## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- include=T--------------------------------------------------------------- library(avar) ## ---- fig.height = 7, fig.width = 7, fig.align = 'center', fig.cap = "Allan Variance Representation."---- set.seed(2710) # Simulate data n = 1e5 data = rnorm(n, 0, 0.01) + cumsum(rnorm(n, 0, 3.162278e-05)) # Compute the Maximum-Overlap Allan Variance allan_variance = avar(data, type = "mo") # Log-Log representation of the Allan Variance plot(allan_variance) ## ---- warning = F------------------------------------------------------------- # Specify the scale at which we want to fit the WN and RW processes wn = 1:7 rw = 13:15 # Compute the Allan Variance Linear Regression Estimator (AVLR) fit = avlr(allan_variance, wn = wn, rw = rw) fit ## ---- fig.height = 7, fig.width = 7, fig.align = 'center', fig.cap = "Empirical AV with AV implied by the latent model"---- plot(fit) plot(fit, decomp = TRUE) ## ---- warning = F, eval = F--------------------------------------------------- # # AVLR estimator with 95% confidence intervals # fit_ci = avlr(allan_variance, wn = 1:7, rw = 13:15, ci = TRUE, B = 100) # fit_ci$ci ## ---- warning = F, echo = F, eval = T----------------------------------------- load("fit_ci.rda") fit_ci$ci ## ---- fig.height = 8, fig.width = 8, fig.align = 'center', fig.cap = "Allan Variance Representation."---- data("navchip_av") plot(navchip_av) ## ----------------------------------------------------------------------------- fit2 = avlr(navchip_av, qn_gyro = 1:4, wn_gyro = 6:8, rw_gyro = 10:13, wn_acc = 1:6, rw_acc = 14:16) fit2 ## ---- fig.height = 8, fig.width = 8, fig.align = 'center', fig.cap = "Empirical AV with AV implied by the latent model"---- plot(fit2)