## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----------------------------------------------------------------------------- library(ambit) library(ggplot2) library(latex2exp) ## ----------------------------------------------------------------------------- ###Choosing the sampling scheme my_n <- 5000 my_delta <- 0.1 my_t <- my_n*my_delta ###Choosing the model parameter #Exponential trawl: my_lambda <- 1 ###Poisson-Exponential trawl my_v <- 1 ##Gaussian-Exponential trawl my_mu <- 0 my_sigma <-1 #Negative binomial model my_theta <- 0.2 my_m <- (1-my_theta)^2/my_theta #Set the seed set.seed(123) Poi_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Poi", my_v)$path NB_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "NegBin", c(my_m,my_theta))$path Gau_data<-ambit::sim_weighted_trawl(my_n, my_delta, "Exp", my_lambda, "Gauss", c(my_mu,my_sigma))$path ## ----------------------------------------------------------------------------- #Plot the path df1 <- base::data.frame(time = base::seq(0,my_n,1), value=Poi_data) p1 <- ggplot(df1, aes(x=time, y=Poi_data))+ geom_line()+ xlab("l")+ ylab("Poisson trawl process") p1 ## ----------------------------------------------------------------------------- df2 <- base::data.frame(time = base::seq(0,my_n,1), value=NB_data) p2 <- ggplot(df2, aes(x=time, y=NB_data))+ geom_line()+ xlab("l")+ ylab("Negative binomial trawl process") p2 ## ----------------------------------------------------------------------------- df3 <- base::data.frame(time = base::seq(0,my_n,1), value=Gau_data) p3 <- ggplot(df3, aes(x=time, y=Gau_data))+ geom_line()+ xlab("l")+ ylab("Gaussian trawl process") p3 ## ----------------------------------------------------------------------------- my_lag <- 100+1 PoiEx_trawl <- nonpar_trawlest(Poi_data, my_delta, lag=my_lag)$a_hat l_seq <- seq(from = 0,to = (my_lag-1), by = 1) esttrawlfct.data <- data.frame(l=l_seq[1:31], value=PoiEx_trawl[1:31]) p1 <- ggplot(esttrawlfct.data, aes(x=l,y=value))+ geom_point(size=3)+ geom_function(fun = function(x) acf_Exp(x*my_delta,my_lambda), colour="red", size=1.5)+ xlab("l")+ ylab(TeX("$\\hat{a}(\\cdot)$ for Poisson trawl process")) p1 ## ----------------------------------------------------------------------------- my_lag <- 100+1 NBEx_trawl <- nonpar_trawlest(NB_data, my_delta, lag=my_lag)$a_hat l_seq <- seq(from = 0,to = (my_lag-1), by = 1) esttrawlfct.data <- data.frame(l=l_seq[1:31], value=NBEx_trawl[1:31]) p2 <- ggplot(esttrawlfct.data, aes(x=l,y=value))+ geom_point(size=3)+ geom_function(fun = function(x) acf_Exp(x*my_delta,my_lambda), colour="red", size=1.5)+ xlab("l")+ ylab(TeX("$\\hat{a}(\\cdot)$ for NegBin trawl process")) p2 ## ----------------------------------------------------------------------------- my_lag <- 100+1 GaussEx_trawl <- nonpar_trawlest(Gau_data, my_delta, lag=my_lag)$a_hat l_seq <- seq(from = 0,to = (my_lag-1), by = 1) esttrawlfct.data <- data.frame(l=l_seq[1:31], value=GaussEx_trawl[1:31]) p3 <- ggplot(esttrawlfct.data, aes(x=l,y=value))+ geom_point(size=3)+ geom_function(fun = function(x) acf_Exp(x*my_delta,my_lambda), colour="red", size=1.5)+ xlab("l")+ ylab(TeX("$\\hat{a}(\\cdot)$ for Gaussian trawl process")) p3 ## ----------------------------------------------------------------------------- #Checking length of return vector my_lag <- 100+1 NBEx_trawl <- nonpar_trawlest(NB_data, my_delta, lag=my_lag)$a_hat c4_est <- c4est(NB_data, my_delta) print("The fourth cumulant is estimated to be:") c4_est print("The asymptotic variance for t=1 is estimated to be:") asymptotic_variance_est(t=1, c4=c4_est, varlevyseed=1, Delta=my_delta, avector=NBEx_trawl)$v print("The feasible test statistic for t=0 is estimated to be:") test_asymnorm_est(NB_data, my_delta, trawlfct="Exp", trawlfct_par=0.5)[1]