## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(alien) ## ----theme setup, echo = FALSE------------------------------------------------ ggplot2::theme_set( ggplot2::theme_bw()+ ggplot2::theme(axis.title = ggplot2::element_text(size = 20), axis.text = ggplot2::element_text(size = 18), panel.grid = ggplot2::element_blank()) ) ## ----------------------------------------------------------------------------- data("sfestuary") print(sfestuary) ## ----plotting_data, fig.width = 8, fig.height= 4.5, fig.align='center'-------- library(alien) library(ggplot2) years <- seq_along(sfestuary) + 1850 # set starting year for the figure ggplot()+ aes(x = years, y = cumsum(sfestuary))+ geom_line() + coord_cartesian(ylim = c(0,150))+ scale_x_continuous(breaks = seq(1860, 1980, 20)) + scale_y_continuous(breaks = seq(0, 150, 50)) + ylab("Cumulative discoveries") + theme(axis.title.x = element_blank()) ## ----fitting model------------------------------------------------------------ model <- snc(y = sfestuary, control = list(maxit = 1e4)) ## ----printing model----------------------------------------------------------- names(model) ## ----------------------------------------------------------------------------- model$records ## ----------------------------------------------------------------------------- model$convergence ## ----------------------------------------------------------------------------- model$`log-likelihood` ## ----------------------------------------------------------------------------- model$coefficients ## ----------------------------------------------------------------------------- head(model$predict, 4) ## ----plotting_fit, fig.width = 8, fig.height= 4.5, fig.align='center'--------- plot_snc(model, cumulative = T) + coord_cartesian(ylim = c(0,150))+ scale_y_continuous(breaks = seq(0, 150, 50)) + ylab("Cumulative discoveries") + xlab("Years since first record in data") ## ----------------------------------------------------------------------------- constant_detection <- snc(sfestuary, pi = ~ 1, growth = FALSE) ## ----------------------------------------------------------------------------- constant_detection$`log-likelihood` ## ----------------------------------------------------------------------------- constant_introduction <- snc(sfestuary, mu = ~1) ## ----------------------------------------------------------------------------- constant_introduction$`log-likelihood` ## ----medfish_data------------------------------------------------------------- data("medfish") head(medfish) ## ----medfish_plot, fig.width = 8, fig.height= 4.5, fig.align='center'--------- ggplot2::ggplot(medfish)+ ggplot2::aes(x = year) + ggplot2::geom_point(ggplot2::aes(y = cumsum(natives)), shape = 21, size = 2, fill = "#377EB8") + ggplot2::geom_point(ggplot2::aes(y = cumsum(aliens)), shape = 21, size = 2, fill = "#E41A1C") ## ----------------------------------------------------------------------------- medfish_for_model <- dplyr::mutate(medfish, natives_scaled = scale(natives)) ## ----------------------------------------------------------------------------- sampling_proxy_model <- snc(aliens, pi = ~ natives_scaled, data = medfish_for_model, control = list(maxit = 1000))