## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(basemodels) ## ----------------------------------------------------------------------------- set.seed(2023) index <- sample(1:nrow(iris), nrow(iris) * 0.8) train_data <- iris[index,] test_data <- iris[-index,] ## ----------------------------------------------------------------------------- ctrl1 <- caret::trainControl(method = "none") # Train a dummy classifier with caret dummy_model <- caret::train(Species ~ ., data = train_data, method = dummyClassifier, strategy = "stratified", trControl = ctrl1) # Make predictions using the trained dummy classifier pred_vec <- predict(dummy_model, test_data) # Evaluate the performance of the dummy classifier conf_matrix <- caret::confusionMatrix(pred_vec, test_data$Species) print(conf_matrix) ## ----------------------------------------------------------------------------- dummy_model <- dummy_classifier(train_data$Species, strategy = "proportional", random_state = 2024) # Make predictions using the trained dummy classifier pred_vec <- predict_dummy_classifier(dummy_model, test_data) # Evaluate the performance of the dummy classifier conf_matrix <- caret::confusionMatrix(pred_vec, test_data$Species) print(conf_matrix) ## ----------------------------------------------------------------------------- # Make predictions using the trained dummy regressor reg_model <- dummy_regressor(train_data$Sepal.Length, strategy = "median") y_hat <- predict_dummy_regressor(reg_model, test_data) # Find mean squared error mean((test_data$Sepal.Length-y_hat)^2) ## ----------------------------------------------------------------------------- ctrl1 <- caret::trainControl(method = "none") # Train a dummy regressor with caret reg_model <- caret::train(Sepal.Length ~ ., data = train_data, method = dummyRegressor, strategy = "median", trControl = ctrl1) y_hat <- predict(reg_model, test_data) # Find mean squared error mean((test_data$Sepal.Length-y_hat)^2)