Type: | Package |
Title: | Co-Clustering Adjusted Rand Index and Bikm1 Procedure for Contingency and Binary Data-Sets |
Version: | 1.1.0 |
Maintainer: | Valerie Robert <valerie.robert.math@gmail.com> |
Description: | Co-clustering of the rows and columns of a contingency or binary matrix, or double binary matrices and model selection for the number of row and column clusters. Three models are considered: the Poisson latent block model for contingency matrix, the binary latent block model for binary matrix and a new model we develop: the multiple latent block model for double binary matrices. A new procedure named bikm1 is implemented to investigate more efficiently the grid of numbers of clusters. Then, the studied model selection criteria are the integrated completed likelihood (ICL) and the Bayesian integrated likelihood (BIC). Finally, the co-clustering adjusted Rand index (CARI) to measure agreement between co-clustering partitions is implemented. Robert Valerie, Vasseur Yann, Brault Vincent (2021) <doi:10.1007/s00357-020-09379-w>. |
Imports: | gtools, stats, graphics, grDevices, methods, parallel, ade4, pracma, ggplot2, reshape2, grid, lpSolve |
License: | GPL-2 |
Encoding: | UTF-8 |
RoxygenNote: | 7.1.1 |
NeedsCompilation: | no |
Packaged: | 2021-07-14 06:19:58 UTC; valerierobert |
Author: | Valerie Robert [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2021-07-16 07:30:20 UTC |
bikm1 package
Description
This package is designed to co-cluster a contingency (resp. binary) matrix, or double binary matrices in blocks respectively under the (normalized or not) Poisson (resp binary) Latent Block Model and the Multiple Latent Block Model. It enables to automatically select the number of row and column clusters and to compare partition estimations with reference partitions.
Features
Package for the segmentation of the rows and columns inducing a co-clustering and automatically select the number of row and column clusters.
Model 1
BIKM1_LBM_Poisson
. This fitting procedure produces a BIKM1_LBM_Poisson
object.
Model 2
BIKM1_LBM_Binary
. This fitting procedure produces a BIKM1_LBM_Binary
object.
Model 3
BIKM1_MLBM_Binary
. This fitting procedure produces a BIKM1_MLBM_Binary
object.
Technical remarks
Display of the result with plot,BIKM1_LBM_Poisson-method
and
with show,BIKM1_LBM_Poisson-method
, with summary,BIKM1_LBM_Poisson-method
and with print,BIKM1_LBM_Poisson-method
.
Display of the result with plot,BIKM1_LBM_Binary-method
and
with show,BIKM1_LBM_Binary-method
, with summary,BIKM1_LBM_Binary-method
and with print,BIKM1_LBM_Binary-method
.
Display of the result with plot,BIKM1_MLBM_Binary-method
and
with show,BIKM1_MLBM_Binary-method
, with summary,BIKM1_MLBM_Binary-method
and with print,BIKM1_MLBM_Binary-method
.
Author(s)
Valerie Robert valerie.robert.math@gmail.com
References
Keribin, Celeux and Robert, The Latent Block Model: a useful model for high dimensional data. https://hal.inria.fr/hal-01658589/document
Govaert and Nadif. Co-clustering, Wyley (2013).
Keribin, Brault and Celeux. Estimation and Selection for the Latent Block Model on Categorical Data, Statistics and Computing (2014).
Robert. Classification croisee pour l'analyse de bases de donnees de grandes dimensions de pharmacovigilance. Thesis, Paris Saclay (2017).
Robert, Vasseur and Brault. Comparing high dimensional partitions with the Co-clustering Adjusted Rand Index, Journal of Classification, 38(1), 158-186 (2021).
ARI function for agreement between two partitions
Description
Produce a measure of agreement between two partitions. A value of 1 means a perfect match.
Usage
ARI(v,vprime)
Arguments
v |
numeric vector specifying the class of observations. |
vprime |
numeric vector specifying another partitions of observations. |
Value
a list including the arguments:
ari
: value of the index.
nv
: contingency table which the index is based on.
References
Hubert and Arabie. Comparing partitions. Journal of classification (1985).
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
mv=ARI(res@model_max$v, data$xrow)
mv$ari
mv$nv
mw=ARI(res@model_max$w, data$xcol)
BIKM1_LBM_Binary fitting procedure
Description
Produce a blockwise estimation of a contingency matrix of observations.
Usage
BIKM1_LBM_Binary(x,Gmax,Hmax,a=4,b=1,
Gstart=2,Hstart=2,init_choice='smallVBayes',userparam=NULL,
ntry=50,criterion_choice='ICL', mc.cores=1,verbose=TRUE)
Arguments
x |
binary matrix of observations. |
Gmax |
a positive integer less than number of rows. |
Hmax |
a positive integer less than number of columns.The bikm1 procedure stops while the numbers of rows is higher than Gmax or the number of columns is higher than Hmax. |
a |
hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4. |
b |
hyperparameter used in the VBayes algorithm for prior on the Bernoulli parameter. By default, b=1. |
Gstart |
a positive integer to initialize the procedure with number of row clusters. By default, Gstart=2. |
Hstart |
a positive integer to initialize the procedure with number of column clusters. By default, Hstart=2. |
init_choice |
a character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "smallVBayes" or "user". By default, init_choice="smallVBayes". |
userparam |
in the case where init_choice is "user", a list containing partitions z and w. By default userparam=NULL. |
ntry |
a positive integer corresponding to the number of times which is launched the small VBayes or random initialization strategy. By default ntry=100. |
criterion_choice |
a character string corresponding to the chosen criterion used for model selection, which can be "ICL" as for now. By default, criterion_choice="ICL". |
mc.cores |
a positive integer corresponding to the available number of cores for parallel computing. By default, mc.cores=1. |
verbose |
logical. To display each step and the result. By default verbose=TRUE. |
Value
a BIKM1_LBM_Binary object including
model_max
: the selected model by the procedure with free energy W, theta, conditional probabilities (s_ig, r_jh), iter, empty_cluster, and the selected partitions z and w.
criterion_choice
: the chosen criterion
init_choice
: the chosen init choice
criterion tab
: the matrix containing the criterion values for each selected number of row and column
W_tab
: the matrix containing the free energy values for each selected number of row and column
criterion_max
: the maximum of the criterion values
gopt
: the selected number of rows
hopt
: the selected number of columns
References
Govaert and Nadif. Co-clustering, Wyley (2013).
Keribin, Brault and Celeux. Estimation and Selection for the Latent Block Model on Categorical Data, Statistics and Computing (2014).
Robert. Classification crois\'ee pour l'analyse de bases de donn\'ees de grandes dimensions de pharmacovigilance. Paris Saclay (2017).
Examples
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,2,Gstart=3,Hstart=2,
init_choice='user',userparam=list(z=data$xrow,v=data$xcol))
Class "BIKM1_LBM_Binary"
Description
Class of object returned by the BIKM1_LBM_Binary
function.
Slots
model_max
:The selected model by the procedure with free energy W, theta, conditional probabilities (s_ig, r_jh), iter, empty_cluster, and the selected partitions z and v.
criterion_choice
:A character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC".
init_choice
:A character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" or "smallVBayes".
criterion_tab
:The matrix corresponding to the values of the chosen criterion for pairs of numbers of clusters visited by the BIKM1_LBM_Binary function. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
W_tab
:The matrix corresponding to the values of the free energy (minimizer of the loglikelihood in the algorithm) for pairs of numbers of clusters visited by the procedure. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
criterion_max
:Numeric indicating the maximum of the criterion values, calculated on the pairs of numbers of clusters visited by the BIKM1_LBM_Binary function.
gopt
:An integer value indicating the number of row clusters selected by the BIKM1_LBM_Binary function.
hopt
:An integer value indicating the number of column clusters selected by the BIKM1_LBM_Binary function.
Examples
require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,3,a=4,init_choice='smallVBayes')
BIKM1_LBM_Poisson fitting procedure
Description
Produce a blockwise estimation of a contingency matrix of observations.
Usage
BIKM1_LBM_Poisson(x,Hmax,Lmax,a=4,alpha=1,beta=0.01,
Hstart=2,Lstart=2,normalization=FALSE,init_choice='smallVBayes',
userparam=NULL,ntry=50,criterion_choice='ICL', mc.cores=1,verbose=TRUE)
Arguments
x |
contingency matrix of observations. |
Hmax |
a positive integer less than number of rows. |
Lmax |
a positive integer less than number of columns.The bikm1 procedure stops while the numbers of rows is higher than Hmax or the number of columns is higher than Lmax. |
a |
hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4. |
alpha |
hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, alpha=1. |
beta |
hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, beta=0.01. |
Hstart |
a positive integer to initialize the procedure with number of row clusters. By default, Hstart=2. |
Lstart |
a positive integer to initialize the procedure with number of column clusters. By default, Lstart=2. |
normalization |
logical. To use the normalized Poisson modelling in the Latent Block Model. By default normalization=FALSE. |
init_choice |
character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" (higher time computation) or "smallVBayes" or "user". By default, init_choice="smallVBayes" |
userparam |
In the case where init_choice is "user", a list containing partitions v and w. |
ntry |
a positive integer corresponding to the number of times which is launched the small VBayes or random initialization strategy. By default ntry=50. |
criterion_choice |
Character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC". By default, criterion_choice="ICL". |
mc.cores |
a positive integer corresponding to the available number of cores for parallel computing. By default, mc.cores=1. |
verbose |
logical. To display each step and the result. By default verbose=TRUE. |
Value
a BIKM1_LBM_Poisson object including
model_max
: the selected model by the procedure with free energy W, theta, conditional probabilities (r_jh, t_kl), iter, empty_cluster, and the selected partitions v and w.
criterion_choice
: the chosen criterion
init_choice
: the chosen init choice
criterion tab
: matrix containing the criterion values for each selected number of row and column
W_tab
: matrix containing the free energy values for each selected number of row and column
criterion_max
: maximum of the criterion values
hopt
: the selected number of rows
lopt
: the selected number of columns
References
Keribin, Celeux and Robert, The Latent Block Model: a useful model for high dimensional data. https://hal.inria.fr/hal-01658589/document
Govaert and Nadif. Co-clustering, Wyley (2013).
Keribin, Brault and Celeux. Estimation and Selection for the Latent Block Model on Categorical Data, Statistics and Computing (2014).
Robert. Classification crois\'ee pour l'analyse de bases de donn\'ees de grandes dimensions de pharmacovigilance. Paris Saclay (2017).
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,2,Hstart=3,Lstart=2,
init_choice='user',userparam=list(v=data$xrow,w=data$xcol))
Class "BIKM1_LBM_Poisson"
Description
Class of object returned by the BIKM1_LBM_Poisson
function.
Slots
model_max
:The selected model by the procedure with free energy W, theta, conditional probabilities (r_jh, t_kl), iter, empty_cluster, and the selected partitions v and w.
criterion_choice
:A character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC".
init_choice
:A character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" or "smallVBayes".
criterion_tab
:The matrix corresponding to the values of the chosen criterion for pairs of numbers of clusters visited by the BIKM1_LBM_Poisson function. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
W_tab
:The matrix corresponding to the values of the free energy (minimizer of the loglikelihood in the algorithm) for pairs of numbers of clusters visited by the procedure. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
criterion_max
:Numeric indicating the maximum of the criterion values, calculated on the pairs of numbers of clusters visited by the BIKM1_LBM_Poisson function.
lopt
:An Integer value indicating the number of row clusters selected by the BIKM1_LBM_Poisson function.
hopt
:An integer value indicating the number of column clusters selected by the BIKM1_LBM_Poisson function.
Examples
require(bikm1)
set.seed(42)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(floor(runif(h*l)*20+1),ncol=l)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,3,4,init_choice='smallVBayes')
BIKM1_MLBM_Binary fitting procedure
Description
Produce a blockwise estimation of double matrices of observations.
Usage
BIKM1_MLBM_Binary(x,y,Gmax,Hmax,Lmax,a=4,b=1,
Gstart=2,Hstart=2,Lstart=2,init_choice='smallVBayes',userparam=NULL,
ntry=50,criterion_choice='ICL', mc.cores=1,verbose=TRUE)
Arguments
x |
matrix of observations (1rst matrix). |
y |
matrix of observations (2nd matrix). |
Gmax |
a positive integer less than number of rows. |
Hmax |
a positive integer less than number of columns of the 1st matrix. |
Lmax |
a positive integer less than number of columns of the 2nd matrix. The bikm1 procedure stops while the numbers of rows is higher than Gmax or the number of columns is higher than Hmax or the numbers of columns(2nd matrix) is higher than Lmax. |
a |
hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4. |
b |
hyperparameter used in the VBayes algorithm for prior on the Bernoulli parameter. By default, b=1. |
Gstart |
a positive integer to initialize the procedure with number of row clusters. By default, Gstart=2. |
Hstart |
a positive integer to initialize the procedure with number of column clusters. By default, Hstart=2. |
Lstart |
a positive integer to initialize the procedure with number of column clusters. By default, Lstart=2. |
init_choice |
character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "smallVBayes" or "user". By default, init_choice="smallVBayes". |
userparam |
In the case where init_choice is "user", a list containing partitions z,v and w. |
ntry |
a positive integer corresponding to the number of times which is launched the small VBayes initialization strategy. By default ntry=100. |
criterion_choice |
Character string corresponding to the chosen criterion used for model selection, which can be "ICL" as for now. By default, criterion_choice="ICL". |
mc.cores |
a positive integer corresponding to the available number of cores for parallel computing. By default, mc.cores=1. |
verbose |
logical. To display each step and the result. By default verbose=TRUE. |
Value
a BIKM1_MLBM_Binary object including
model_max
: the selected model by the procedure including free energy W, theta, conditional probabilities (s_ig, r_jh,t_kl), iter, empty_cluster, and the selected partitions z,v and w.
criterion_choice
: the chosen criterion
init_choice
: the chosen init_choice
criterion_tab
: matrix containing the criterion values for each selected number of row and column
W_tab
: matrix containing the free energy values for each selected number of row and column
criterion_max
: maximum of the criterion values
gopt
: the selected number of rows
hopt
: the selected number of columns (1rst matrix)
lopt
: the selected number of columns (2nd matrix)
References
Govaert and Nadif. Co-clustering, Wyley (2013).
Keribin, Brault and Celeux. Estimation and Selection for the Latent Block Model on Categorical Data, Statistics and Computing (2014).
Robert. Classification crois\'ee pour l'analyse de bases de donn\'ees de grandes dimensions de pharmacovigilance. Paris Saclay (2017).
Examples
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,2,2,Gstart=3,Hstart=2,Lstart=2,init_choice='user',
userparam=list(z=data$xrow,v=data$xcolx,w=data$xcoly))
Class "BIKM1_MLBM_Binary"
Description
Class of object returned by the BIKM1_MLBM_Binary
function.
Slots
model_max
:The selected model by the procedure with free energy W, theta, conditional probabilities (s_ig, r_jh, t_kl), iter, empty_cluster, and the selected partitions z, v and w.
criterion_choice
:A character string corresponding to the chosen criterion used for model selection, which can be "ICL" or "BIC".
init_choice
:A character string corresponding to the chosen initialization strategy used for the procedure, which can be "random" or "Gibbs" or "smallVBayes".
criterion_tab
:The matrix corresponding to the values of the chosen criterion for pairs of numbers of clusters visited by the BIKM1_MLBM_Binary function. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
W_tab
:The matrix corresponding to the values of the free energy (minimizer of the loglikelihood in the algorithm) for pairs of numbers of clusters visited by the procedure. The matrix rows design the numbers of row clusters. If a pair is not visited, by default, the value is -Inf.
criterion_max
:Numeric indicating the maximum of the criterion values, calculated on the pairs of numbers of clusters visited by the BIKM1_MLBM_Binary function.
gopt
:An integer value indicating the number of row clusters selected by the BIKM1_MLBM_Binary function.
hopt
:An integer value indicating the number of column clusters for the first matrix selected by the BIKM1_MLBM_Binary function.
lopt
:An integer value indicating the number of row clusters for the second matrix selected by the BIKM1_MLBM_Binary function.
Examples
require(bikm1)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,3,4,init_choice='smallVBayes')
BinBlocICL_LBM function for computation of the ICL criterion in the Binary LBM
Description
Produce a value of the ICL criterion in the Binary LBM.
Usage
BinBlocICL_LBM(a,b,x,z1,v1)
Arguments
a |
an hyperparameter for priors on the mixing proportions. By default, a=4. |
b |
an hyperparameter for prior on the Bernoulli parameter. By default, b=1. |
x |
contingency matrix of observations. |
z1 |
a numeric vector specifying the class of rows. |
v1 |
a numeric vector specifying the class of columns. |
Value
a value of the ICL criterion.
Examples
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocICL_LBM(a=4,b=1,data$x, data$xrow,data$xcol)
BinBlocICL_MLBM function for computation of the ICL criterion in the MLBM
Description
Produce a plot object representing the resumed co-clustered data-sets.
Usage
BinBlocICL_MLBM(a,b,x,y,z1,v1,w1)
Arguments
a |
an hyperparameter for priors on the mixing proportions. By default, a=4. |
b |
an hyperparameter for prior on the Bernoulli parameter. By default, b=1. |
x |
binary matrix of observations (1rst matrix). |
y |
binary matrix of observations (2nd matrix). |
z1 |
a numeric vector specifying the class of rows. |
v1 |
a numeric vector specifying the class of columns (1rst matrix). |
w1 |
a numeric vector specifying the class of columns (2nd matrix). |
Value
a value of the ICL criterion.
Examples
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=2
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(4),ncol=h)
theta$beta_gl=matrix(runif(4),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,2,2,2,4,init_choice='smallVBayes')
BinBlocICL_MLBM(a=4,b=1,data$x,data$y, data$xrow,data$xcolx,data$xcoly)
BinBlocRnd_LBM function for binary data matrix simulation
Description
Produce a data matrix generated under the Binary Latent Block Model.
Usage
BinBlocRnd_LBM(n,J,theta)
Arguments
n |
a positive integer specifying the number of expected rows. |
J |
a positive integer specifying the number of expected columns. |
theta |
a list specifying the model parameters:
|
Value
a list including the arguments:
x
: simulated data matrix.
xrow
: numeric vector specifying row partition.
xcol
: numeric vector specifying column partition.
Examples
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocRnd_MLBM function for binary double data matrix simulation
Description
Produce two simulated data matrices generated under the Binary Multiple Latent Block Model.
Usage
BinBlocRnd_MLBM(n,J,K,theta)
Arguments
n |
a positive integer specifying the number of expected rows. |
J |
a positive integer specifying the number of expected columns of the first matrix. |
K |
a positive integer specifying the number of expected columns of the second matrix. |
theta |
a list specifying the model parameters:
|
Value
a list including the arguments:
x
: simulated first data matrix.
y
: simulated second data matrix.
xrow
: numeric vector specifying row partition.
xcolx
: numeric vector specifying first matrix column partition.
xcoly
: numeric vector specifying second matrix column partition.
Examples
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
BinBlocVisuResum_LBM function for visualization of binary matrix data-sets
Description
Produce a plot object representing the resumed co-clustered data-sets.
Usage
BinBlocVisuResum_LBM(x,z,v)
Arguments
x |
binary matrix of observations. |
z |
a numeric vector specifying the class of rows. |
v |
a numeric vector specifying the class of columns. |
Value
a plot object.
Examples
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocVisuResum_LBM(data$x,data$xrow,data$xcol)
BinBlocVisuResum_MLBM function for visualization of double matrix datasets
Description
Produce a plot object representing the resumed co-clustered data-sets.
Usage
BinBlocVisuResum_MLBM(x,y,z,v,w)
Arguments
x |
binary matrix of observations. |
y |
binary second matrix of observations. |
z |
a numeric vector specifying the class of rows. |
v |
a numeric vector specifying the class of columns (1rst matrix). |
w |
a numeric vector specifying the class of columns (2nd matrix). |
Value
a plot object.
Examples
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
BinBlocVisuResum_MLBM(data$x,data$y, data$xrow,data$xcolx,data$xcoly)
BinBlocVisu_LBM function for visualization of binary matrix datasets
Description
Produce a plot object representing the co-clustered data-sets.
Usage
BinBlocVisu_LBM(x,z,v)
Arguments
x |
data matrix of observations. |
z |
a numeric vector specifying the class of rows. |
v |
a numeric vector specifying the class of columns. |
Value
a plot object
Examples
require(bikm1)
set.seed(42)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
BinBlocVisu_LBM(data$x,data$xrow,data$xcol)
BinBlocVisu_MLBM function for visualization of double matrix datasets
Description
Produce a plot object representing the co-clustered data-sets.
Usage
BinBlocVisu_MLBM(x,y,z,v,w)
Arguments
x |
first data matrix of observations. |
y |
second data matrix of observations. |
z |
a numeric vector specifying the class of rows. |
v |
a numeric vector specifying the class of columns (1rst matrix). |
w |
a numeric vector specifying the class of columns (2nd matrix). |
Value
a plot object
Examples
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
BinBlocVisu_MLBM(data$x,data$y, data$xrow,data$xcolx,data$xcoly)
CARI function for agreement between co-clustering partitions
Description
Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.
Usage
CARI(v,w,vprime,wprime)
Arguments
v |
numeric vector specifying the class of rows. |
w |
numeric vector specifying the class of columns. |
vprime |
numeric vector specifying another partition of rows. |
wprime |
numeric vector specifying another partition of columns. |
Value
a list including the arguments:
cari
: value of the index (between 0 and 1). A value of 1 corresponds to a perfect match.
nvw
: contingency table which the index is based on.
References
Robert, Vasseur and Brault. Comparing high dimensional partitions with the Co-clustering Adjusted Rand Index, Journal of classification 38 (1), 158-186 (2021).
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
me=CARI(res@model_max$v,res@model_max$w, data$xrow,data$xcol)
me$cari
me$nvw
CE_LBM function for agreement between co-clustering partitions
Description
Produce a measure of agreement between two pairs of partitions for co-clustering using CE_simple on columns and rows of a matrix. A value of 1 means a perfect match.
Usage
CE_LBM(v,w,vprime,wprime)
Arguments
v |
numeric vector specifying the class of rows. |
w |
numeric vector specifying the class of columns. |
vprime |
numeric vector specifying another partition of rows. |
wprime |
numeric vector specifying another partition of columns. |
Value
ce_vw: the value of the index (between 0 and 1). A value of 0 corresponds to a perfect match.
Examples
require(bikm1)
set.seed(42)
v=floor(runif(4)*2)
vprime=floor(runif(4)*2)
w=floor(runif(4)*3)
wprime=floor(runif(4)*3)
error=CE_LBM(v,w,vprime,wprime)
CE_MLBM function for agreement between co-clustering partitions in the MBLM
Description
Produce a measure of agreement between two triplets of partitions for co-clustering. A value of 1 means a perfect match.
Usage
CE_MLBM(z,v,w,zprime,vprime,wprime)
Arguments
z |
numeric vector specifying the class of rows. |
v |
numeric vector specifying the class of column partitions for the first matrix. |
w |
numeric vector specifying the class of column partitions for the second matrix. |
zprime |
numeric vector specifying another partitions of rows. |
vprime |
numeric vector specifying another partition of columns for the first matrix. |
wprime |
numeric vector specifying another partition of columns for the second matrix. |
Value
the value of the index (between 0 and 1). A value of 0 corresponds to a perfect match.
Examples
require(bikm1)
set.seed(42)
n=200
J=120
K=120
g=2
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(4),ncol=h)
theta$beta_gl=matrix(runif(4),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,2,2,2,4,init_choice='smallVBayes')
error=CE_MLBM(res@model_max$z,res@model_max$v,res@model_max$w,data$xrow,data$xcolx,data$xcoly)
CE_simple function for agreement between clustering partitions
Description
Produce a measure of agreement between two partitions for clustering. A value of 1 means a perfect match.
Usage
CE_simple(v,vprime)
Arguments
v |
numeric vector specifying the class of rows. |
vprime |
numeric vector specifying the class of rows. |
Value
the value of the index.
Examples
require(bikm1)
set.seed(42)
v=floor(runif(4)*3)
vprime=floor(runif(4)*3)
error=CE_simple(v,vprime)
error
CoNMI function for agreement between co-clustering partitions
Description
Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.
Usage
CoNMI(v,w,vprime,wprime)
Arguments
v |
numeric vector specifying the class of rows. |
w |
numeric vector specifying the class of columns. |
vprime |
numeric vector specifying another partition of rows. |
wprime |
numeric vector specifying another partition of columns. |
Value
the value of the index.
References
Robert, Vasseur and Brault. Comparing high dimensional partitions with the Co-clustering Adjusted Rand Index, Journal of Classification (2021).
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
me=CoNMI(res@model_max$v,res@model_max$w, data$xrow,data$xcol)
me
ENMI function for agreement between co-clustering partitions
Description
Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.
Usage
ENMI(v,w,vprime,wprime)
Arguments
v |
numeric vector specifying the class of rows. |
w |
numeric vector specifying the class of columns. |
vprime |
numeric vector specifying another partition of rows. |
wprime |
numeric vector specifying another partition of columns. |
Value
the value of the index.
References
Robert, Vasseur and Brault. Comparing high dimensional partitions with the Co-clustering Adjusted Rand Index, Journal of Classification (2021).
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
me=ENMI(res@model_max$v,res@model_max$w, data$xrow,data$xcol)
me
MI_simple function for agreement between two partitions
Description
Produce a measure of agreement between two partitions.(between 0 and 1). A value of 1 corresponds to a perfect match.
Usage
MI_simple(v,vprime)
Arguments
v |
numeric vector specifying the class of observations. |
vprime |
numeric vector specifying another partitions of observations. |
Value
the value of the index.
References
Robert, Vasseur and Brault. Comparing high-dimensional partitions with the Co-clustering Adjusted Rand Index. Journal of Classification (2021).
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
mi=MI_simple(res@model_max$v, data$xrow)
mi
mw=MI_simple(res@model_max$w, data$xcol)
NCE_LBM function for agreement between co-clustering partitions using NCE_simple
Description
Produce a measure of agreement between two pairs of partitions for co-clustering. A value of 1 means a perfect match.
Usage
NCE_LBM(v,w,vprime,wprime)
Arguments
v |
numeric vector specifying the class of rows. |
w |
numeric vector specifying the class of columns. |
vprime |
numeric vector specifying another partition of rows. |
wprime |
numeric vector specifying another partition of columns. |
Value
the value of the index.
Examples
require(bikm1)
set.seed(42)
v=floor(runif(4)*2)
vprime=floor(runif(4)*2)
w=floor(runif(4)*3)
wprime=floor(runif(4)*3)
error=NCE_LBM(v,w,vprime,wprime)
NCE_simple function for agreement between clustering partitions
Description
Produce a measure of agreement between two partitions for clustering. A value of 1 means a perfect match. It's the normalized version of CE_simple.
Usage
NCE_simple(v,vprime)
Arguments
v |
numeric vector specifying the class of rows. |
vprime |
numeric vector specifying the class of rows. |
Value
the value of the index. A value of 0 means a perfect match.
Examples
require(bikm1)
set.seed(42)
v=floor(runif(4)*3)
vprime=floor(runif(4)*3)
error=NCE_simple(v,vprime)
error
PoissonBlocBIC function for the computation of the BIC criterion in the Poisson LBM
Description
Produce a value of the BIC criterion for co-clustering partitions
Usage
PoissonBlocBIC(a,alpha,beta,v1,w1,x,res,normalization)
Arguments
a |
hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4. |
alpha |
hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, alpha=1. |
beta |
hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, beta=0.01. |
v1 |
a numeric vector of row partitions |
w1 |
a numeric vector of column partitions |
x |
contingency matrix of observations. |
res |
a BIKM1_LBM_Poisson object
|
normalization |
logical. To use the normalized Poisson modelling in the Latent Block Model. By default normalization=FALSE. |
Value
a value of the BIC criterion
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h*matrix(1,h,1)
theta$tau_l=1/l*matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,3,4,init_choice='smallVBayes')
bic=PoissonBlocBIC(v1=res@model_max$v,w1=res@model_max$w,x=data$x,res=res,normalization=TRUE)
PoissonBlocICL function for the computation of the ICL criterion in the Poisson LBM
Description
Produce a value of the ICL criterion for co-clustering partitions
Usage
PoissonBlocICL(a,alpha,beta,x,v1,w1,normalization)
Arguments
a |
hyperparameter used in the VBayes algorithm for priors on the mixing proportions. By default, a=4. |
alpha |
hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, alpha=1. |
beta |
hyperparameter used in the VBayes algorithm for prior on the Poisson parameter. By default, beta=0.01. |
x |
contingency matrix of observations. |
v1 |
a numeric vector specifying the class of rows. |
w1 |
a numeric vector specifying the class of columns. |
normalization |
logical. To use the normalized Poisson modelling in the Latent Block Model. By default normalization=FALSE. |
Value
a value of the ICL criterion
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=(1/h)*matrix(1,h,1)
theta$tau_l=(1/l)*matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='smallVBayes')
icl=PoissonBlocICL(4,1,0.01,data$x,res@model_max$v,res@model_max$w, normalization=FALSE)
PoissonBlocRnd function for contingency data simulation
Description
Produce a simulated data matrix generated under the Poisson Latent Block Model.
Usage
PoissonBlocRnd(J,K,theta)
Arguments
J |
a positive integer specifying the number of expected rows. |
K |
a positive integer specifying the number of expected columns. |
theta |
a list specifying the model parameters:
|
Value
a list including the arguments:
x
: simulated contingency data matrix.
xrow
: numeric vector specifying row partition.
xcol
: numeric vector specifying column partition.
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
PoissonBlocVisu function for visualization of contingency datasets
Description
Produce a plot object representing the co-clustered data-sets.
Usage
PoissonBlocVisu(x,v,w)
Arguments
x |
contingency matrix of observations. |
v |
a numeric vector specifying the class of rows. |
w |
a numeric vector specifying the class of columns. |
Value
a plot object
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
PoissonBlocVisu(data$x,data$xrow,data$xcol)
PoissonBlocVisuResum function for visualization of contingency datasets
Description
Produce a plot object representing the resumed co-clustered data-sets.
Usage
PoissonBlocVisuResum(x,v,w)
Arguments
x |
contingency matrix of observations. |
v |
a numeric vector specifying the class of rows. |
w |
a numeric vector specifying the class of columns. |
Value
a plot object.
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
PoissonBlocVisuResum(data$x,data$xrow,data$xcol)
Plot method for a BIKM1_LBM_Binary
object
Description
Produce respectively one plot of two-dimensional segmentation of a BIKM1_LBM_Binary
fit, a plot of evolution of the chosen criterion as a function of the number of row and column clusters, and a boxplot of conditional posteriors for each row and column cluster.
Usage
## S4 method for signature 'BIKM1_LBM_Binary'
plot(x, y, ...)
Arguments
x |
an object of class |
y |
binary matrix of observations. |
... |
in the plot method, additional parameters (ignored) |
Value
One plot (initial and estimated partitions) and three ggplot2 objects (conditional posterior in each cluster for each matrix and the graph of chosen criterion values.
Examples
require(bikm1)
g=5
h=3
theta=list()
theta$pi_g=t(1/g*rep(1,g))
theta$rho_h=t(1/h*rep(1,h))
eps=0.1
theta$alpha_gh=matrix(c(1-eps,eps,eps,eps,1-eps,eps,eps,1-eps,1-eps,
1-eps,1-eps,eps,eps,eps,eps),ncol=h,byrow=TRUE)
n=250
J=150
data=BinBlocRnd_LBM(n,J,theta)
BinBlocVisu_LBM(data$x, data$xrow,data$xcol)
res=BIKM1_LBM_Binary(data$x,8,5,4,init_choice='smallVBayes')
BinBlocVisu_LBM(data$x,res@model_max$z,res@model_max$v)
e=CARI(data$xrow,data$xcol,res@model_max$z,res@model_max$v)
plot(res,data)
Plot method for a BIKM1_LBM_Poisson
object
Description
Produce respectively one plot of two-dimensional segmentation of a BIKM1_LBM_Poisson
fit, an evolution of the criterion as a function of the numbers of rows and columns, and a boxplot of conditional posteriors for each row and column cluster.
Usage
## S4 method for signature 'BIKM1_LBM_Poisson'
plot(x, y, ...)
Arguments
x |
an object of class |
y |
a list specifying
|
... |
in the plot method, additional parameters (ignored) |
Value
Two plots (initial matrix and block estimation) and two ggplot2 objects (conditional posterior in each cluster and the graph of chosen criterion values).
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,3,4,init_choice='random')
plot(res,data)
Plot method for a BIKM1_MLBM_Binary
object
Description
Produce respectively a plot of two-dimensional segmentation of a BIKM1_MLBM_Binary
fit, and a boxplot of conditional posteriors for each row and column cluster.
Usage
## S4 method for signature 'BIKM1_MLBM_Binary'
plot(x, y, ...)
Arguments
x |
an object of class |
y |
a list specifying :
|
... |
in the plot method, additional parameters (ignored) |
Value
Two plot and on ggplot2 object.
Examples
require(bikm1)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,3,4)
plot(res,data)
Print method for a BIKM1_LBM_Binary object
Description
Print method for a BIKM1_LBM_Binary
object
Usage
## S4 method for signature 'BIKM1_LBM_Binary'
print(x, ...)
Arguments
x |
in the print method, a BIKM1_LBM_Binary object |
... |
in the print method, additional parameters (ignored) |
Examples
require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,2,4,init_choice='random')
print(res)
Print method for a BIKM1_LBM_Poisson object
Description
Print method for a BIKM1_LBM_Poisson
object
Usage
## S4 method for signature 'BIKM1_LBM_Poisson'
print(x, ...)
Arguments
x |
in the print method, a BIKM1_LBM_Poisson object |
... |
in the print method, additional parameters (ignored) |
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,3,2,4,init_choice='random')
print(res)
Print method for a BIKM1_MLBM_Binary object
Description
Print method for a BIKM1_MLBM_Binary
object
Usage
## S4 method for signature 'BIKM1_MLBM_Binary'
print(x, ...)
Arguments
x |
in the print method, a BIKM1_MLBM_Binary object |
... |
in the print method, additional parameters (ignored) |
Examples
require(bikm1)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,3,4)
print(res)
Show method for a BIKM1_LBM_Binary object
Description
show method for a BIKM1_LBM_Binary
object
Usage
## S4 method for signature 'BIKM1_LBM_Binary'
show(object)
Arguments
object |
a BIKM1_LBM_Binary object |
Examples
require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,4,4,4,init_choice='random')
show(res)
Show method for a BIKM1_LBM_Poisson object
Description
show method for a BIKM1_LBM_Poisson
object
Usage
## S4 method for signature 'BIKM1_LBM_Poisson'
show(object)
Arguments
object |
a BIKM1_LBM_Poisson object |
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
show(res)
Show method for a BIKM1_MLBM_Binary object
Description
show method for a BIKM1_MLBM_Binary
object
Usage
## S4 method for signature 'BIKM1_MLBM_Binary'
show(object)
Arguments
object |
a BIKM1_MLBM_Binary object |
Examples
require(bikm1)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,3,4)
show(res)
Summary method for a BIKM1_LBM_Binary object
Description
Produce a summary of informations of a BIKM1_LBM_Binary
object
Usage
## S4 method for signature 'BIKM1_LBM_Binary'
summary(object, ...)
Arguments
object |
in the summary method, a BIKM1_LBM_Binary object |
... |
in the summary method, additional parameters (ignored) |
Examples
require(bikm1)
n=200
J=120
g=3
h=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
data=BinBlocRnd_LBM(n,J,theta)
res=BIKM1_LBM_Binary(data$x,3,2,4,init_choice='random')
summary(res)
Summary method for a BIKM1_LBM_Poisson object
Description
Produce a summary of informations of a BIKM1_LBM_Poisson
object
Usage
## S4 method for signature 'BIKM1_LBM_Poisson'
summary(object, ...)
Arguments
object |
in the summary method, a BIKM1_LBM_Poisson object |
... |
in the summary method, additional parameters (ignored) |
Examples
require(bikm1)
J=200
K=120
h=3
l=2
theta=list()
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$gamma_hl=matrix(c(1, 6,4, 1, 7, 1),ncol=2)
data=PoissonBlocRnd(J,K,theta)
res=BIKM1_LBM_Poisson(data$x,4,4,4,init_choice='random')
summary(res)
Summary method for a BIKM1_MLBM_Binary object
Description
Produce a summary of informations of a BIKM1_MLBM_Binary
object
Usage
## S4 method for signature 'BIKM1_MLBM_Binary'
summary(object, ...)
Arguments
object |
in the summary method, a BIKM1_MLBM_Binary object |
... |
in the summary method, additional parameters (ignored) |
Examples
require(bikm1)
n=200
J=120
K=120
g=3
h=2
l=2
theta=list()
theta$pi_g=1/g *matrix(1,g,1)
theta$rho_h=1/h *matrix(1,h,1)
theta$tau_l=1/l *matrix(1,l,1)
theta$alpha_gh=matrix(runif(6),ncol=h)
theta$beta_gl=matrix(runif(6),ncol=l)
data=BinBlocRnd_MLBM(n,J,K,theta)
res=BIKM1_MLBM_Binary(data$x,data$y,3,3,3,4)
summary(res)