(x = LastCampaign, by = Gender.R, data = MktDATA)
- Logical variable (success=TRUE): based on x,y
Deals_w_child <- MktDATA$Deals.ge50[MktDATA$Children>0]
Deals_no_child <- MktDATA$Deals.ge50[MktDATA$Children==0]
TEST.diffprop(x = Deals_w_child, y = Deals_no_child,

pdiff0 = 0.2, alternative = "less",)
Proportions defined on
non-binary and non-logical vectors, with 'success'
coded differently (only specification x,y is reasonable here)
WouldSuggest_Other<-c(rep("OK",310),rep("KO",650-310))
TEST.diffprop(x = WouldSuggest, y = WouldSuggest_Other,

success.x = "Yes", success.y = "OK",
pdiff0 = 0.1, alternative = "greater",
data = MktDATA)

TEST.diffvar 43

Proportions based on combined conditions
- Build logical vector/s indicating whether a condition
is satisfied
IsTop<-MktDATA$AOV>80
IsTop_OK<-IsTop[MktDATA$WouldSuggest == "Yes"]
IsTop_KO<-IsTop[MktDATA$WouldSuggest == "No"]
TEST.diffprop(x = IsTop_OK, y = IsTop_KO, pdiff0 = 0.05,

alternative = "greater")

Deals<-MktDATA$NDeals>=5
Deals_Married <- Deals[MktDATA$Marital_Status=="Married" &

MktDATA$Children==0]
Deals_Single <- Deals[MktDATA$Marital_Status=="Single"]
TEST.diffprop(x = Deals_Married, y = Deals_Single,

alternative = "less")

Output results
out.test_diffP<-TEST.diffprop(x = Deals_Married, y = Deals_Single,

alternative = "less")

Arguments force.digits and use.scientific
An input variable taking very low values
HighAOV <- MktDATA$AOV>150
- Default: manages possible excess of rounding
TEST.diffprop(x = HighAOV[MktDATA$Gender=="M"],

y = HighAOV[MktDATA$Gender=="F"])
- Force to the exact number of digits (default, 2)
TEST.diffprop(x = HighAOV[MktDATA$Gender=="M"],

y = HighAOV[MktDATA$Gender=="F"],
force.digits = TRUE)

- Allow scientific notation
TEST.diffprop(x = HighAOV[MktDATA$Gender=="M"],

y = HighAOV[MktDATA$Gender=="F"],
use.scientific = TRUE)

TEST.diffvar Tests on variances

Description

TEST.diffvar() tests the hypothesis of equality between the variances of two independent popu-
lations.

Usage

TEST.diffvar(
x,
y,
by,

44 TEST.diffvar

digits = 2,
force.digits = FALSE,
use.scientific = FALSE,
data,
...

)

Arguments

x, y Unquoted strings identifying the numeric variables with the same length whose
variances have to be compared. x and y can be the names of vectors in the
workspace or the names of columns in the data frame specified in the data
argument. It is possible to use a mixed specification (e.g, one vector and one
column in data).

by Optional unquoted string identifying a variable (of any type), defined same way
as x, taking only two values used to split x into two independent samples. Since
the null hypothesis of equal variances is tested against the bilateral alternative
only, the order of the levels of by is irrelevant (differently from what holds for
functions building confidence intervals or testing hypotheses on the differences
between means or proportions). Note that only one between y and by can be
specified.

digits Integer value specifying the number of decimals used to round statistics; default
to 2. If the chosen rounding formats some non-zero values as zero, the number
of decimals is increased so that all values have at least one significant digit,
unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether reported values should be forcedly rounded to
the number of decimals specified in digits even if non-zero values are rounded
to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x and/or y. If not found in data, the variables
are taken from the environment from which TEST.diffvar() is called.

... Additional arguments to be passed to low level functions.

Value

A table reporting the results of the test on the difference between the variances of two independent
populations.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

See Also

CI.diffmean() to build confidence intervals for the difference between two populations’ means.

TEST.diffmean() to test hypotheses on the difference between two populations’ means.

TEST.mean 45

Examples

data(MktDATA, package = "UBStats")

Using x,y: build vectors with data on the two groups
AOV_M <- MktDATA$AOV[MktDATA$Gender == "M"]
AOV_F <- MktDATA$AOV[MktDATA$Gender == "F"]
TEST.diffvar(x = AOV_M, y = AOV_F)
TEST.diffvar(x = AOV_F, y = AOV_M) # same

Using x,by: groups identified by ordered levels of by
TEST.diffvar(x = AOV, by = Gender, data=MktDATA)

Output results
out_test.diffV<-TEST.diffvar(x = AOV_M, y = AOV_F)

Arguments force.digits and use.scientific
An input variable taking very low values
SmallX<-MktDATA$AOV/50000
SmallX_M <- SmallX[MktDATA$Gender == "M"]
SmallX_F <- SmallX[MktDATA$Gender == "F"]
- Default output
TEST.diffvar(x = SmallX_M, y = SmallX_F)
- Request to use the exact number of digits (default, 2)
TEST.diffvar(x = SmallX_M, y = SmallX_F,

force.digits = TRUE)
- Request to allow scientific notation
TEST.diffvar(x = SmallX_M, y = SmallX_F,

use.scientific = TRUE)

TEST.mean Test on the mean

Description

TEST.mean() tests hypotheses on the mean of a population.

Usage

TEST.mean(
x,
sigma = NULL,
mu0 = 0,
alternative = "two.sided",
digits = 2,
force.digits = FALSE,
use.scientific = FALSE,
data,
...

)

46 TEST.mean

Arguments

x An unquoted string identifying the numeric variable whose mean is of interest. x
can be the name of a vector in the workspace or the name of one of the columns
in the data frame specified in the data argument.

sigma An optional numeric value specifying the population standard deviation. If NULL
(default) the population standard deviation is estimated using the data.

mu0 Numeric value that specifies the null hypothesis to test for (default is 0).

alternative A length-one character vector specifying the direction of the alternative hypoth-
esis. Allowed values are "two.sided" (population mean differs from mu0; de-
fault), or "less" (population mean is lower than mu0), or "greater" (popula-
tion mean is higher than mu0).

digits Integer value specifying the number of decimals used to round statistics; default
to 2. If the chosen rounding formats some non-zero values as zero, the number
of decimals is increased so that all values have at least one significant digit,
unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether reported values should be forcedly rounded to
the number of decimals specified in digits even if non-zero values are rounded
to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x. If not found in data, x is taken from the
environment from which TEST.mean() is called.

... Additional arguments to be passed to low level functions.

Value

A table reporting the results of the test on the population mean. If the variance is unknown, the test
is run using percentiles from both the normal and the Student’s t distribution.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

See Also

CI.mean() to build confidence intervals for the population mean.

Examples

data(MktDATA, package = "UBStats")

Test on the mean; KNOWN variance
- Bilateral test
TEST.mean(NStore_Purch, sigma = 9, mu0 = 5,

alternative = "two.sided", data = MktDATA)
- Unilateral test
TEST.mean(NStore_Purch, sigma = 9,mu0 = 5,

TEST.prop 47

alternative = "greater", data = MktDATA)

Test on the mean; UNKNOWN variance;
- Unilateral test
TEST.mean(TotVal, mu0 = 600, alternative = "less",

data = MktDATA)

Arguments force.digits and use.scientific
An input variable taking very low values
SmallX<-MktDATA$AOV/500
Default output
TEST.mean(SmallX, mu0 = 0.1)
Request to use the exact number of digits (default, 2)
TEST.mean(SmallX, mu0 = 0.1,force.digits=TRUE)
Request to allow scientific notation
TEST.mean(SmallX, mu0 = 0.1,use.scientific=TRUE)

Output results
out.test_mean<-TEST.mean(TotVal, mu0 = 600, alternative = "less",

data = MktDATA)

TEST.prop Test on the proportion

Description

TEST.prop() tests hypotheses on the proportion of successes in a population.

Usage

TEST.prop(
x,
success = NULL,
p0 = 0.5,
alternative = "two.sided",
digits = 2,
force.digits = FALSE,
use.scientific = FALSE,
data,
...

)

Arguments

x An unquoted string identifying the variable of interest. x can be the name of a
vector or a factor in the workspace or the name of one of the columns in the data
frame specified in the data argument.

48 TEST.prop

success If x is a factor, a character vector, or a numeric non-binary vector, success must
be used to indicate the category/value corresponding to success. The argument
can be omitted (NULL, default) if x is a binary numeric vector (takes values 0 or
1 only; in this case success is assumed to be 1) or a logical vector (in these cases
success is assumed to be TRUE).

p0 Numeric value that specifies the null hypothesis to test for (default is 0).

alternative A length-one character vector specifying the direction of the alternative hy-
pothesis. Allowed values are "two.sided" (population proportion differs from
p0; default), or "less" (population proportion is lower than p0), or "greater"
(population proportion is higher than p0).

digits Integer value specifying the number of decimals used to round statistics; default
to 2. If the chosen rounding formats some non-zero values as zero, the number
of decimals is increased so that all values have at least one significant digit,
unless the argument force.digits is set to TRUE.

force.digits Logical value indicating whether reported values should be forcedly rounded to
the number of decimals specified in digits even if non-zero values are rounded
to zero (default to FALSE).

use.scientific Logical value indicating whether numbers in tables should be displayed using
scientific notation (TRUE); default to FALSE.

data An optional data frame containing x. If not found in data, x is taken from the
environment from which TEST.prop() is called.

... Additional arguments to be passed to low level functions.

Value

A table reporting the results of the test on the population proportion of successes.

Author(s)

Raffaella Piccarreta <raffaella.piccarreta@unibocconi.it>

See Also

CI.prop() to build confidence intervals for the population proportion of successes.

Examples

data(MktDATA, package = "UBStats")

Success = one value of a character vector or factor
- Bilateral test
TEST.prop(WouldSuggest, success = "Yes", p0 = 0.7,

data = MktDATA)
- Unilateral test, change digits
TEST.prop(Education, success = "Post-Grad", p0 = 0.3,

alternative = "less", digits = 4,data = MktDATA)

Success = numeric value; bilateral test

TEST.prop 49

TEST.prop(Children, success = 2, p0 = 0.3, data = MktDATA)

Binary variable (success = 1 by default); unilateral
TEST.prop(LastCampaign, p0 = 0.1, alternative = "greater",

digits = 3, data = MktDATA)

Logical variable (success = TRUE by default); unilateral test
TEST.prop(Deals.ge50, p0 = 0.13, alternative = "greater",

digits = 3, data = MktDATA)

Success based on combined conditions
- Build a (logical) vector
IsTop <- MktDATA$CustClass == "Gold" |

MktDATA$CustClass == "Platinum"
TEST.prop(IsTop, p0 = 0.2, data = MktDATA)

HighAOV <- MktDATA$AOV>150
TEST.prop(HighAOV, p0 = 0.1)
TEST.prop(HighAOV, p0 = 0.1, force.digits = TRUE)
TEST.prop(HighAOV, p0 = 0.1, use.scientific = TRUE)

Output results
out_test_prop<-TEST.prop(IsTop, p0 = 0.2, data = MktDATA)

Index

∗ datasets
MktDATA, 31
MktDATA.Orig, 31

CI.diffmean, 2, 38, 44
CI.diffprop, 5, 41
CI.mean, 8, 46
CI.prop, 10, 48

distr.plot.x, 12, 18, 22, 26, 29, 35
distr.plot.xy, 14, 16, 26, 29
distr.summary.x, 20, 35
distr.table.x, 14, 18, 22, 24, 29, 35
distr.table.xy, 14, 18, 26, 27

LM.output, 30

MktDATA, 31
MktDATA.Orig, 31, 31

summaries.plot.x, 22, 33

TEST.diffmean, 4, 36, 44
TEST.diffprop, 7, 40
TEST.diffvar, 43
TEST.mean, 9, 45
TEST.prop, 11, 47

50

	CI.diffmean
	CI.diffprop
	CI.mean
	CI.prop
	distr.plot.x
	distr.plot.xy
	distr.summary.x
	distr.table.x
	distr.table.xy
	LM.output
	MktDATA
	MktDATA.Orig
	summaries.plot.x
	TEST.diffmean
	TEST.diffprop
	TEST.diffvar
	TEST.mean
	TEST.prop
	Index

