Package 'bdots'

July 22, 2025

Type Package

Title Bootstrapped Differences of Time Series

Version 1.2.5

Date 2023-01-06

Author Collin Nolte, Michael Seedorff, Jacob Oleson, Grant Brown, Joseph Cavanaugh, and Bob McMurray

Maintainer Collin Nolte <collin-nolte@uiowa.edu>

BugReports https://github.com/collinn/bdots/issues

Depends R (>= 4.0.0), data.table

Imports nlme, mvtnorm, parallel, stats, graphics, utils, ggplot2, gridExtra

LazyData TRUE

Description Analyze differences among time series curves with p-value adjustment for multiple comparisons introduced in Oleson et al (2015) < DOI:10.1177/0962280215607411>.

License GPL-3 | file LICENSE

URL https://github.com/collinn/bdots

NeedsCompilation no

Encoding UTF-8

RoxygenNote 7.2.0

Suggests knitr, rmarkdown, tinytest

VignetteBuilder knitr, rmarkdown

Repository CRAN

Date/Publication 2023-01-06 23:20:02 UTC

2 Contents

Contents

Index

ar1Solver	. 3
odotsBoot	. 3
odotsCorr	. 6
odotsFit	. 6
odotsFitter	. 8
odotsRefit	. 9
odRemove	. 10
ii	. 10
coef.bdotsObj	. 11
coefWriteout	. 11
cohort_unrelated	. 12
curveFitter	. 12
lf_cohort_unrelated	. 13
lf_target	. 13
doubleGauss	. 14
doubleGauss2	. 14
effectiveAlpha_f	. 15
expCurve	. 15
indModifiedAlpha	. 16
SwerAlpha	. 17
getFitCorforGroups	. 17
getSubCurveValues	
inear	. 18
ogistic	. 19
parTest2	. 19
olot.bdotsBootObj	. 20
olot.bdotsCorrObj	. 21
olot.bdotsObj	. 21
polynomial	. 22
print.bdotsBootObj	. 23
print.bdotsBootSummary	. 23
print.bdotsPars_ttest2	
print.bdotsSummary	. 24
o_adjust	. 25
bindlist.bdObjList	. 26
split.bdotsObj	. 26
subset.bdotsBootObj	. 27
summary.bdotsBootObj	
summary.bdotsObj	
arget	
writeCSV	

30

ar1Solver 3

ar1Solver

Compute AR1 correlation coefficient

Description

Computes value for AR1 correlation coefficient for use in p_adjust

Usage

```
ar1Solver(t)
```

Arguments

t

A numeric vector of t-statistics

Value

Estimated AR1 correlation coefficient

See Also

```
p_adjust
```

Examples

```
t <- rt(1e3, df = 1)
rho <- ar1Solver(t)</pre>
```

 ${\tt bdotsBoot}$

Create bootstrapped curves from bdotsObj

Description

Creates bootstrapped curves and performs alpha adjustment. Can perform "difference of difference" for nested comparisons

Usage

```
bdotsBoot(
  formula,
  bdObj,
  Niter = 1000,
  alpha = 0.05,
  padj = "oleson",
  cores = 0,
  ...
)
```

4 bdotsBoot

Arguments

formula	See details.
bd0bj	An object of class 'bdotsObj'
Niter	Number of iterations of bootstrap to draw
alpha	Significance level
padj	Adjustment to make to pvalues for significance. Will be able to use anything from p.adjust function, but for now, just "oleson"
cores	Number of cores to use in parallel. Default is zero, which uses half of what is available.
	not used

Details

The formula is the only tricky part of this. There will be a minor update to how it works in the future. The three parts we will examine here are Groups, the LHS, and the RHS. For all variable names, special characters should be included with backticks, i.e., `my-var`

Groups

The Groups are the values input in group in the bdotsFit function, which are columns of the dataset used. These will be denoted G_i Within each group, we will designate the unique values within each group as v_j , ..., whereby $G_i(v_1, v_2)$ will designate unique two unique values within G_i . The possible values of v_i will be implied by the group with which they are associated.

For example, if we have groups vehicle and color, we could specify that we are interested in all blue cars and trucks with the expression vehicle(car, truck) + color(red).

Formula

Bootstrapped difference of curves

This illustrates the case in which we are taking a simple bootstraped difference between two curves within a single group

If only one group was provided in bdotsFit, we can take the bootstrapped difference between two values within the group with

```
y~Group1(val1, val2)
```

If more than two groups were provided, we must specify within which values of the other groups we would like to compare the differences from Group1 in order to uniquely identify the observations. This would be

```
y~Group1(val1, val2) + Group2(val1)
```

For example, bootstrapping the differences between cars and trucks when color was provided as a second group, we would need $y \sim \text{vehicle}(\text{car}, \text{truck}) + \text{color}(\text{red})$.

Bootstrapped difference of difference curves

This next portion illustrates the case in which we are interested in studying the difference between the differences between two groups, which we will call the innerGroup and the outerGroup following a nested container metaphor. Here, we must use caution as the order of these differences matter. Using again the vehicle example, we can describe this in two ways:

bdotsBoot 5

1. We may be interested in comparing the difference between red trucks and cars (d_red) with the difference between blue trucks and cars (d_blue). In this case, we will be finding the difference between cars and trucks twice (one for blue, one for red). The vehicle type is the innerGroup, nested within the outerGroup, in this case, color.

2. We may also be interested in comparing the difference between red trucks and blue trucks (d_truck) with the difference between red and blue cars (d_car). Here, innerGroup is the color and outerGroup is the vehicle

As our primary object of interest here is not the difference in outcome itself, but the difference of the outcome within two groups, the LHS of the formula is written diffs(y, Group1(val1, val2)), where Group1 is the innerGroup. The RHS is then used to specify the groups of which we want to take the inner difference of. The syntax here is the same as above. Together, then, the formula looks like

```
diffs(y, Group1(val1, val2)) ~ Group2(val1, val2)
in the case in which only two grouping variables were provided to bdotsFit and
diffs(y, Group1(val1, val2)) ~ Group2(val1, val2) + Group3(val1) + ...
is used to uniquely identify the sets of differences when three or more groups were provided.
```

Value

Object of class 'bdotsBootObj'

Examples

6 bdotsFit

bdotsCor	r
----------	---

Correlation with fixed value in bdots

Description

Find the correlation of a fixed value with the bdots fitted curves at each time point

Usage

```
bdotsCorr(bdObj, val, ciBands = FALSE, method = "pearson")
```

Arguments

bd0bj	Object of class 'bdotsObj'
val	Character string of fixed value for correlation in dataset from 'bdotsFit'
ciBands	Boolean for including confidence intervals
method	Arguments for 'cor' or 'cor.test'. The default option us 'method = "pearson"'

bdotsFit

Fit nlme curves to grouped observations

Description

Creates observation level curves to use in bdotsBoot

Usage

```
bdotsFit(
  data,
  subject,
  time,
  y,
  group,
  curveType = doubleGauss(concave = TRUE),
  cor = TRUE,
  numRefits = 0,
  cores = 0,
  verbose = FALSE,
  ...
)
```

bdotsFit 7

Arguments

data	Dataset used
subject	Column name of dataset containing subject identifiers
time	Column name containing time variable
у	Column name containing outcome of interest
group	Character vector containing column names of groups. Can be greater than one
curveType	See details/vignette
cor	Boolean. Autocorrelation?
numRefits	Integer indicating number of attempts to fit an observation if the first attempt fails
cores	number of cores. Default is 0, indicating half cores available
verbose	currently not used

Details

. . .

This is step one of the three step bdots process. Things should be more or less straight forward. The only tricky part involves curveType. For now know that one can use doubleGauss(concave = TRUE/FALSE) or logistic(). Should be passed in as a call. See the vignette on customizing this

Value

Object of class 'bdotsObj', inherits from data.table

Secret

Examples

8 bdotsFitter

bdotsFitter

Fits Individual Subject Curve

Description

The one subject version of bdotsFit

Usage

```
bdotsFitter(
  dat,
  curveType,
  rho,
  numRefits = 0,
  verbose,
  getCovOnly = NULL,
  params = NULL,
  splitVars = NULL,
  datVarNames = NULL,
  ...
)
```

Arguments

data for single subject/group combo

curveType this is actually a function. Should rename

rho correlation coefficient

numRefits number of refit attempts

verbose not used

getCovOnly only find covariance matrix from starting parameter values

params starting parameters, if wanting to add manually

splitVars variables used to identify group. Might combine with datVarNames

datVarNames character vector indicating reponse and time values from parent call

... not used

bdotsRefit 9

bdotsRefit

Refit Observations Returned from bdotsFit

Description

Refit Observations Returned from bdotsFit

Usage

```
bdotsRefit(
  bdObj,
  fitCode = 1L,
  quickRefit = FALSE,
  numRefits = 2L,
  paramDT = NULL,
   ...
)
```

Arguments

bd0bj An object of class 'bdotsObj' returned from bdotsFit

fitCode A length one integer indicating observations to refit. See Details

quickRefit Boolean indicating if a quick refit should be used. If TRUE, rather than prompt-

ing the user for adjustments for each observation, bdotsReft will jitter the parameters of all observations indicated by fitCode and attempt to refit. Between the original and the refitted curve, this will place priority on the higher fitCode. If these are equal, R2 will take precedence. Otherwise, the original fit will be

kept.

numRefits Integer indicating the number of refit attempts after jittering parameters, either

with quickRefit or when done individually

paramDT A data.table or data.frame that matches the what is returned by coefWriteout(bdObj).

That is, it should have columns uniquely identifying observations with subjects and groups, as well as named columns for the paramters. NA parameters are OK. Can also be a subset of the original rows. Note, if this argument is not

NULL, the remaining arguments will be ignored.

... not used

Details

fitCode indicates lower bound on observations to refit. For example, if fitCode = 4, bdotsRefit will prompt user to refit all observations with fitCode = 4, 5, 6. The quickRit option will attempt to jitter and refit all observations selected by fitCode. Otherwise, the user will be prompted through a menu to individually refit observations

Value

Returns bdObj with updated fits

10 ci

b	dRemove	bdots Remove Function

Description

Remove observations with a specified fitCode and optionally all pairs

Usage

```
bdRemove(bdObj, fitCode = 6L, removePairs = TRUE)
```

Arguments

bd0bj bdots object

fitCode min fitCode to remove. Default is 6, which removes all subjects with NULL fits

(fitCode = 5 would remove 5 and 6)

removePairs Boolean. Remove subject pairs is one of pair is removed. Default is TRUE to

retain paired t-test

Details

This function is used to remove all bdots observations with a fit code equal to or larger than the argument passed to fitCode without refitting. If removePairs = TRUE, all entries for a subject will be removed if their fit failed in any of the groups in which they were a member

ci	ci dataset	

Description

ci dataset - need to include details

Usage

ci

Format

An object of class data. frame with 108216 rows and 5 columns.

coef.bdotsObj

coef.bdotsObj

Extract bdotsFit Moedel Coefficients

Description

Returns coefficient matrix for bdotsFit object

Usage

```
## S3 method for class 'bdotsObj'
coef(object, ...)
```

Arguments

```
object A bdotsObj
... not used
```

Value

Returns matrix of model coefficients for observations in object

coefWriteout

Create data.table with bdotsObj parameters

Description

Creates an object of class data.table that matches parameter values for each observation. This can then be passed to the bdotsRefit function

Usage

```
coefWriteout(bdObj)
```

Arguments

bd0bj

An object returned from bdotsFit or bdotsRefit

Value

A data. table matching parameter values to observations

12 curveFitter

Examples

cohort_unrelated

cohort_unrelated dataset

Description

cohort_unrelated dataset - need to include details

Usage

cohort_unrelated

Format

An object of class data. frame with 50100 rows and 6 columns.

curveFitter

Curve Fitter

Description

Used in bdotsFit

Usage

```
curveFitter(dat, ff, params, rho, numRefits = 0, getCovOnly = NULL, ...)
```

df_cohort_unrelated 13

Arguments

dat data used in building curve
ff formula used in building curve

params starting parameters
rho correlation coefficient
numRefits number of refit attempts

getCovOnly only find covariance matrix from starting parameter values

... don't know that this is used, can maybe get rid of it

 $df_cohort_unrelated$ $df_cohort_unrelated$ dataset

Description

df_cohort_unrelated dataset - need to include details

Usage

df_cohort_unrelated

Format

An object of class data. frame with 78156 rows and 5 columns.

df_target dataset

Description

df_target dataset - need to include details

Usage

df_target

Format

An object of class data. frame with 37575 rows and 4 columns.

14 doubleGauss2

doubleGauss

Double Gauss curve function for nlme

Description

Double Gauss function used in fitting nlme curve for observations

Usage

```
doubleGauss(dat, y, time, params = NULL, concave = TRUE, ...)
```

Arguments

dat subject data to be used

y outcome variable, character vector time time variable, character vector

params NULL unless user wants to specify starting parameters for gnls

concave Boolean ... just in case

Details

User should only have to worry about setting concavity of this function

```
y \sim (time < mu) * (exp(-1 * (time - mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + base1) + (mu <= time) * (exp(-1 * (time - mu) ^ 2 / (2 * sig2 ^ 2)) * (ht - base2) + base2)
```

doubleGauss2

DoubleGauss2 curve function for nlme

Description

DoubleGauss2 function used in fitting nlme curve for observations

Usage

```
doubleGauss2(dat, y, time, params = NULL, concave = TRUE, ...)
```

Arguments

dat subject data to be used

y outcome variable, character vector time time variable, character vector

params NULL unless user wants to specify starting parameters for gnls

concave Boolean ... just in case

effectiveAlpha_f 15

Details

User should only have to worry about setting concavity of this function. Presently only work for time series scaled out to 2000ms

```
y \sim (time < mu) * (exp(-1 * (time - mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu <= mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2)) * (ht - base1) + (mu) ^ 2 / (2 * sig1 ^ 2) * (ht - base1)
time) * (exp(-1 * (time - mu) ^2 / (2 * sig2 ^2)) * (ht - base2) + base2)
```

effectiveAlpha_f

Effective Alpha Functional

Description

Functional that returns function for computing effective alpha for given parameters and distribution

Usage

```
effectiveAlpha_f(rho, n = 10, df = NULL, method = "norm")
```

Arguments

rho	Correlation coefficient
n	Number of observations
df	Degrees of freedom if method = "t"
method	Character string. Determines distribution for adjusted alpha can be either "norm"

for normal distribution or "t" for t-dist

expCurve

Exponential curve function

Description

Exponential function used in fitting nlme curve for observations

Usage

```
expCurve(dat, y, time, params = NULL, ...)
```

Arguments

dat subject data to be used outcome variable time variable time

NULL unless user wants to specify starting parameters for gnls params

just in case

16 findModifiedAlpha

Details

```
Remove any values of zero, or jitter, before using with bdotsFit y \sim x_0 \exp(k beta)
```

find Modified Alpha

Find modified alpha

Description

find modified alpha

Usage

```
findModifiedAlpha(
  rho,
  n,
  df,
  alpha = 0.05,
  errorAcc = 0.001,
  gradDiff = ifelse(cores > 3, 0.5, 0.1),
  cores = 0,
  verbose = FALSE,
  method = "t"
)
```

Arguments

rho	correlation coefficient
n	number of observations
df	degrees of freedom if method == "t"
alpha	starting alpha from which to adjust
errorAcc	acceptable error for alphastar
gradDiff	gradient steps in algorithm
cores	number of cores. Default is zero, or half of what's available
verbose	will probably remove this
method	either "t" or "norm"

fwerAlpha 17

	fwerAlpha	fwerAlpha		
--	-----------	-----------	--	--

Description

Family wise alpha calculation

Usage

```
fwerAlpha(rho, k, n = 10)
```

Arguments

rho	Correlation coefficient	
k	Bounds of non-critical region	
n	Number of observations	

Details

Returns effective alpha, given number of tests and the correlation coefficient. This isn't explicitly checked, but there is no reason this function should take any non-scalar values. Derivation of this can be found on pg 12 of Jake's 'Detecting time-specific differences'. This function performs the expression

 $1 - P(I_t)P(I_t \mid I_{t-1})^{N-1}$

getFitCorforGroups	Get Fit Correlations	
--------------------	----------------------	--

Description

Helper function for finding correlation of fixed value and fitted values within group

Usage

```
getFitCorforGroups(x, val, ciBands = FALSE, method = "pearson")
```

Arguments

x	A split object of class 'bdObj' split by identifiers
val	Fixed value from dataset
ciBands	boolean for including cibands
method	method for correlation function

18 linear

getSubCurveValues

Return fitted values

Description

Returns fitted values at observed times

Usage

```
getSubCurveValues(bd, origNames = TRUE, origTime = TRUE)
```

Arguments

bd Single row of bdObj

origNames use original names for y and time, or use "y" and "time"

origTime Boolean. Do I actually want fitted values at observed times for that subject, or

data.table with fitted values at the union of times

Details

Given a single row of bdObj, this returns fitted values at the observed times to use in conjunction with whatever else

linear

Linear curve function

Description

Linear function used in fitting nlme curve for observations

Usage

```
linear(dat, y, time, params = NULL, ...)
```

Arguments

dat subject data to be used y outcome variable time time variable

params NULL unless user wants to specify starting parameters for gnls

... just in case

Details

```
Don't use this function please
y ~ slope*time + intercept
```

logistic 19

-			٠			٠	
- 1	0	n	٦.	C	+	7	^
	v	ς.	1	0	L	1	·

Logistic curve function for nlme

Description

Logistic function used in fitting nlme curve for observations

Usage

```
logistic(dat, y, time, params = NULL, ...)
```

Arguments

dat subject data to be used y outcome variable time time variable

params NULL unless user wants to specify starting parameters for gnls

... just in case

Details

```
y~mini+(peak-mini)/(1+exp(4*slope*(cross-(time))/(peak-mini)))
```

parTest2

Parameter t-test

Description

Perform t-test on curve parameters of bdotsFit object

Usage

```
parTest2(bd0bj, group, vals = NULL)
```

Arguments

bd0bj	Object of class bd0bj
group	Length one character of grouping column in which to perform t-test
vals	Character vector of values within grouping column in which to perform the test.
	If NULL, it will do all pairwise tests

Details

Performs pairwise t-test. Currently only tests at alpha = 0.95. Also currently only allows t-test within single grouping column. Ability to test across grouping columns to come later

20 plot.bdotsBootObj

Value

List of t-test results of class bdotsPars_ttest

Examples

plot.bdotsBootObj

Plot for object of class bdotsBootObj

Description

Allows a number of different but also unstable option for plotting an object of class bdotsBoot

Usage

```
## S3 method for class 'bdotsBootObj'
plot(x, alpha = NULL, ciBands = TRUE, plotDiffs = TRUE, group = NULL, ...)
```

Arguments

X	An object of class bdotsBootObj
alpha	Significance level for plotting confidence intervals.
ciBands	Boolean indicating whether or not to include confidence intervals around fitted curves
plotDiffs	Boolean to plot difference curve
group	Specify group to plot if difference of difference was used. The user can also subset the bdotsBootObj prior to plotting. Currently not used
	ignore for now, but will eventually allow plot parameters

Details

This plot function is also a bit unstable and is expected to change

plot.bdotsCorrObj 21

Value

List of ggplot objects, which may be helpful if the margins are weird

plot.bdotsCorrObj Plots for bdotsCorr

Description

Plots correlation of fixed value with fitted curves over time

Usage

```
## S3 method for class 'bdotsCorrObj'
plot(x, ciBands = FALSE, window = NULL, ...)
```

Arguments

X	object of class 'bdotsCorrObj'
ciBands	boolean. Whether or not to include confidence intervals in plots. Must have been selected in 'bdotsCorr'
window	A length 2 numeric vector with start and end points for the plotting window
• • •	super secret, don't use

plot.bdotsObj Plot a bdotsFit object

Description

Plot individual fits or model fit parameters from an object of class 'bdotsObj'. These functions are not very stable

Usage

```
## S3 method for class 'bdotsObj'
plot(x, fitCode = NULL, gridSize = NULL, plotfun = "fits", ...)
```

Arguments

X	An object of class 'bdotsObj' returned from bdotsFit
fitCode	Currently not used
gridSize	Length one numeric indicating size of plot grid. Default is $2x2$. For right now, they are square
plotfun	Plot either subject fits or model parameters with "fits" or "pars"
	ignore for now (other args to plot.generic)

22 polynomial

Details

Right now, these functions are a bit unstable and expected to change. The largest current issue is with the placement of the legend, which cannot be adjusted. If you are running into issues with seeing things correctly, try making the "Plots" window in RStudio larger before running this function

Value

This will return a list of all of the plots rendered.

polynomial

Polynomial curve function for nlme

Description

Polynomial function used in fitting nlme curve for observations

Usage

```
polynomial(dat, y, time, degree, raw = TRUE, params = NULL, ...)
```

Arguments

dat subject data to be used
y outcome variable
time time variable

degree of polynomial

raw Boolean, use raw polynomials?

params NULL unless user wants to specify starting parameters for gnls

... just in case

Details

It's recommended that one uses raw polynomials for this function for numerical stability. As inference is not performed on the parameters themselves, this should have minimial consequences

```
y~mini+(peak-mini)/(1+exp(4*slope*(cross-(time))/(peak-mini)))
```

print.bdotsBootObj 23

print.bdotsBootObj

Print 'bdotsBootObj'

Description

Prints argument. Really, just the summary function

Usage

```
## S3 method for class 'bdotsBootObj'
print(x, ...)
```

Arguments

x An object of class 'bdotsBootObj'

... Top secret alpha one code red

Details

Generic for printing 'bdotsBootObj'

```
print.bdotsBootSummary
```

Print bdotsBoot Summary

Description

That's pretty much it. This is a print method, so there is likely not much need to call it directly

Usage

```
## S3 method for class 'bdotsBootSummary' print(x, ...)
```

Arguments

```
x generic name, but this will be an object of bdotsBootSummary
```

... ignored for now

24 print.bdotsSummary

```
print.bdotsPars_ttest2
```

Print Parameter Test Summary

Description

Print Parameter Test Summary

Usage

```
## S3 method for class 'bdotsPars_ttest2'
print(x, ...)
```

Arguments

x object to be printed

... not used

Details

That's pretty much it. This is a print method, so there is likely not much need to call it directly

print.bdotsSummary

Print bdotsObj Summary

Description

Print bdotsObj Summary

Usage

```
## S3 method for class 'bdotsSummary'
print(x, ...)
```

Arguments

x object to be printed

... not used

Details

That's pretty much it. This is a print method, so there is likely not much need to call it directly

p_adjust 25

p_adjust	Adjust P-values for Multiple Comparisons

Description

Identical to stats::p.adjust, but includes method = "oleson"

Usage

```
p_adjust(p, method = "oleson", n = length(p), alpha = 0.05, df, rho, cores = 0)
```

Arguments

p	numeric vector of p-values (possibly with NAs).
method	correction method, a character string. Can be any of the methods in p.adjust.methods, with the additional value method = "oleson"
n	number of comparisons, must be at least length(p); only set this (to non-default) when you know what you are doing!
alpha	adjustment to be made with method oleson
df	degrees of freedom, if using method = "oleson"
rho	AR1 correlation coefficient, if using method = "oleson"
cores	number of cores for use in parallel, only valid for method = "oleson". Default is zero, using half of the available cores

Details

This function works identically to the function p.adjust, with the additional option to use method = "oleson". For this option, user must include a value for df, alpha. If method = "oleson" and no value is given for rho, 0.9 will be used. To compute a value for rho from t-statistics, use ar1Solver.

Value

Returns a vector of adjusted p-values just as in p.adjust, but with additional attributes for alphastar and rho.

See Also

ar1Solver

26 split.bdotsObj

rbindlist.bd0bjList rbindlist for bdotsObjects

Description

Similar to data.table::rbindlist, but preserves botsObjects attributes

Usage

```
## S3 method for class 'bdObjList'
rbindlist(x, ...)
```

Arguments

x bdotsObject

... for compatability with data.table

split.bdotsObj Split object of class bdotsObj

Description

Analogous to other splitting functions, but retains necessary attributes across the split object. As of now, it can only be unsplit with bdots::rbindlist

Usage

```
## S3 method for class 'bdotsObj'
split(x, f, drop = FALSE, by, ...)
```

Arguments

х	Object of class bdotsObj
C	E

f For consistency with generic, but is not used

drop logical. Default FALSE will not drop empty list elements caused by factor levels

not referred by that factor. Analagous to data.table::split

by Character vector of column names on which to split. Usually will be Subject or

one of the fitted groups

... not used

subset.bdotsBootObj 27

subset.bdotsBootObj

Subset a nested group bdotsBoot objects

Description

Subset a nested group bdotsBoot objects

Usage

```
## S3 method for class 'bdotsBootObj'
subset(x, group, adjustAlpha = NULL, ...)
```

Arguments

x An object returned from bdotsBoot

group A group to subset. Must be an outer group

adjustAlpha currently not used. Will give option to recompute adjusted alpha

... Not used

Details

This function is used to subset a bdotsBootObject that was fit to compute the difference of differences. This allows the user to subset out the outer group in the comparison for plotting and investigation

summary.bdotsBootObj
Summary for bdotsBootObj

Description

Provides summary information for bdotsBootObj

Usage

```
## S3 method for class 'bdotsBootObj'
summary(object, ...)
```

Arguments

object An object of class bdotsObj

... Ignored for now

Value

Returns an object of class "bdotsBootSummary". There is some summarized information included if assigned to an object, i.e., 'summ <- summary(bdBootObj)' then 'str(summ)'

28 target

summary.bdotsObj

Summary for bdotsObj

Description

Provides summary information for bdotsObj

Usage

```
## S3 method for class 'bdotsObj'
summary(object, ...)
```

Arguments

object An object of class bdotsObj

... not used

Value

Returns an object of class "bdotsSummary". There is some summarized information included if assigned to an object, i.e., 'summ <- summary(bdObj)' then 'str(summ)'

target

target dataset

Description

target dataset - need to include details

Usage

target

Format

An object of class data. frame with 25050 rows and 4 columns.

writeCSV 29

writeCSV	Write fits from bdotsBoot to csv file	

Description

The function is used to write out columns for each group for which a curve was bootstrapped

Usage

```
writeCSV(bootObj, file, alpha = 0.05, ...)
```

Arguments

bootObj An object of class bdotsBootObj

file file name to write out csv

alpha alpha level for upper/lower CI

Other arguments passed to data.table::fread

Details

This is potentially useful for constructing plots in a separate application. There is an additional column, Significant indicating if a particular time point was considered significant between the difference curves. For difference of difference objects, this only indicates significance for the outer difference.

Index

* datasets ci, 10 cohort_unrelated, 12 df_cohort_unrelated, 13 df_target, 13 target, 28	<pre>plot.bdotsBootObj, 20 plot.bdotsCorrObj, 21 plot.bdotsObj, 21 polynomial, 22 print.bdotsBootObj, 23 print.bdotsBootSummary, 23</pre>
ar1Solver, 3, 25	<pre>print.bdotsPars_ttest2, 24 print.bdotsSummary, 24</pre>
bdotsBoot, 3 bdotsCorr, 6 bdotsFit, 6 bdotsFitter, 8 bdotsRefit, 9 bdRemove, 10	<pre>rbindlist.bdObjList, 26 split.bdotsObj, 26 subset.bdotsBootObj, 27 summary.bdotsBootObj, 27 summary.bdotsObj, 28</pre>
<pre>ci, 10 coef.bdotsObj, 11 coefWriteout, 11 cohort_unrelated, 12 curveFitter, 12</pre>	target, 28 writeCSV, 29
df_cohort_unrelated, 13 df_target, 13 doubleGauss, 14 doubleGauss2, 14	
effectiveAlpha_f, 15 expCurve, 15	
findModifiedAlpha, 16 fwerAlpha, 17	
getFitCorforGroups, 17 getSubCurveValues, 18	
linear, 18 logistic, 19	
p_adjust, 3, 25 parTest2, 19	