Type: | Package |
Title: | 'anndata' for R |
Version: | 0.8.0 |
Description: | A 'reticulate' wrapper for the Python package 'anndata'. Provides a scalable way of keeping track of data and learned annotations. Used to read from and write to the h5ad file format. |
License: | MIT + file LICENSE |
URL: | https://anndata.dynverse.org, https://github.com/dynverse/anndata |
BugReports: | https://github.com/dynverse/anndata/issues |
Depends: | R (≥ 3.5.0) |
Imports: | assertthat, cli, lifecycle, Matrix, methods, R6, reticulate (≥ 1.41) |
Suggests: | stats, testthat, knitr, rmarkdown |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Config/reticulate: | list( packages = list( list(package = "anndata") ) ) |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2025-05-27 14:03:22 UTC; rcannood |
Author: | Philipp Angerer |
Maintainer: | Robrecht Cannoodt <rcannood@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-05-27 14:30:02 UTC |
anndata - Annotated Data
Description
anndata
provides a scalable way of keeping track of data
and learned annotations, and can be used to read from and write to the h5ad
file format. AnnData()
stores a data matrix X
together with annotations
of observations obs
(obsm
, obsp
), variables var
(varm
, varp
),
and unstructured annotations uns
.
Details
This package is, in essense, an R wrapper for the similarly named Python package
anndata
, with some added functionality
to support more R-like syntax.
The version number of the anndata R package is synced
with the version number of the python version.
Check out ?anndata
for a full list of the functions provided by this package.
Creating an AnnData object
Concatenating two or more AnnData objects
Reading an AnnData object from a file
Writing an AnnData object to a file
Install the anndata
Python package
Author(s)
Maintainer: Robrecht Cannoodt rcannood@gmail.com (ORCID) [copyright holder]
Other contributors:
Philipp Angerer phil.angerer@gmail.com (ORCID) [conceptor]
Alex Wolf f.alex.wolf@gmx.de (ORCID) [conceptor]
Isaac Virshup (ORCID) [conceptor]
Sergei Rybakov (ORCID) [conceptor]
See Also
Useful links:
Report bugs at https://github.com/dynverse/anndata/issues
Examples
## Not run:
ad <- AnnData(
X = matrix(1:6, nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L, 3L), row.names = c("var1", "var2", "var3")),
layers = list(
spliced = matrix(4:9, nrow = 2),
unspliced = matrix(8:13, nrow = 2)
),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
varm = list(
ones = matrix(rep(1L, 12), nrow = 3),
rand = matrix(rnorm(6), nrow = 3),
zeros = matrix(rep(0L, 12), nrow = 3)
),
uns = list(
a = 1,
b = data.frame(i = 1:3, j = 4:6, value = runif(3)),
c = list(c.a = 3, c.b = 4)
)
)
ad$X
ad$obs
ad$var
ad$obsm["ones"]
ad$varm["rand"]
ad$layers["unspliced"]
ad$layers["spliced"]
ad$uns["b"]
ad[, c("var1", "var2")]
ad[-1, , drop = FALSE]
ad[, 2] <- 10
## End(Not run)
Create an Annotated Data Matrix
Description
AnnData
stores a data matrix X
together with annotations
of observations obs
(obsm
, obsp
), variables var
(varm
, varp
),
and unstructured annotations uns
.
An AnnData
object adata
can be sliced like a data frame,
for instance adata_subset <- adata[, list_of_variable_names]
. AnnData
’s
basic structure is similar to R's ExpressionSet.
If setting an h5ad
-formatted HDF5 backing file filename
,
data remains on the disk but is automatically loaded into memory if needed.
See this blog post for more details.
Usage
AnnData(
X = NULL,
obs = NULL,
var = NULL,
uns = NULL,
obsm = NULL,
varm = NULL,
layers = NULL,
raw = NULL,
dtype = "float32",
shape = NULL,
filename = NULL,
filemode = NULL,
obsp = NULL,
varp = NULL
)
Arguments
X |
A #observations × #variables data matrix. A view of the data is used if the data type matches, otherwise, a copy is made. |
obs |
Key-indexed one-dimensional observations annotation of length #observations. |
var |
Key-indexed one-dimensional variables annotation of length #variables. |
uns |
Key-indexed unstructured annotation. |
obsm |
Key-indexed multi-dimensional observations annotation of length #observations. If passing a |
varm |
Key-indexed multi-dimensional variables annotation of length #variables. If passing a |
layers |
Key-indexed multi-dimensional arrays aligned to dimensions of |
raw |
Store raw version of |
dtype |
Data type used for storage. |
shape |
Shape list (#observations, #variables). Can only be provided if |
filename |
Name of backing file. See h5py.File. |
filemode |
Open mode of backing file. See h5py.File. |
obsp |
Pairwise annotation of observations, a mutable mapping with array-like values. |
varp |
Pairwise annotation of observations, a mutable mapping with array-like values. |
Details
AnnData
stores observations (samples) of variables/features in the rows of a matrix.
This is the convention of the modern classics of statistic and machine learning,
the convention of dataframes both in R and Python and the established statistics
and machine learning packages in Python (statsmodels, scikit-learn).
Single dimensional annotations of the observation and variables are stored
in the obs
and var
attributes as data frames.
This is intended for metrics calculated over their axes.
Multi-dimensional annotations are stored in obsm
and varm
,
which are aligned to the objects observation and variable dimensions respectively.
Square matrices representing graphs are stored in obsp
and varp
,
with both of their own dimensions aligned to their associated axis.
Additional measurements across both observations and variables are stored in
layers
.
Indexing into an AnnData object can be performed by relative position with numeric indices, or by labels. To avoid ambiguity with numeric indexing into observations or variables, indexes of the AnnData object are converted to strings by the constructor.
Subsetting an AnnData object by indexing into it will also subset its elements
according to the dimensions they were aligned to.
This means an operation like adata[list_of_obs, ]
will also subset obs
,
obsm
, and layers
.
Subsetting an AnnData object returns a view into the original object, meaning very little additional memory is used upon subsetting. This is achieved lazily, meaning that the constituent arrays are subset on access. Copying a view causes an equivalent “real” AnnData object to be generated. Attempting to modify a view (at any attribute except X) is handled in a copy-on-modify manner, meaning the object is initialized in place. Here's an example
batch1 <- adata[adata$obs["batch"] == "batch1", ] batch1$obs["value"] = 0 # This makes batch1 a “real” AnnData object
At the end of this snippet: adata
was not modified,
and batch1
is its own AnnData object with its own data.
Similar to Bioconductor’s ExpressionSet
and scipy.sparse
matrices,
subsetting an AnnData object retains the dimensionality of its constituent arrays.
Therefore, unlike with the classes exposed by pandas
, numpy
,
and xarray
, there is no concept of a one dimensional AnnData object.
AnnDatas always have two inherent dimensions, obs
and var
.
Additionally, maintaining the dimensionality of the AnnData object allows for
consistent handling of scipy.sparse
matrices and numpy
arrays.
Active bindings
X
Data matrix of shape
n_obs
×n_vars
.filename
Name of the backing file.
Change to backing mode by setting the filename of a
.h5ad
file.Setting the filename writes the stored data to disk.
Setting the filename when the filename was previously another name moves the backing file from the previous file to the new file. If you want to copy the previous file, use
copy(filename='new_filename')
.
layers
A list-like object with values of the same dimensions as
X
. Layers in AnnData are inspired by loompy's layers.Overwrite the layers:
adata$layers <- list(spliced = spliced, unspliced = unspliced)
Return the layer named
"unspliced"
:adata$layers["unspliced"]
Create or replace the
"spliced"
layer:adata$layers["spliced"] = example_matrix
Assign the 10th column of layer
"spliced"
to the variable a:a <- adata$layers["spliced"][, 10]
Delete the
"spliced"
:adata$layers["spliced"] <- NULL
Return layers' names:
names(adata$layers)
T
Transpose whole object.
Data matrix is transposed, observations and variables are interchanged.
Ignores
.raw
.is_view
TRUE
if object is view of another AnnData object,FALSE
otherwise.isbacked
TRUE
if object is backed on disk,FALSE
otherwise.n_obs
Number of observations.
obs
One-dimensional annotation of observations (data.frame).
obs_names
Names of observations.
obsm
Multi-dimensional annotation of observations (matrix).
Stores for each key a two or higher-dimensional matrix with
n_obs
rows.obsp
Pairwise annotation of observations, a mutable mapping with array-like values.
Stores for each key a two or higher-dimensional matrix whose first two dimensions are of length
n_obs
.n_vars
Number of variables.
var
One-dimensional annotation of variables (data.frame).
var_names
Names of variables.
varm
Multi-dimensional annotation of variables (matrix).
Stores for each key a two or higher-dimensional matrix with
n_vars
rows.varp
Pairwise annotation of variables, a mutable mapping with array-like values.
Stores for each key a two or higher-dimensional matrix whose first two dimensions are of length
n_vars
.shape
Shape of data matrix (
n_obs
,n_vars
).uns
Unstructured annotation (ordered dictionary).
raw
Store raw version of
X
andvar
as$raw$X
and$raw$var
.The
raw
attribute is initialized with the current content of an object by setting:adata$raw = adata
Its content can be deleted:
adata$raw <- NULL
Upon slicing an AnnData object along the obs (row) axis,
raw
is also sliced. Slicing an AnnData object along the vars (columns) axis leavesraw
unaffected. Note that you can call:adata$raw[, 'orig_variable_name']$X
to retrieve the data associated with a variable that might have been filtered out or "compressed away" in
X'.
Methods
Public methods
Method new()
Create a new AnnData object
Usage
AnnDataR6$new(obj)
Arguments
obj
A Python anndata object
Examples
\dontrun{ # use AnnData() instead of AnnDataR6$new() ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")) ) }
Method obs_keys()
List keys of observation annotation obs
.
Usage
AnnDataR6$obs_keys()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")) ) ad$obs_keys() }
Method obs_names_make_unique()
Makes the index unique by appending a number string to each duplicate index element: 1, 2, etc.
If a tentative name created by the algorithm already exists in the index, it tries the next integer in the sequence.
The first occurrence of a non-unique value is ignored.
Usage
AnnDataR6$obs_names_make_unique(join = "-")
Arguments
join
The connecting string between name and integer (default:
"-"
).
Examples
\dontrun{ ad <- AnnData( X = matrix(rep(1, 6), nrow = 3), obs = data.frame(field = c(1, 2, 3)) ) ad$obs_names <- c("a", "a", "b") ad$obs_names_make_unique() ad$obs_names }
Method obsm_keys()
List keys of observation annotation obsm
.
Usage
AnnDataR6$obsm_keys()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), obsm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ) ) ad$obs_keys() }
Method var_keys()
List keys of variable annotation var
.
Usage
AnnDataR6$var_keys()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")) ) ad$var_keys() }
Method var_names_make_unique()
Makes the index unique by appending a number string to each duplicate index element: 1, 2, etc.
If a tentative name created by the algorithm already exists in the index, it tries the next integer in the sequence.
The first occurrence of a non-unique value is ignored.
Usage
AnnDataR6$var_names_make_unique(join = "-")
Arguments
join
The connecting string between name and integer (default:
"-"
).
Examples
\dontrun{ ad <- AnnData( X = matrix(rep(1, 6), nrow = 2), var = data.frame(field = c(1, 2, 3)) ) ad$var_names <- c("a", "a", "b") ad$var_names_make_unique() ad$var_names }
Method varm_keys()
List keys of variable annotation varm
.
Usage
AnnDataR6$varm_keys()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ) ) ad$varm_keys() }
Method uns_keys()
List keys of unstructured annotation uns
.
Usage
AnnDataR6$uns_keys()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) }
Method chunk_X()
Return a chunk of the data matrix X
with random or specified indices.
Usage
AnnDataR6$chunk_X(select = 1000L, replace = TRUE)
Arguments
select
Depending on the values:
1 integer: A random chunk with select rows will be returned.
multiple integers: A chunk with these indices will be returned.
replace
if
select
is an integer thenTRUE
means random sampling of indices with replacement,FALSE
without replacement.
Examples
\dontrun{ ad <- AnnData( X = matrix(runif(10000), nrow = 50) ) ad$chunk_X(select = 10L) # 10 random samples ad$chunk_X(select = 1:3) # first 3 samples }
Method chunked_X()
Return an iterator over the rows of the data matrix X.
Usage
AnnDataR6$chunked_X(chunk_size = NULL)
Arguments
chunk_size
Row size of a single chunk.
Examples
\dontrun{ ad <- AnnData( X = matrix(runif(10000), nrow = 50) ) ad$chunked_X(10) }
Method concatenate()
Use concat()
instead.
Usage
AnnDataR6$concatenate(...)
Arguments
...
Deprecated
Method copy()
Full copy, optionally on disk.
Usage
AnnDataR6$copy(filename = NULL)
Arguments
filename
Path to filename (default:
NULL
).
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2) ) ad$copy() ad$copy("file.h5ad") }
Method rename_categories()
Rename categories of annotation key
in obs
, var
, and uns
.
Only supports passing a list/array-like categories
argument.
Besides calling self.obs[key].cat.categories = categories
–
similar for var
- this also renames categories in unstructured
annotation that uses the categorical annotation key
.
Usage
AnnDataR6$rename_categories(key, categories)
Arguments
key
Key for observations or variables annotation.
categories
New categories, the same number as the old categories.
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")) ) ad$rename_categories("group", c(a = "A", b = "B")) # ?? }
Method strings_to_categoricals()
Transform string annotations to categoricals.
Only affects string annotations that lead to less categories than the total number of observations.
Usage
AnnDataR6$strings_to_categoricals(df = NULL)
Arguments
df
If
df
isNULL
, modifies bothobs
andvar
, otherwise modifiesdf
inplace.
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), ) ad$strings_to_categoricals() # ?? }
Method to_df()
Generate shallow data frame.
The data matrix X
is returned as data frame, where obs_names
are the rownames, and var_names
the columns names.
No annotations are maintained in the returned object.
The data matrix is densified in case it is sparse.
Usage
AnnDataR6$to_df(layer = NULL)
Arguments
layer
Key for layers
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), layers = list( spliced = matrix(c(4, 5, 6, 7), nrow = 2), unspliced = matrix(c(8, 9, 10, 11), nrow = 2) ) ) ad$to_df() ad$to_df("unspliced") }
Method transpose()
transpose Transpose whole object.
Data matrix is transposed, observations and variables are interchanged.
Ignores .raw
.
Usage
AnnDataR6$transpose()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")) ) ad$transpose() }
Method write_csvs()
Write annotation to .csv files.
It is not possible to recover the full AnnData from these files. Use write_h5ad()
for this.
Usage
AnnDataR6$write_csvs(dirname, skip_data = TRUE, sep = ",")
Arguments
dirname
Name of the directory to which to export.
skip_data
Skip the data matrix
X
.sep
Separator for the data
anndata
An
AnnData()
object
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) ad$to_write_csvs("output") unlink("output", recursive = TRUE) }
Method write_h5ad()
Write .h5ad-formatted hdf5 file.
Generally, if you have sparse data that are stored as a dense matrix, you can dramatically improve performance and reduce disk space by converting to a csr_matrix:
Usage
AnnDataR6$write_h5ad( filename, compression = NULL, compression_opts = NULL, as_dense = list() )
Arguments
filename
Filename of data file. Defaults to backing file.
compression
See the h5py filter pipeline. Options are
"gzip"
,"lzf"
orNULL
.compression_opts
See the h5py filter pipeline.
as_dense
Sparse in AnnData object to write as dense. Currently only supports
"X"
and"raw/X"
.
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) ad$write_h5ad("output.h5ad") file.remove("output.h5ad") }
Method write_loom()
Write .loom-formatted hdf5 file.
Usage
AnnDataR6$write_loom(filename, write_obsm_varm = FALSE)
Arguments
filename
The filename.
write_obsm_varm
Whether or not to also write the varm and obsm.
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) ad$write_loom("output.loom") file.remove("output.loom") }
Method write_zarr()
Write a hierarchical Zarr array store.
Usage
AnnDataR6$write_zarr(store, chunks = NULL)
Arguments
store
The filename, a MutableMapping, or a Zarr storage class.
chunks
Chunk size.
Method print()
Print AnnData object
Usage
AnnDataR6$print(...)
Arguments
...
optional arguments to print method.
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), layers = list( spliced = matrix(c(4, 5, 6, 7), nrow = 2), unspliced = matrix(c(8, 9, 10, 11), nrow = 2) ), obsm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) ad$print() print(ad) }
Method .set_py_object()
Set internal Python object
Usage
AnnDataR6$.set_py_object(obj)
Arguments
obj
A python anndata object
Method .get_py_object()
Get internal Python object
Usage
AnnDataR6$.get_py_object()
See Also
read_h5ad()
read_csv()
read_excel()
read_hdf()
read_loom()
read_mtx()
read_text()
read_umi_tools()
write_h5ad()
write_csvs()
write_loom()
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
value <- matrix(c(1, 2, 3, 4), nrow = 2)
ad$X <- value
ad$X
ad$layers
ad$layers["spliced"]
ad$layers["test"] <- value
ad$layers
ad$to_df()
ad$uns
as.matrix(ad)
as.matrix(ad, layer = "unspliced")
dim(ad)
rownames(ad)
colnames(ad)
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$new`
## ------------------------------------------------
## Not run:
# use AnnData() instead of AnnDataR6$new()
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2"))
)
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$obs_keys`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2"))
)
ad$obs_keys()
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$obs_names_make_unique`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(rep(1, 6), nrow = 3),
obs = data.frame(field = c(1, 2, 3))
)
ad$obs_names <- c("a", "a", "b")
ad$obs_names_make_unique()
ad$obs_names
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$obsm_keys`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
)
)
ad$obs_keys()
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$var_keys`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2"))
)
ad$var_keys()
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$var_names_make_unique`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(rep(1, 6), nrow = 2),
var = data.frame(field = c(1, 2, 3))
)
ad$var_names <- c("a", "a", "b")
ad$var_names_make_unique()
ad$var_names
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$varm_keys`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
)
)
ad$varm_keys()
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$uns_keys`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$chunk_X`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(runif(10000), nrow = 50)
)
ad$chunk_X(select = 10L) # 10 random samples
ad$chunk_X(select = 1:3) # first 3 samples
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$chunked_X`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(runif(10000), nrow = 50)
)
ad$chunked_X(10)
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$copy`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2)
)
ad$copy()
ad$copy("file.h5ad")
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$rename_categories`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2"))
)
ad$rename_categories("group", c(a = "A", b = "B")) # ??
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$strings_to_categoricals`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
)
ad$strings_to_categoricals() # ??
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$to_df`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
)
)
ad$to_df()
ad$to_df("unspliced")
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$transpose`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2"))
)
ad$transpose()
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$write_csvs`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$to_write_csvs("output")
unlink("output", recursive = TRUE)
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$write_h5ad`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$write_h5ad("output.h5ad")
file.remove("output.h5ad")
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$write_loom`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$write_loom("output.loom")
file.remove("output.loom")
## End(Not run)
## ------------------------------------------------
## Method `AnnDataR6$print`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$print()
print(ad)
## End(Not run)
Create a Layers object
Description
Create a Layers object
Usage
Layers(parent, vals = NULL)
Arguments
parent |
An AnnData object. |
vals |
A named list of matrices with the same dimensions as |
Active bindings
parent
Reference to parent AnnData view
Methods
Public methods
Method new()
Create a new Layers object
Usage
LayersR6$new(obj)
Arguments
obj
A Python Layers object
Method print()
Print Layers object
Usage
LayersR6$print(...)
Arguments
...
optional arguments to print method.
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), layers = list( spliced = matrix(c(4, 5, 6, 7), nrow = 2), unspliced = matrix(c(8, 9, 10, 11), nrow = 2) ) ) print(ad$layers) }
Method get()
Get a layer
Usage
LayersR6$get(name)
Arguments
name
Name of the layer
Method set()
Set a layer
Usage
LayersR6$set(name, value)
Arguments
name
Name of the layer
value
A matrix
Method del()
Delete a layer
Usage
LayersR6$del(name)
Arguments
name
Name of the layer
Method keys()
Get the names of the layers
Usage
LayersR6$keys()
Method length()
Get the number of layers
Usage
LayersR6$length()
Method .set_py_object()
Set internal Python object
Usage
LayersR6$.set_py_object(obj)
Arguments
obj
A Python layers object
Method .get_py_object()
Get internal Python object
Usage
LayersR6$.get_py_object()
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
)
)
ad$layers["spliced"]
ad$layers["test"] <- matrix(c(1, 3, 5, 7), nrow = 2)
length(ad$layers)
names(ad$layers)
## End(Not run)
## ------------------------------------------------
## Method `LayersR6$print`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
)
)
print(ad$layers)
## End(Not run)
Create a Raw object
Description
Create a Raw object
Usage
Raw(adata, X = NULL, var = NULL, varm = NULL)
Arguments
adata |
An AnnData object. |
X |
A #observations × #variables data matrix. |
var |
Key-indexed one-dimensional variables annotation of length #variables. |
varm |
Key-indexed multi-dimensional variables annotation of length #variables. |
Active bindings
X
Data matrix of shape
n_obs
×n_vars
.n_obs
Number of observations.
obs_names
Names of observations.
n_vars
Number of variables.
var
One-dimensional annotation of variables (data.frame).
var_names
Names of variables.
varm
Multi-dimensional annotation of variables (matrix).
Stores for each key a two or higher-dimensional matrix with
n_var
rows.shape
Shape of data matrix (
n_obs
,n_vars
).
Methods
Public methods
Method new()
Create a new Raw object
Usage
RawR6$new(obj)
Arguments
obj
A Python Raw object
Method copy()
Full copy, optionally on disk.
Usage
RawR6$copy()
Arguments
filename
Path to filename (default:
NULL
).
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2) ) ad$copy() ad$copy("file.h5ad") }
Method to_adata()
Create a full AnnData object
Usage
RawR6$to_adata()
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), layers = list( spliced = matrix(c(4, 5, 6, 7), nrow = 2), unspliced = matrix(c(8, 9, 10, 11), nrow = 2) ) ) ad$raw <- ad ad$raw$to_adata() }
Method print()
Print Raw object
Usage
RawR6$print(...)
Arguments
...
optional arguments to print method.
Examples
\dontrun{ ad <- AnnData( X = matrix(c(0, 1, 2, 3), nrow = 2), obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")), var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")), layers = list( spliced = matrix(c(4, 5, 6, 7), nrow = 2), unspliced = matrix(c(8, 9, 10, 11), nrow = 2) ), obsm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), varm = list( ones = matrix(rep(1L, 10), nrow = 2), rand = matrix(rnorm(6), nrow = 2), zeros = matrix(rep(0L, 10), nrow = 2) ), uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4)) ) ad$raw <- ad library(reticulate) sc <- import("scanpy") sc$pp$normalize_per_cell(ad) ad[] ad$raw[] ad$print() print(ad) }
Method .set_py_object()
Set internal Python object
Usage
RawR6$.set_py_object(obj)
Arguments
obj
A Python Raw object
Method .get_py_object()
Get internal Python object
Usage
RawR6$.get_py_object()
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$raw <- ad
library(reticulate)
sc <- import("scanpy")
sc$pp$normalize_per_cell(ad)
ad[]
ad$raw[]
## End(Not run)
## ------------------------------------------------
## Method `RawR6$copy`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2)
)
ad$copy()
ad$copy("file.h5ad")
## End(Not run)
## ------------------------------------------------
## Method `RawR6$to_adata`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
)
)
ad$raw <- ad
ad$raw$to_adata()
## End(Not run)
## ------------------------------------------------
## Method `RawR6$print`
## ------------------------------------------------
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
layers = list(
spliced = matrix(c(4, 5, 6, 7), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11), nrow = 2)
),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$raw <- ad
library(reticulate)
sc <- import("scanpy")
sc$pp$normalize_per_cell(ad)
ad[]
ad$raw[]
ad$print()
print(ad)
## End(Not run)
Test if two objects objects are equal
Description
Test if two objects objects are equal
Usage
## S3 method for class 'AnnDataR6'
all.equal(target, current, ...)
## S3 method for class 'LayersR6'
all.equal(target, current, ...)
## S3 method for class 'RawR6'
all.equal(target, current, ...)
Arguments
target |
R object. |
current |
other R object, to be compared with |
... |
further arguments for different methods, notably the following two, for numerical comparison: |
concat
Description
Concatenates AnnData objects along an axis.
Usage
concat(
adatas,
axis = 0L,
join = "inner",
merge = NULL,
uns_merge = NULL,
label = NULL,
keys = NULL,
index_unique = NULL,
fill_value = NULL,
pairwise = FALSE
)
Arguments
adatas |
The objects to be concatenated. If a Mapping is passed, keys are used for the |
axis |
Which axis to concatenate along. |
join |
How to align values when concatenating. If "outer", the union of the other axis is taken. If "inner", the intersection. See |
merge |
How elements not aligned to the axis being concatenated along are selected. Currently implemented strategies include: * |
uns_merge |
How the elements of |
label |
Column in axis annotation (i.e. |
keys |
Names for each object being added. These values are used for column values for |
index_unique |
Whether to make the index unique by using the keys. If provided, this is the delimeter between |
fill_value |
When |
pairwise |
Whether pairwise elements along the concatenated dimension should be included. This is FALSE by default, since the resulting arrays are often not meaningful. |
Details
See the concatenation
section in the docs for a more in-depth description.
warning: This function is marked as experimental for the 0.7
release series, and will supercede the AnnData$concatenate()
method in future releases.
warning: If you use join='outer'
this fills 0s for sparse data when variables are absent in a batch. Use this with care. Dense data is filled with NaN
.
Examples
## Not run:
# Preparing example objects
a <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2, byrow = TRUE),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(
a = 1,
b = 2,
c = list(
c.a = 3,
c.b = 4
)
)
)
b <- AnnData(
X = matrix(c(4, 5, 6, 7, 8, 9), nrow = 2, byrow = TRUE),
obs = data.frame(group = c("b", "c"), row.names = c("s3", "s4")),
var = data.frame(type = c(1L, 2L, 3L), row.names = c("var1", "var2", "var3")),
varm = list(
ones = matrix(rep(1L, 15), nrow = 3),
rand = matrix(rnorm(15), nrow = 3)
),
uns = list(
a = 1,
b = 3,
c = list(
c.a = 3
)
)
)
c <- AnnData(
X = matrix(c(10, 11, 12, 13), nrow = 2, byrow = TRUE),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(3L, 4L), row.names = c("var3", "var4")),
uns = list(
a = 1,
b = 4,
c = list(
c.a = 3,
c.b = 4,
c.c = 5
)
)
)
# Concatenating along different axes
concat(list(a, b))$to_df()
concat(list(a, c), axis = 1L)$to_df()
# Inner and outer joins
inner <- concat(list(a, b))
inner
inner$obs_names
inner$var_names
outer <- concat(list(a, b), join = "outer")
outer
outer$var_names
outer$to_df()
# Keeping track of source objects
concat(list(a = a, b = b), label = "batch")$obs
concat(list(a, b), label = "batch", keys = c("a", "b"))$obs
concat(list(a = a, b = b), index_unique = "-")$obs
# Combining values not aligned to axis of concatenation
concat(list(a, b), merge = "same")
concat(list(a, b), merge = "unique")
concat(list(a, b), merge = "first")
concat(list(a, b), merge = "only")
# The same merge strategies can be used for elements in .uns
concat(list(a, b, c), uns_merge = "same")$uns
concat(list(a, b, c), uns_merge = "unique")$uns
concat(list(a, b, c), uns_merge = "first")$uns
concat(list(a, b, c), uns_merge = "only")$uns
## End(Not run)
AnnData Helpers
Description
AnnData Helpers
Usage
## S3 method for class 'AnnDataR6'
dimnames(x)
## S3 replacement method for class 'AnnDataR6'
dimnames(x) <- value
## S3 method for class 'AnnDataR6'
dim(x)
## S3 method for class 'AnnDataR6'
as.data.frame(x, row.names = NULL, optional = FALSE, layer = NULL, ...)
## S3 method for class 'AnnDataR6'
as.matrix(x, layer = NULL, ...)
## S3 method for class 'AnnDataR6'
r_to_py(x, convert = FALSE)
## S3 method for class 'anndata._core.anndata.AnnData'
py_to_r(x)
## S3 method for class 'AnnDataR6'
x[oidx, vidx]
## S3 method for class 'AnnDataR6'
t(x)
## S3 method for class 'anndata._core.sparse_dataset.SparseDataset'
py_to_r(x)
## S3 method for class 'h5py._hl.dataset.Dataset'
py_to_r(x)
Arguments
x |
An AnnData object. |
value |
a possible valie for |
row.names |
Not used. |
optional |
Not used. |
layer |
An AnnData layer. If |
... |
Parameters passed to the underlying function. |
convert |
Not used. |
oidx |
Observation indices |
vidx |
Variable indices |
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3, 4, 5), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L, 3L), row.names = c("var1", "var2", "var3")),
layers = list(
spliced = matrix(c(4, 5, 6, 7, 8, 9), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11, 12, 13), nrow = 2)
),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
varm = list(
ones = matrix(rep(1L, 12), nrow = 3),
rand = matrix(rnorm(6), nrow = 3),
zeros = matrix(rep(0L, 12), nrow = 3)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
dimnames(ad)
dim(ad)
as.data.frame(ad)
as.data.frame(ad, layer = "unspliced")
as.matrix(ad)
as.matrix(ad, layer = "unspliced")
ad[2, , drop = FALSE]
ad[, -1]
ad[, c("var1", "var2")]
## End(Not run)
Raw Helpers
Description
Raw Helpers
Usage
## S3 method for class 'RawR6'
dimnames(x)
## S3 method for class 'RawR6'
dim(x)
## S3 method for class 'RawR6'
as.matrix(x, ...)
## S3 method for class 'RawR6'
r_to_py(x, convert = FALSE)
## S3 method for class 'anndata._core.raw.Raw'
py_to_r(x)
## S3 method for class 'RawR6'
x[...]
Arguments
x |
An AnnData object. |
... |
Parameters passed to the underlying function. |
convert |
Not used. |
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3, 4, 5), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L, 3L), row.names = c("var1", "var2", "var3")),
layers = list(
spliced = matrix(c(4, 5, 6, 7, 8, 9), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11, 12, 13), nrow = 2)
),
obsm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
varm = list(
ones = matrix(rep(1L, 12), nrow = 3),
rand = matrix(rnorm(6), nrow = 3),
zeros = matrix(rep(0L, 12), nrow = 3)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$raw <- ad
dimnames(ad$raw)
dim(ad$raw)
as.matrix(ad$raw)
ad$raw[2, , drop = FALSE]
ad$raw[, -1]
ad$raw[, c("var1", "var2")]
## End(Not run)
Install anndata
Description
Needs to be run after installing the anndata R package.
Usage
install_anndata(method = "auto", conda = "auto")
Arguments
method |
Installation method. By default, "auto" automatically finds a method that will work in the local environment. Change the default to force a specific installation method. Note that the "virtualenv" method is not available on Windows. |
conda |
The path to a |
Examples
## Not run:
reticulate::conda_install()
install_anndata()
## End(Not run)
Layers Helpers
Description
Layers Helpers
Usage
## S3 method for class 'LayersR6'
names(x)
## S3 method for class 'LayersR6'
length(x)
## S3 method for class 'LayersR6'
r_to_py(x, convert = FALSE)
## S3 method for class 'anndata._core.aligned_mapping.LayersBase'
py_to_r(x)
## S3 method for class 'LayersR6'
x[name]
## S3 replacement method for class 'LayersR6'
x[name] <- value
## S3 method for class 'LayersR6'
x[[name]]
## S3 replacement method for class 'LayersR6'
x[[name]] <- value
Arguments
x |
An AnnData object. |
convert |
Not used. |
name |
Name of the layer. |
value |
Replacement value. |
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3, 4, 5), nrow = 2),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L, 3L), row.names = c("var1", "var2", "var3")),
layers = list(
spliced = matrix(c(4, 5, 6, 7, 8, 9), nrow = 2),
unspliced = matrix(c(8, 9, 10, 11, 12, 13), nrow = 2)
)
)
ad$layers["spliced"]
ad$layers["test"] <- matrix(c(1, 3, 5, 7), nrow = 2)
length(ad$layers)
names(ad$layers)
## End(Not run)
Convert between Python and R objects
Description
Convert between Python and R objects
Usage
## S3 replacement method for class 'collections.abc.MutableMapping'
x[[name]] <- value
## S3 method for class 'collections.abc.Mapping'
x[[name]]
## S3 replacement method for class 'collections.abc.MutableMapping'
x[name] <- value
## S3 method for class 'collections.abc.Mapping'
x[name]
## S3 method for class 'collections.abc.Mapping'
names(x)
## S3 method for class 'collections.abc.Set'
py_to_r(x)
## S3 method for class 'pandas.core.indexes.base.Index'
py_to_r(x)
## S3 method for class 'collections.abc.KeysView'
py_to_r(x)
## S3 method for class 'collections.abc.Mapping'
py_to_r(x)
## S3 method for class 'anndata.abc._AbstractCSDataset'
py_to_r(x)
Arguments
x |
A Python object. |
name |
A name |
value |
A value |
Value
An R object, as converted from the Python object.
read_csv
Description
Read .csv
file.
Usage
read_csv(
filename,
delimiter = ",",
first_column_names = NULL,
dtype = "float32"
)
Arguments
filename |
Data file. |
delimiter |
Delimiter that separates data within text file. If |
first_column_names |
Assume the first column stores row names. |
dtype |
Numpy data type. |
Details
Same as read_text()
but with default delimiter ','
.
Examples
## Not run:
ad <- read_csv("matrix.csv")
## End(Not run)
read_excel
Description
Read .xlsx
(Excel) file.
Usage
read_excel(filename, sheet, dtype = "float32")
Arguments
filename |
File name to read from. |
sheet |
Name of sheet in Excel file. |
dtype |
Numpy data type. |
Details
Assumes that the first columns stores the row names and the first row the column names.
Examples
## Not run:
ad <- read_excel("spreadsheet.xls")
## End(Not run)
read_h5ad
Description
Read .h5ad
-formatted hdf5 file.
Usage
read_h5ad(filename, backed = NULL)
Arguments
filename |
File name of data file. |
backed |
If |
Examples
## Not run:
ad <- read_h5ad("example_formats/pbmc_1k_protein_v3_processed.h5ad")
## End(Not run)
read_hdf
Description
Read .h5
(hdf5) file.
Usage
read_hdf(filename, key)
Arguments
filename |
Filename of data file. |
key |
Name of dataset in the file. |
Details
Note: Also looks for fields row_names
and col_names
.
Examples
## Not run:
ad <- read_hdf("file.h5")
## End(Not run)
read_loom
Description
Read .loom
-formatted hdf5 file.
Usage
read_loom(
filename,
sparse = TRUE,
cleanup = FALSE,
X_name = "spliced",
obs_names = "CellID",
obsm_names = NULL,
var_names = "Gene",
varm_names = NULL,
dtype = "float32",
...
)
Arguments
filename |
The filename. |
sparse |
Whether to read the data matrix as sparse. |
cleanup |
Whether to collapse all obs/var fields that only store one unique value into |
X_name |
Loompy key with which the data matrix |
obs_names |
Loompy key where the observation/cell names are stored. |
obsm_names |
Loompy keys which will be constructed into observation matrices |
var_names |
Loompy key where the variable/gene names are stored. |
varm_names |
Loompy keys which will be constructed into variable matrices |
dtype |
Numpy data type. |
... |
Arguments to loompy.connect |
Details
This reads the whole file into memory. Beware that you have to explicitly state when you want to read the file as sparse data.
Examples
## Not run:
ad <- read_loom("dataset.loom")
## End(Not run)
read_mtx
Description
Read .mtx
file.
Usage
read_mtx(filename, dtype = "float32")
Arguments
filename |
The filename. |
dtype |
Numpy data type. |
Examples
## Not run:
ad <- read_mtx("matrix.mtx")
## End(Not run)
read_text
Description
Read .txt
, .tab
, .data
(text) file.
Usage
read_text(
filename,
delimiter = NULL,
first_column_names = NULL,
dtype = "float32"
)
Arguments
filename |
Data file, filename or stream. |
delimiter |
Delimiter that separates data within text file.
If |
first_column_names |
Assume the first column stores row names. |
dtype |
Numpy data type. |
Details
Same as read_csv()
but with default delimiter NULL
.
Examples
## Not run:
ad <- read_text("matrix.tab")
## End(Not run)
read_umi_tools
Description
Read a gzipped condensed count matrix from umi_tools.
Usage
read_umi_tools(filename, dtype = "float32")
Arguments
filename |
File name to read from. |
dtype |
Numpy data type. |
Examples
## Not run:
ad <- read_umi_tools("...")
## End(Not run)
Read from a hierarchical Zarr array store.
Description
Read from a hierarchical Zarr array store.
Usage
read_zarr(store)
Arguments
store |
The filename, a MutableMapping, or a Zarr storage class. |
Examples
## Not run:
ad <- read_zarr("...")
## End(Not run)
Write annotation to .csv files.
Description
It is not possible to recover the full AnnData from these files. Use write_h5ad()
for this.
Usage
write_csvs(anndata, dirname, skip_data = TRUE, sep = ",")
Arguments
anndata |
An |
dirname |
Name of the directory to which to export. |
skip_data |
Skip the data matrix |
sep |
Separator for the data |
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2, byrow = TRUE),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
write_csvs(ad, "output")
unlink("output", recursive = TRUE)
## End(Not run)
Write .h5ad-formatted hdf5 file.
Description
Generally, if you have sparse data that are stored as a dense matrix, you can dramatically improve performance and reduce disk space by converting to a csr_matrix:
Usage
write_h5ad(
anndata,
filename,
compression = NULL,
compression_opts = NULL,
as_dense = list()
)
Arguments
anndata |
An |
filename |
Filename of data file. Defaults to backing file. |
compression |
See the h5py filter pipeline.
Options are |
compression_opts |
See the h5py filter pipeline. |
as_dense |
Sparse in AnnData object to write as dense. Currently only supports |
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2, byrow = TRUE),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
write_h5ad(ad, "output.h5ad")
file.remove("output.h5ad")
## End(Not run)
Write .loom-formatted hdf5 file.
Description
Write .loom-formatted hdf5 file.
Usage
write_loom(anndata, filename, write_obsm_varm = FALSE)
Arguments
anndata |
An |
filename |
The filename. |
write_obsm_varm |
Whether or not to also write the varm and obsm. |
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2, byrow = TRUE),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
write_loom(ad, "output.loom")
file.remove("output.loom")
## End(Not run)
Write a hierarchical Zarr array store.
Description
Write a hierarchical Zarr array store.
Usage
write_zarr(anndata, store, chunks = NULL)
Arguments
anndata |
An |
store |
The filename, a MutableMapping, or a Zarr storage class. |
chunks |
Chunk shape. |
Examples
## Not run:
ad <- AnnData(
X = matrix(c(0, 1, 2, 3), nrow = 2, byrow = TRUE),
obs = data.frame(group = c("a", "b"), row.names = c("s1", "s2")),
var = data.frame(type = c(1L, 2L), row.names = c("var1", "var2")),
varm = list(
ones = matrix(rep(1L, 10), nrow = 2),
rand = matrix(rnorm(6), nrow = 2),
zeros = matrix(rep(0L, 10), nrow = 2)
),
uns = list(a = 1, b = 2, c = list(c.a = 3, c.b = 4))
)
ad$write_zarr("output.zarr")
write_zarr(ad, "output.zarr")
unlink("output.zarr", recursive = TRUE)
## End(Not run)