## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, message = FALSE--------------------------------------------------- library(anovir) ## ----include = TRUE, warning = FALSE------------------------------------------ data01 <- data_lorenz # create column 'ref_vir' in dataframe coded 0, 1 and 2 # for control, reference dose, and other dose treatments, respectively data01$ref_vir <- ifelse(data01$g == 0, 0, ifelse(data01$g == 1, ifelse(data01$Infectious.dose == 5000, 1, 2), 0) ) # copy and modify 'nll_proportional_virulence' function # where the virulence in the reference treatment is 'theta' # which is multiplied by 'th10', 'th20', etc... in the other dose treatements nll_proportional_virulence2 <- nll_proportional_virulence body(nll_proportional_virulence2)[[6]] <- substitute(pfth <- theta * ifelse(data01$Infectious.dose == 10000, th10, ifelse(data01$Infectious.dose == 20000, th20, ifelse(data01$Infectious.dose == 40000, th40, ifelse(data01$Infectious.dose == 80000, th80, ifelse(data01$Infectious.dose == 160000, th160, exp(0) ))))) ) # update formals formals(nll_proportional_virulence2) <- alist( a1 = a1, b1 = b1, a2 = a2, b2 = b2, theta = theta, th10 = th10, th20 = th20, th40 = th40, th80 = th80, th160 = th160, data = data01, time = t, censor = censored, infected_treatment = g, reference_virulence = ref_vir, d1 = 'Gumbel', d2 = 'Weibull') # write 'prep function' m01_prep_function <- function( a1, b1, a2, b2, theta, th10, th20, th40, th80, th160){ nll_proportional_virulence2( a1, b1, a2, b2, theta, th10, th20, th40, th80, th160) } # send 'prep function' to mle2 # NB fixing 'theta = 1' scales virulence in other treatments relative to # that in the reference treatment m01 <- mle2(m01_prep_function, start = list( a1 = 24, b1 = 5, a2 = 4, b2 = 0.2, theta = 1, th10 = 1, th20 = 1, th40 = 1, th80 = 1, th160 = 1), fixed = list(theta = 1) ) summary(m01) ## ----include = TRUE----------------------------------------------------------- data01 <- data_lorenz head(data01) nll_basic_logscale2 <- nll_basic_logscale body(nll_basic_logscale2)[[4]] ## ----include = TRUE----------------------------------------------------------- body(nll_basic_logscale2)[[4]] <- substitute( pfa2 <- exp(a2i) - exp(a2ii)*log(data01$Infectious.dose) ) body(nll_basic_logscale2)[[4]] formals(nll_basic_logscale2) <- alist( a1 = a1, b1 = b1, a2i = a2i, a2ii = a2ii, b2 = b2, data = data01, time = t, censor = censored, infected_treatment = g, d1 = 'Gumbel', d2 = 'Weibull' ) m01_prep_function <- function(a1, b1, a2i, a2ii, b2){ nll_basic_logscale2(a1, b1, a2i, a2ii, b2) } m01 <- mle2(m01_prep_function, start = list(a1 = 3, b1 = 1.5, a2i = 1.4, a2ii = -3, b2 = -1.5) ) summary(m01) exp(coef(m01)) ## ----include = TRUE----------------------------------------------------------- nll_basic2 <- nll_basic body(nll_basic2)[[4]] body(nll_basic2)[[4]] <- substitute( pfa2 <- a2i + a2ii*log(data01$Infectious.dose) ) body(nll_basic2)[[4]] formals(nll_basic2) <- alist( a1 = a1, b1 = b1, a2i = a2i, a2ii = a2ii, b2 = b2, data = data01, time = t, censor = censored, infected_treatment = g, d1 = 'Gumbel', d2 = 'Weibull' ) m02_prep_function <- function(a1, b1, a2i, a2ii, b2){ nll_basic2(a1, b1, a2i, a2ii, b2) } m02 <- mle2(m02_prep_function, start = list(a1 = 23, b1 = 4.5, a2i = 3.8, a2ii = -0.1, b2 = 0.4) ) summary(m02)