## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----load_libs, warning = FALSE, message = FALSE------------------------------ library(analyzer) library(ggplot2) ## ----------------------------------------------------------------------------- # For a continuous vector explainer(mtcars$mpg, quant.seq = c(0, 0.25, 0.5, 1), include.numeric = c("trimmed.means", "skewness", "kurtosis")) ## ----------------------------------------------------------------------------- # For a categorical vector explainer(as.factor(mtcars$cyl)) ## ----------------------------------------------------------------------------- # For a complete data.frame explainer(mtcars) ## ----plot_var, warning = FALSE, message = FALSE------------------------------- # Simple plot for one variable p <- plottr(mtcars$mpg) plot(p$x) ## ----plot_df, warning = FALSE, message = FALSE-------------------------------- # default plots for all the variables in mtcars p <- plottr(mtcars, yvar = "disp", yclass = "numeric") plot(p$mpg) ## ----plot_custom, warning = FALSE--------------------------------------------- # Define a function for plot for continuous independent and Continuous dependent variables custom_plot_for_continuous_vars <- function(dat, xname, yname, ...) { xyplot <- ggplot(dat, aes_string(x=xname, y=yname)) + geom_point(alpha = 0.6, color = "#3c4fde") + geom_rug() + theme_minimal() xyplot <- gridExtra::arrangeGrob(xyplot, top = paste0("New plot of ", xname, " and ", yname) ) return(xyplot) } ## ----plot_df2, warning = FALSE, message = FALSE------------------------------- p <- plottr(mtcars, yvar = "disp", yclass = "numeric", FUN3 = custom_plot_for_continuous_vars) plot(p$mpg) ## ----plot_custom2, warning = FALSE-------------------------------------------- # Define a function for plot for continuous independent and Continuous dependent variables custom_plot2 <- function(dat, xname, ...) { # histogram p1 <- ggplot(dat, aes_string(x=xname)) + geom_histogram(fill="#77bf85", color = "black") + theme_minimal() return(p1) } ## ----plot_df3, warning = FALSE, message = FALSE------------------------------- p <- plottr(mtcars, yvar = "disp", yclass = "numeric", FUN1 = custom_plot2, FUN3 = custom_plot_for_continuous_vars) plot(p$mpg) ## ----association, warning = FALSE--------------------------------------------- corr_all <- association(mtcars, categorical = c('cyl', 'vs', 'am', 'gear'), normality_test_method = 'ks') ## ----sel_methods-------------------------------------------------------------- corr_all$method_used ## ----------------------------------------------------------------------------- corr_all$method_used ## ----norm_test---------------------------------------------------------------- norm_test_fun(mtcars$mpg, method = "anderson")