## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----------------------------------------------------------------------------- library(ambit) library(ggplot2) ## ----------------------------------------------------------------------------- #Set the number of observations n <-2000 #Set the width of the grid Delta<-0.1 #Determine the trawl function trawlfct="Exp" trawlfct_par <-0.5 #Choose the marginal distribution distr<-"Gauss" #mean 0, std 1 distr_par<-c(0,1) #Simulate the path set.seed(233) path <- sim_weighted_trawl(n, Delta, trawlfct, trawlfct_par, distr, distr_par)$path #Plot the path df <- data.frame(time = seq(0,n,1), value=path) p <- ggplot(df, aes(x=time, y=path))+ geom_line()+ xlab("l")+ ylab("Trawl process") p #Plot the empirical acf and superimpose the theoretical one #Plot the acf my_acf <- acf(path, plot = FALSE) my_acfdf <- with(my_acf, data.frame(lag, acf)) #Confidence limits alpha <- 0.95 conf.lims <- c(-1,1)*qnorm((1 + alpha)/2)/sqrt(n) q <- ggplot(data = my_acfdf, mapping = aes(x = lag, y = acf)) + geom_hline(aes(yintercept = 0)) + geom_segment(mapping = aes(xend = lag, yend = 0))+ geom_hline(yintercept=conf.lims, lty=2, col='blue') + geom_function(fun = function(x) acf_Exp(x*Delta,trawlfct_par), colour="red", size=1.2)+ xlab("Lag")+ ylab("Autocorrelation") q ## ----------------------------------------------------------------------------- #Set the number of observations n <-2000 #Set the width of the grid Delta<-0.1 #Determine the trawl function trawlfct_par <-0.5 a <- function(x){exp(-trawlfct_par*x)} #Choose the marginal distribution distr<-"Gauss" #mean 0, std 1 distr_par<-c(0,1) #Simulate the path set.seed(233) path <- sim_weighted_trawl_gen(n, Delta, trawlfct_gen=a, distr, distr_par)$path #Plot the path df <- data.frame(time = seq(0,n,1), value=path) p <- ggplot(df, aes(x=time, y=path))+ geom_line()+ xlab("l")+ ylab("Trawl process") p #Plot the empirical acf and superimpose the theoretical one #Plot the acf my_acf <- acf(path, plot = FALSE) my_acfdf <- with(my_acf, data.frame(lag, acf)) #Confidence limits alpha <- 0.95 conf.lims <- c(-1,1)*qnorm((1 + alpha)/2)/sqrt(n) q <- ggplot(data = my_acfdf, mapping = aes(x = lag, y = acf)) + geom_hline(aes(yintercept = 0)) + geom_segment(mapping = aes(xend = lag, yend = 0))+ geom_hline(yintercept=conf.lims, lty=2, col='blue') + geom_function(fun = function(x) acf_Exp(x*Delta,trawlfct_par), colour="red", size=1.2)+ xlab("Lag")+ ylab("Autocorrelation") q