
Package ‘alphabetr’
July 22, 2025

Type Package

Title Algorithms for High-Throughput Sequencing of Antigen-Specific T
Cells

Version 0.2.2

Description Provides algorithms for frequency-based pairing of alpha-beta T
cell receptors.

License AGPL (>= 3)

LazyData TRUE

Imports Rcpp (>= 0.12.3), clue (>= 0.3-50), dplyr (>= 0.4.3),
multicool (>= 0.1-9)

LinkingTo Rcpp

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 5.0.1

URL http://github.com/edwardslee/alphabetr

BugReports http://github.com/edwardslee/alphabetr

NeedsCompilation yes

Author Edward Lee [aut, cre]

Maintainer Edward Lee <email.edwardlee@gmail.com>

Repository CRAN

Date/Publication 2017-01-28 17:31:24

Contents
bagpipe . 2
chain_scores . 3
combine_freq_results . 4
create_clones . 5
create_data . 6

1

http://github.com/edwardslee/alphabetr
http://github.com/edwardslee/alphabetr

2 bagpipe

create_data_singlecells . 8
dual_discrim_dual_likelihood . 9
dual_discrim_shared_likelihood . 10
dual_eval . 11
dual_tail . 12
dual_top . 13
freq_estimate . 13
freq_eval . 14
likelihood_dual . 15
likelihood_dualdual . 16
likelihood_single . 16
read_alphabetr . 17

Index 19

bagpipe Identify candidate alpha/beta pairs.

Description

bagpipe() uses the alphabetr resampling procedure on sequencing data to identify candidate al-
pha/beta pairs. The procedure takes a subsample of the data without replacement, calculates associ-
ation scores with chain_scores, and then for each well, uses the Hungarian algorithm to determine
the most likely pairings for the chains found in the well. Each time this is done is a replicate, and
the number of replicates is specified as an option. A threshold is then used to filter the candidate
pairs that appear in proportion of the replicates larger than the threshold, resulting in the final list
of candidate pairs. Bagpipe is an acronym for bootstrapping alphabetr generated pairs procedure
(based on older versions that utilized bootstrapping)

Usage

bagpipe(alpha, beta, replicates = 100, frac = 0.75, bootstrap = FALSE)

Arguments

alpha Matrix recording which alpha chains appear in each well of the data. See
create_data.

beta Matrix recording which beta chains appear in the each well of the data. See
create_data.

replicates The number of times the resampling procedure is repeated, i.e. the number of
replicates. At least 100 replicates is recommended.

frac The fraction of the wells resampled in each replicate. Default is 75% of the
wells

bootstrap Legacy option. Calls a bootstrapping strategy (which resamples with replace-
ment) instead of sampling a subset without replacement.

chain_scores 3

Value

A n x 5 matrix where n is the number of clones determined by bagpipe(). Each row represents the
chains of the clone. Columns 1 and 2 represent the beta chain indices of the clone. Columns 3 and
4 represent the alpha chain indices of the clone. Column 5 represents the number of replicates that
this clone was found in. Column 5 is used to filter our the clones that have not be determined by a
certain "threshold" proportion of replicates.

Note that column 1 == column 2 and column 3 == column 4 since bagpipe() does not try to
determine dual-alpha or dual-beta clones.

Examples

see the help for create_clones() and create_data()
clones <- create_clones(numb_beta = 1000,

dual_alpha = .3,
dual_beta = .06,
alpha_sharing = c(0.80, 0.15, 0.05),
beta_sharing = c(0.75, 0.20, 0.05))

dat <- create_data(clones$TCR, plate = 5,
error_drop = c(.15, .01),
error_seq = c(.05, .001),
error_mode = c("lognormal", "lognormal"),
skewed = 10,
prop_top = 0.6,
dist = "linear",
numb_cells = matrix(c(50, 480), ncol = 2))

Not run:
normally want to set replicates to 100 or more
pairs <- bagpipe(alpha = dat$alpha,

beta = dat$beta,
replicates = 5,
frac = 0.75,
bootstrap = FALSE)

using a threshold of 0.3 of replicates
pairs <- pairs[pairs[, 5] > 0.3,]

End(Not run)

chain_scores Calculate association scores between alpha and beta chain pairs.

Description

chain_scores() calculates association scores between every pair of alpha and beta chains based
on the number of concurrent well appearances each alpha and beta pair makes, scaled inversely by
the number of unique chains in that well. See Lee et. al. for more information about this procedure.

4 combine_freq_results

Usage

chain_scores(data_a, data_b)

Arguments

data_a Matrix recording which alpha chains appear in each well of the data. See
create_clones.

data_b Matrix recording which beta chains appear in the each well of the data. See
create_clones.

Value

A list containing the alpha and beta association scores. Accessed with list$ascores and list$bscores
respectively.

Examples

see the help for create_clones() and create_data()
clones <- create_clones(numb_beta = 1000,

dual_alpha = .3,
dual_beta = .06,
alpha_sharing = c(0.80, 0.15, 0.05),
beta_sharing = c(0.75, 0.20, 0.05))

dat <- create_data(clones$TCR, plate = 5,
error_drop = c(.15, .01),
error_seq = c(.05, .001),
error_mode = c("lognormal", "lognormal"),
skewed = 10,
prop_top = 0.6,
dist = "linear",
numb_cells = matrix(c(50, 480), ncol = 2))

#this is done internally in bagpipe()
scores <- chain_scores(data_a = dat$alpha, data_b = dat$beta)
scores <- scores$ascores + t(scores$bscores)

combine_freq_results Combines the frequency estimation results from single TCR clones and
dual TCR clones

Description

combine_freq_results() combines the results of the frequency estimation performed on single
TCR clones (from the output of bagpipe) and the frequency estimation performed on dual clones.
The code will find the rows of the single TCR frequency results that are represented by the dual
clones and replace them with the appropriate dual clone entry.

create_clones 5

Usage

combine_freq_results(single, dual)

Arguments

single Frequency estimation results of single TCR clones (usually from the first time
freq_estimate is called)

dual Frequency estimation results of dual TCR-alpha clones

Value

A data.frame with the same structure as the output of freq_estimate. If two single "clones" in the
single data.frame is represented by a dual clone in dual, then it is removed and replaced with one
row represented by the dual clone.

create_clones Create a synthetic set of clones with a specific underlying clonal struc-
ture

Description

create_clones() creates a set of (beta1, beta2, alpha1, alpha2) quadruples that represent the in-
dices of the chains of clones. The function will take a fixed number of unique beta chains that are in
the T cell population, and then use the degree of beta and alpha sharing to determine the number of
unique alpha chains in the populations. These chains will then be randomly assigned to each other,
with a proportion of them being dual TCR clones (i.e. alpha1 != alpha2 and/or beta1 != beta2),
forming our random list of clones with their chain indices.

Usage

create_clones(numb_beta, dual_beta, dual_alpha, alpha_sharing, beta_sharing)

Arguments

numb_beta The number of unique betas in the clonal population

dual_beta The proportion of clone that are dual TCRbeta clones, i.e. has two distinct beta
chains

dual_alpha The proportion of clones that are dual TCRalpha clones, i.e. has two distinct
alpha chains

alpha_sharing A vector where the ith position represents the proportion of alpha chains that are
shared by i clones; alpha chains can be shared by up to 7 clones

beta_sharing A vector where the ith position represents the proportion of beta chains that are
shared by i clones; beta chains can be shared by up to 5 clones

6 create_data

Value

A list of four different matrices. Each matrix is has dimensions n x 4, where n is the total number
of clones and each row represents the chains of a clone. Column 1 and column 2 are the beta
index/indices of the beta chain(s) used by the clone. Column 3 and 4 are the alpha index/indices of
the alpha chain(s) used by the clone. If a clone has a single beta chain, then col 1 and col 2 will be
equal. If a clone has a single alpha chain, then col 3 and col 4 will be equal.

Examples

Creating a population containing 1000 beta chains; 10% of clones with
dual-beta TCRs and 30% of clones with dual TCRs; 75% beta shared by one
clone, 20% by two clones, 5% by three clones; 80% alpha chains shared by
one clone, 15% by two clones, and 5% by three clones

clones <- create_clones(numb_beta = 1000,
dual_alpha = .3,
dual_beta = .06,
alpha_sharing = c(0.80, 0.15, 0.05),
beta_sharing = c(0.75, 0.20, 0.05))

create_data Simulate sequencing data obtained from the alphabetr approach with
a specified clonal structure

Description

create_data() simulates an alphabetr sequencing experiment by sampling clones from a clonal
structure specified by the user. The clones are placed on a frequency distribution where a fixed
number clones represents the top proportion of the population in frequency and the other clones
represent the rest of the population in frequency. Different error models and different sampling
strategies can be simulated as well.

Usage

create_data(TCR, plates, error_drop, error_seq, error_mode, skewed, prop_top,
dist = "linear", numb_cells)

Arguments

TCR The specified clonal structure, which can be created from create_clones.

plates The number of plates of data.

error_drop A vector of length 2 with the mean of the drop error rate and the sd of the drop
error rate.

error_seq A vector of length 2 with the mean of the in-frame error rate and the sd of the
in-frame error rate.

create_data 7

error_mode A vector of two strings determining the "mode" of the error models. The first
element sets the mode of the drop errors, and the second element sets the mode
of the in-frame errors. The two modes available are "constant" for a constant
error rate and "lognormal" for error rates drawn from a lognormal distribution.
If the mode is set to "constant" the sd specified in error_drop and/or error_seq
will be ignored.

skewed Number of clones represent the top proportion of the population by frequency
(which is specified by prop_top).

prop_top The proportion of the population in frequency represented by the number of
clones specified by skewed.

dist The distribution of frequency of the top clones. Currently only "linear" is avail-
able.

numb_cells A two column matrix determining the sampling strategy of the experiment. The
first column represents the number of cells per well, and the second column
represents the number of wells with that sample size. The sum of column 2
should equal 96 times the number of plates.

Value

A list of length 2. The first element is a matrix representing the data of the alpha chains, and
the second element is a matrix representing the data of beta chains. The matrix represents the
sequencing data by representing the wells of the data by rows and the chain indices by column.
Entry [i, j] of the matrix represents if chain j is found in well i (yes == 1, no == 0). e.g. if alpha
chain 25 is found in well 10, then [10, 25] of the alpha matrix will be 1.

Examples

see the help for create_clones() for details of this function call
clones <- create_clones(numb_beta = 1000,

dual_alpha = .3,
dual_beta = .06,
alpha_sharing = c(0.80, 0.15, 0.05),
beta_sharing = c(0.75, 0.20, 0.05))

creating a data set with 5 plates, lognormal error rates, 10 clones
making up the top 60% of the population in frequency, and a constant
sampling strategy of 50 cells per well for 480 wells (five 96-well plates)
dat <- create_data(clones$TCR, plate = 5,

error_drop = c(.15, .01),
error_seq = c(.05, .001),
error_mode = c("lognormal", "lognormal"),
skewed = 10,
prop_top = 0.6,
dist = "linear",
numb_cells = matrix(c(50, 480), ncol = 2))

8 create_data_singlecells

create_data_singlecells

Simulate sequencing data obtained single-cell sequencing

Description

create_data_singlecells() simulates a single-cell sequencing experiment by sampling clones
from a clonal structure specified by the user and using the same error models and frequency distri-
butions used in create_data. These functions are almost identical except this one simulates the
sampling and sequencing of single T cells.

Usage

create_data_singlecells(TCR, plates = 5, error_drop = c(0.15, 0.01),
error_seq = c(0.05, 0.01), error_mode = c("constant", "constant"),
skewed = 15, prop_top = 0.5, dist = "linear")

Arguments

TCR The specified clonal structure, which can be created from create_clones.

plates The number of plates of data. The number of single-cells is 96 times plates.

error_drop A vector of length 2 with the mean of the drop error rate and the sd of the drop
error rate.

error_seq A vector of length 2 with the mean of the in-frame error rate and the sd of the
in-frame error rate.

error_mode A vector of two strings determining the "mode" of the error models. The first
element sets the mode of the drop errors, and the second element sets the mode
of the in-frame errors. The two modes available are "constant" for a constant
error rate and "lognormal" for error rates drawn from a lognormal distribution.
If the mode is set to "constant" the sd specified in error_drop and/or error_seq
will be ignored.

skewed Number of clones represent the top proportion of the population by frequency
(which is specified by prop_top).

prop_top The proportion of the population in frequency represented by the number of
clones specified by skewed.

dist The distribution of frequency of the top clones. Currently only "linear" is avail-
able.

Value

A list of length 3. The first element is a matrix representing the data of the alpha chains ($alpha), and
the second element is a matrix representing the data of beta chains ($beta). The matrix represents
the sequencing data by representing the wells of the data by rows and the chain indices by column.
Entry [i, j] of the matrix represents if chain j is found in well i (yes == 1, no == 0). e.g. if alpha
chain 25 is found in well 10, then [10, 25] of the alpha matrix will be 1.

dual_discrim_dual_likelihood 9

The third element of the list ($drop) is a matrix that records the index of the clone sampled in the
well (col 1), records if a drop error occurred (col 2), and record if an in-frame error occurred (col
3).

Examples

see the help for create_clones() for details of this function call
clones <- create_clones(numb_beta = 1000,

dual_alpha = .3,
dual_beta = .06,
alpha_sharing = c(0.80, 0.15, 0.05),
beta_sharing = c(0.75, 0.20, 0.05))

creating a data set with 480 single cells, lognormal error rates, 10 clones
making up the top 60% of the population in frequency, and a constant
sampling strategy of 50 cells per well for 480 wells (five 96-well plates)
dat <- create_data_singlecells(clones$TCR, plate = 5,

error_drop = c(.15, .01),
error_seq = c(.05, .001),
error_mode = c("lognormal", "lognormal"),
skewed = 10,
prop_top = 0.6,
dist = "linear")

dual_discrim_dual_likelihood

Calculate likelihood of two beta-sharing candidate alpha-beta pairs
deriving from a dual clone

Description

dual_discrim_dual_likelihood() is used within dual_top to calculate the likelihood that two
alpha-beta pairs identified by bagpipe sharing the same beta chain derive from a single dual-alpha
clone (instead of two distinct clones sharing the same beta).

Usage

dual_discrim_dual_likelihood(est, err, numb_cells, numb_wells, binomials)

Arguments

est Frequency estimate of the putative dual-alpha clone
err Mean drop error rate
numb_cells Vector containing the number of cells per well
numb_wells Vector containing the number of wells with the sample sizes given by numb_cells

binomials Calculations of the needed binomial coefficients; this is faster in R than in Rcpp
(from my own tests)

10 dual_discrim_shared_likelihood

Value

A numeric containing the negative log likelihood

dual_discrim_shared_likelihood

Calculate likelihood of two beta-sharing candidate alpha-beta pairs
deriving from a dual clone

Description

dual_discrim_shared_likelihood() is used within dual_top to calculate the likelihood that
two alpha-beta pairs identified by bagpipe sharing the same beta chain derive from a two distinct
clones sharing the same beta chain dual-alpha clone (instead of a single dual-alpha clone)

Usage

dual_discrim_shared_likelihood(est1, est2, err, numb_cells, numb_wells,
binomials, multinomials)

Arguments

est1 Frequency estimate of the first alpha-beta clone

est2 Frequency estimate of the second alpha-beta clone

err Mean drop error rate

numb_cells Vector containing the number of cells per well

numb_wells Vector containing the number of wells with the sample sizes given by numb_cells

binomials Calculations of the needed binomial coefficients; this is faster in R than in Rcpp
(from my own tests)

multinomials Calculations of the needed multinomial coefficients; this is way faster in R due
to vectorization

Value

A numeric containing the negative log likelihood

dual_eval 11

dual_eval Calculate dual depths and false dual rates for simulated alphabetr
experiments

Description

dual_eval() is used in simulation situations to compare the duals determined by dual_top and
dual_tail (which can be combined with rbind()) to the duals in the simulated T cell population.

Usage

dual_eval(duals, pair, TCR, number_skewed, TCR_dual)

Arguments

duals A 4 column matrix (col 1 + 2 = beta indices, col 3 + 4 = alpha indices) containing
the indices of dual-alpha clones. The output of dual_top and dual_tail are
in this form (and the outputs of these two functions can combined by using
rbind())

pair The output of bagpipe

TCR The clonal structure of the simulated T cell population. This is obtained by
subsetting the TCR element of the output of create_clones

number_skewed The number of clones represent the top proportion of the T cell population by
frequency (this is the same number_skewed argument used when create_clones
is called)

TCR_dual The dual clones of the simulated T cell population. This is obtained by subset-
ting the dual_alph element of the output of create_clones

Value

A data.frame with the following columns:

• fdr, the false dual rate

• numb_cand_duals, the number of duals identified

• adj_depth_top, the adjusted dual depth of top clones

• abs_depth_top, the absolute dual depth of top clones

• numb_correct_top, the number of correctly identified dual clones in the top

• numb_duals_ans_top, the number of top dual clones in the simulated T cell population

• numb_poss_top, the number of top dual clones whose beta and both alpha chains were iden-
tified by bagpipe()

• numb_unestimated_top, number of top dual clones whose frequencies could not be calcu-
lated (usually because the clones appeared in every well of the data)

• adj_depth_tail, the adjusted dual depth of tail clones

12 dual_tail

• abs_depth_tail, the absolute dual depth of tail clones

• numb_correct_tail, the number of correctly identified tail clones

• numb_duals_ans_tail, the number of dual tail clones in the simulated T cell population

• numb_poss_tail, the number of tail dual cloens whose beta and both alpha chains were iden-
tified by bagpipe()

• numb_unestimated_tail, the number of tail clones whose frequencies could not be calcu-
lated

dual_tail Discriminate between beta-sharing clones and dual-alpha TCR clones
(optimized for rare clones)

Description

dual_tail() distinguishes between clones that share a common beta chain and dual TCR clones
with two productive alpha chains. The procedure tests the null hypothesis that two candidate alpha,
beta pairs with the same beta represent two separate clones by using the frequency estimates to
calculate the number of wells that both clones are expected to be in. This is compared to the actual
number of wells that both clones appear in, and if the actual number is greater than the expected
number, than the pairs are chosen to represent a dual TCR clone.

Usage

dual_tail(alpha, beta, freq_results, numb_cells)

Arguments

alpha Matrix recording which alpha chains appear in each well of the data. See
create_data.

beta Matrix recording which beta chains appear in the each well of the data. See
create_data.

freq_results Output of freq_estimate.

numb_cells Vector containing the number of cells sampled in the wells of each column of
the plates.

Value

A n x 3 matrix where n is the number of candidate clones, column 1 is the beta index of the clone,
and column 2-3 are the alpha indices of the clone

dual_top 13

dual_top Discriminate between beta-sharing clones and dual-alpha TCR clones
(optimized for common clones)

Description

dual_top() distinguishes between clones that share a common beta chain and dual TCR clones
with two productive alpha chains. The procedure calculates the likelihood that two (alpha, beta)
pairs (with common a beta chain) come from two distinct clones sharing the same beta chain vs the
likelihood that the two pairs derive from a dual TCR-alpha clone. A significant difference between
the two likelihoods is indicative of a dual alpha clone, and these clones are returned as dual clones.

Usage

dual_top(alpha, beta, pair, error, numb_cells)

Arguments

alpha Matrix recording which alpha chains appear in each well of the data. See
create_data.

beta Matrix recording which beta chains appear in the each well of the data. See
create_data.

pair A matrix where each row is a beta/alpha pair, column 1 and 2 are the beta in-
dices, and column 3 and 4 are the alpha indices, and column 5 is the proportion
of replicates the clone was found in (or equal to -1 if the clone is dual)

error The mean error "dropped" chain rate due to PCR or sequencing errors.

numb_cells The number of cells per well in each column of the plates. Should be a vector
of 12 elements.

Value

A matrix of dual-alpha clones, where col 1 and 2 are beta indices of the clone (which should be
equal) and col 3 and 4 are alpha indices of the clone (which are different).

freq_estimate Estimation of frequencies of clones identified by alphabetr

Description

freq_estimate() estimates the frequencies of clones with confidence intervals by using a maxi-
mum likelihood approach. The function looks at the wells that a chains of a clone appear in and
determines the most likely frequency that explains the data.

14 freq_eval

Usage

freq_estimate(alpha, beta, pair, error = 0.15, numb_cells)

Arguments

alpha Matrix recording which alpha chains appear in each well of the data. See
create_data.

beta Matrix recording which beta chains appear in the each well of the data. See
create_data.

pair A matrix where each row is a beta/alpha pair, column 1 and 2 are the beta in-
dices, and column 3 and 4 are the alpha indices, and column 5 is the proportion
of replicates the clone was found in (or equal to -1 if the clone is dual)

error The mean error "dropped" chain rate due to PCR or sequencing errors.

numb_cells The number of cells per well in each column of the plates. Should be a vector
of 12 elements.

Value

A data frame with frequency estimates and confidence intervals

Examples

Not run:
obtained from the output of bagpipe()
pairs <- pairs[pairs[, 5] > 0.3,]
freq <- freq_estimate(alpha = dat$alpha,

beta = dat$beta,
pair = pairs,
numb_cells = matrix(c(50, 480), ncol = 2))

End(Not run)

freq_eval Calculate the precision, CV, and accuracy of frequency estimates

Description

freq_eval() will evaluated how well freq_estimate performed by calculating the precision and
CV of the frequency estimates for the top clones and by determining the proportion of the top clones
whose true clonal frequency lies in the 95-percent CI determined by freq_estimate

Usage

freq_eval(freq, number_skewed, TCR, numb_clones, prop_top)

likelihood_dual 15

Arguments

freq The output of freq_estimate

number_skewed The number of clones represent the top proportion of the T cell population by
frequency (this is the same number_skewed argument used when create_clones
is called)

TCR The clonal structure of the simulated T cell population. This is obtained by
subsetting the TCR element of the output of create_clones

numb_clones Total number of distinct clones in the parent population

prop_top The proportion of the population in frequency represented by the number of
clones specified by skewed.

Value

A list with the precision, cv, and accuracy of the frequency estimation.

likelihood_dual Calculate likelihood curve of frequency estimates for a dual-alpha or
dual-beta TCR clone

Description

Calculate likelihood curve of frequency estimates for a dual-alpha or dual-beta TCR clone

Usage

likelihood_dual(est, err, numb_wells, numb_cells, numb_sample)

Arguments

est Clonal frequency estimate

err Mean drop error rate

numb_wells A vector with the number of wells with the distinct sample sizes

numb_cells A vector of the distinct sample sizes, i.e. the number of cells per well

numb_sample A vector with the number of wells of the sample size of the same position of
numb_cells that contains both alpha and the beta chain of the clone (for dual-
alpha clones) or both beta and the alpha chain of the clone (for dual-beta clones)

Value

A numeric with the negative log likelihood

16 likelihood_single

likelihood_dualdual Calculate likelihood curve of frequency estimates for a dual-alpha and
dual-beta TCR clone

Description

Calculate likelihood curve of frequency estimates for a dual-alpha and dual-beta TCR clone

Usage

likelihood_dualdual(est, err, numb_wells, numb_cells, numb_sample)

Arguments

est Clonal frequency estimate

err Mean drop error rate

numb_wells A vector with the number of wells with the distinct sample sizes

numb_cells A vector of the distinct sample sizes, i.e. the number of cells per well

numb_sample A vector with the number of wells of the sample size of the same position of
numb_cells that contains both alpha and both betachains the clone

Value

A numeric with the negative log likelihood

likelihood_single Calculate likelihood curve of frequency estimates for a single TCR
clone

Description

Calculate likelihood curve of frequency estimates for a single TCR clone

Usage

likelihood_single(est, err, numb_wells, numb_cells, numb_sample)

Arguments

est Clonal frequency estimate

err Mean drop error rate

numb_wells A vector with the number of wells with the distinct sample sizes

numb_cells A vector of the distinct sample sizes, i.e. the number of cells per well

numb_sample A vector with the number of wells of the sample size of the same position of
numb_cells that contains the alpha and beta chains the clone

read_alphabetr 17

Value

A numeric with the negative log likelihood

read_alphabetr Read in alphabetr sequencing data into the binary matrix form needed
by bagpipe()

Description

read_alphabetr() will read in two different forms of a csv file to convert sequencing data using
the alphabetr approach into the binary matrices required by bagpipe. The csv file(s) can have one
of two forms. (1) A single csv file with three columns: column 1 containing whether the sequence
is "TCRA" or "TCRB"; column 2 containing the well number; and column 3 containing the CDR3
sequence (2) Two CSV files, one for TCRA and one for TCRB, with two columns: column 1
containing the well number and column 2 containing the CDR3 sequence

Usage

read_alphabetr(data = NULL, data_alpha = NULL, data_beta = NULL)

Arguments

data To read in a 3-column csv file containing both TCRA and TCRB sequencing
information

data_alpha To read in a 2-column csv file containing TCRA sequencing information. Must
be used in conjunction with the data_beta argument and cannot be used with
the data argument.

data_beta To read in a 2-column csv file containing TCRB sequencing information. Must
be used in conjunction with the data_alpha argument and cannot eb used with
the data argument.

Value

A list of two binary matrices that represent the sequencing data and two character vectors that give
the CDR3 sequences associated with each chain index.

Examples

Not run:
dat <- read_alphabetr(data = "alphabetr_data.csv")

saving the alpha and beta binary matrices
data_alpha <- dat$alpha
data_beta <- dat$beta

finding the cdr3 sequences of alpha_2 and beta_4 respectively
cdr3_alpha2 <- dat$alpha_lib[2]

18 read_alphabetr

cdr3_beta4 <- dat$beta_lib[4]

End(Not run)

Index

bagpipe, 2, 4, 9–11, 17

chain_scores, 2, 3
combine_freq_results, 4
create_clones, 4, 5, 6, 8, 11, 15
create_data, 2, 6, 8, 12–14
create_data_singlecells, 8

dual_discrim_dual_likelihood, 9
dual_discrim_shared_likelihood, 10
dual_eval, 11
dual_tail, 11, 12
dual_top, 9–11, 13

freq_estimate, 5, 12, 13, 14, 15
freq_eval, 14

likelihood_dual, 15
likelihood_dualdual, 16
likelihood_single, 16

read_alphabetr, 17

19

	bagpipe
	chain_scores
	combine_freq_results
	create_clones
	create_data
	create_data_singlecells
	dual_discrim_dual_likelihood
	dual_discrim_shared_likelihood
	dual_eval
	dual_tail
	dual_top
	freq_estimate
	freq_eval
	likelihood_dual
	likelihood_dualdual
	likelihood_single
	read_alphabetr
	Index

