Type: | Package |
Title: | Roy's Bivariate Geometric Distribution |
Version: | 1.0 |
Date: | 2018-10-17 |
Author: | Alessandro Barbiero |
Maintainer: | Alessandro Barbiero <alessandro.barbiero@unimi.it> |
Imports: | methods, stats, utils, bbmle, copula |
Description: | Implements Roy's bivariate geometric model (Roy (1993) <doi:10.1006/jmva.1993.1065>): joint probability mass function, distribution function, survival function, random generation, parameter estimation, and more. |
License: | GPL-2 | GPL-3 [expanded from: GPL] |
NeedsCompilation: | no |
Packaged: | 2018-10-17 16:23:28 UTC; admin |
Repository: | CRAN |
Date/Publication: | 2018-10-26 15:20:06 UTC |
Roy's Bivariate Geometric Distribution
Description
Implements Roy's bivariate geometric model (Roy (1993) <doi:10.1006/jmva.1993.1065>): joint probability mass function, distribution function, survival function, random generation, parameter estimation, and more.
Details
The DESCRIPTION file:
Package: | bivgeom |
Type: | Package |
Title: | Roy's Bivariate Geometric Distribution |
Version: | 1.0 |
Date: | 2018-10-17 |
Author: | Alessandro Barbiero |
Maintainer: | Alessandro Barbiero <alessandro.barbiero@unimi.it> |
Imports: | methods, stats, utils, bbmle, copula |
Description: | Implements Roy's bivariate geometric model (Roy (1993) <doi:10.1006/jmva.1993.1065>): joint probability mass function, distribution function, survival function, random generation, parameter estimation, and more. |
License: | GPL |
NeedsCompilation: | no |
Packaged: | 2018-10-16 12:34:47 UTC; Barbiero |
Index of help topics:
EyxbivgeomRoy Conditional moment FbivgeomRoy Joint distribution function FyxbivgeomRoy Conditional distribution RelbivgeomRoy Reliability parameter S.n Empirical joint survival function SbivgeomRoy Joint survival function bivgeom-package Roy's Bivariate Geometric Distribution corbivgeomRoy Linear correlation dbivgeomRoy Joint probability mass function estbivgeomRoy Parameter estimation lambda1Roy Bivariate failure rates lambda2Roy Bivariate failure rate loglikgeomRoy Log-likelihood function minuslogRoy Log-likelihood function rbivgeomRoy Pseudo-random generation
Author(s)
Alessandro Barbiero
Maintainer: Alessandro Barbiero (alessandro.barbiero@unimi.it)
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
Barbiero, A. (2018) Properties and estimation of a bivariate geometric model with locally constant failure rates, submitted
See Also
dbivgeomRoy
, rbivgeomRoy
, estbivgeomRoy
, FbivgeomRoy
Examples
#####################################
#### MONTE CARLO SIMULATION PLAN ####
#####################################
# setting the parameters' values
theta1 <- 0.3
theta2 <- 0.7
theta3 <- 0.6
N <- 20 # number of Monte Carlo runs
n <- 100 # sample size
# arranging the array containig the simulation results
# N runs, 7 methods, 3 estimates
h <- array(0,c(N,7,3))
# setting the seed
set.seed(12345)
# function for handling missing values
# when computing the mean and standard deviation of the estimates:
meanrm <- function(x){mean(x,na.rm=TRUE)}
sdrm <- function(x){sd(x,na.rm=TRUE)}
colnames <- c("ML","MMP","MM1","MM2","MM3","MM4","LS")
dimnames(h)[[2]] <- colnames
# Monte Carlo simulation:
for(i in 1:N)
{
d <- rbivgeomRoy(n,theta1,theta2,theta3)
cat("MC run #",i,"\n")
x<-d[,1]
y<-d[,2]
# implementing all the estimation methods
# and saving the point estimates in the array
h[i,1,] <- estbivgeomRoy(x, y, "ML")
h[i,2,] <- estbivgeomRoy(x, y, "MMP")
h[i,3,] <- estbivgeomRoy(x, y, "MM1")
h[i,4,] <- estbivgeomRoy(x, y, "MM2")
h[i,5,] <- estbivgeomRoy(x, y, "MM3")
h[i,6,] <- estbivgeomRoy(x, y, "MM4")
h[i,7,] <- estbivgeomRoy(x, y, "LS")
}
# printing MC expected values and standard errors
# for each of the proposed estimation methods
cat("hattheta1:","\n")
cbind(mean=apply(h,c(2,3),meanrm)[,1],se=apply(h,c(2,3),sdrm)[,1])
cat("hattheta2:","\n")
cbind(mean=apply(h,c(2,3),meanrm)[,2],se=apply(h,c(2,3),sdrm)[,2])
cat("hattheta3:","\n")
cbind(mean=apply(h,c(2,3),meanrm)[,3],se=apply(h,c(2,3),sdrm)[,3])
# boxplots of MC distribution of the estimators of theta3
boxplot(h[,,3])
abline(h=theta3, lty=3)
Conditional moment
Description
Conditional moment of Y
given X=x
for Roy's bivariate geomtric model
Usage
EyxbivgeomRoy(theta1, theta2, theta3, x)
Arguments
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
x |
value of the conditioning variable |
Value
Value of the conditional moment of Y
given X=x
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
EyxbivgeomRoy(theta1, theta2, theta3, 2)
Joint distribution function
Description
Joint cumulative distribution function for Roy's bivariate geometric model
Usage
FbivgeomRoy(x, y, theta1, theta2, theta3)
Arguments
x |
vector of values for the first variable |
y |
vector of values for the second variable |
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
Value
The probability F(x,y):=P(X\leq x,Y\leq x)
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# probability that X<=2 and Y<=3:
FbivgeomRoy(2, 3, theta1, theta2, theta3)
Conditional distribution
Description
Conditional distribution function of Y
given X=x
Usage
FyxbivgeomRoy(y, theta1, theta2, theta3, x)
Arguments
y |
vector of observations from |
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
x |
value of the conditioning variable |
Value
The value of the conditional cumulative distribution function F_{Y|x}
in y
. Used in rbivgeomRoy
for conditional sampling
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# probability that Y<=3 given that X=2:
FyxbivgeomRoy(3, theta1, theta2, theta3, 2)
# the unconditional probability would be
pgeom(3, 1-theta2) # i.e. a geometric distribution with parameter 1-theta2
Reliability parameter
Description
Stress-strength reliability parameter R
for Roy's bivariate geometric model
Usage
RelbivgeomRoy(theta1, theta2, theta3)
Arguments
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
Value
The probability R:=P(X\leq Y)
for Roy's bivariate geometric model - see Barbiero (2018) for its computation
Author(s)
Alessandro Barbiero
References
Barbiero, A. (2018) Properties and estimation of a bivariate geometric model with locally constant failure rates, submitted
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
RelbivgeomRoy(theta1, theta2, theta3)
# theoretical stress-strength reliability parameter R=P(X<=Y)
Empirical joint survival function
Description
Empirical joint survival function
Usage
S.n(x, X)
Arguments
x |
matrix with two columns of non-negative integer values where the empirical joint survival function is computed |
X |
matrix with two columns corresponding to the full observed sample |
Value
value of the empirical joint survival function \hat{S}_X(x)
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
set.seed(12345)
n <- 1000
d <- rbivgeomRoy(n, theta1, theta2, theta3)
S.n(cbind(1,1),d) # empirical sf
# compare it with the theoretical
SbivgeomRoy(1,1,theta1,theta2,theta3)
Joint survival function
Description
Joint survival function for Roy's bivariate geometric model
Usage
SbivgeomRoy(x, y, theta1, theta2, theta3)
Arguments
x |
vector of observations from the first variable |
y |
vector of observations from the second variable |
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
Value
The probability P(X\geq x, Y\geq y
. For this model it is equal to S(x,y)=\theta_1^x\theta_2^y\theta_3^{xy}
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# probability that X>=2 and Y>=3:
SbivgeomRoy(2, 3, theta1, theta2, theta3)
Linear correlation
Description
Linear correlation for Roy's bivariate geometric model
Usage
corbivgeomRoy(theta1, theta2, theta3)
Arguments
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
Value
the value of Pearson's linear correlation - see Barbiero (2018). The linear correlation for Roy's bivariate geometric distribution is negative (or null, for \theta_3=1
) for any feasible choice of its parameters
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
Barbiero, A. (2018) Properties and estimation of a bivariate geometric model with locally constant failure rates, submitted
See Also
Examples
corbivgeomRoy(0.3,0.7,0.5)
Joint probability mass function
Description
Joint probability mass function for Roy's bivariate geometric model
Usage
dbivgeomRoy(x, y, theta1, theta2, theta3)
Arguments
x |
vector of values for the first variable |
y |
vector of values for the second variable |
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
Value
Value of the probability p(x,y):=P(X=x,Y=y)
.
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
dbivgeomRoy(x=2, y=0, theta1=0.7, theta2=0.2, theta3=0.8)
dbivgeomRoy(0:5, y=0, theta1=0.7, theta2=0.2, theta3=0.8)
# these are p(0,0), p(1,0), ..., p(5,0)
dbivgeomRoy(0:2, 1:3, theta1=0.7, theta2=0.2, theta3=0.8)
# these are p(0,1), p(1,2), p(2,3)
Parameter estimation
Description
Parameter estimation for Roy's bivariate geometric model
Usage
estbivgeomRoy(x, y, method = "LS")
Arguments
x |
vector of observations from the first variable |
y |
vector of observations from the first variable |
method |
One of the possible estimation methods: "ML" (maximum likelihood), "LS" (least squares), "MMP" (method of moment and poroportion), "M1", "M2", "M3", and "M4" (several variants of the method of moments) |
Value
a vector of length 3 containing the estimates of theta_1
, theta_2
, and theta_3
Author(s)
Alessandro Barbiero
References
Barbiero, A. (2018) Properties and estimation of a bivariate geometric model with locally constant failure rates, submitted
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# random sample of size n=1000:
set.seed(12345)
n <- 1000
d <- rbivgeomRoy(n, theta1, theta2, theta3)
# parameter estimation, using the different proposed methods:
hattheta <- estbivgeomRoy(d[,1], d[,2], "ML")
hattheta # MLEs
estbivgeomRoy(d[,1], d[,2], "LS")
estbivgeomRoy(d[,1], d[,2], "MMP")
Bivariate failure rates
Description
Bivariate failure rate \lambda_1
Usage
lambda1Roy(x, y, theta1, theta2, theta3)
Arguments
x |
observation from the first variable |
y |
observation from the second variable |
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
Details
It is defined as P(X=x,Y\geq y)/P(X\geq x,Y\geq y)
. For this model, \lambda_1(x,y)=1-\theta_1\theta_3^y
Value
Value of the bivariate failure rate \lambda_1
for Roy's bivariate geometric model (Roy, 1993)
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# bivariate failure rate lambda1
# computed in x=1, y=2
x <- 1
y <- 2
lambda1Roy(x,y,theta1,theta2,theta3)
Bivariate failure rate
Description
Bivariate failure rate \lambda_2
Usage
lambda2Roy(x, y, theta1, theta2, theta3)
Arguments
x |
observation from the first variable |
y |
observation from the second variable |
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
Details
It is defined as P(X\geq x,Y=y)/P(X\geq x,Y\geq y)
. For this model, \lambda_2(x,y)=1-\theta_2\theta_3^x
Value
Value of the bivariate failure rate \lambda_2
for Roy's bivariate geometric model (Roy, 1993)
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# bivariate failure rate lambda 2
# computed in x=1, y=2
x <- 1
y <- 2
lambda2Roy(x,y,theta1,theta2,theta3)
Log-likelihood function
Description
Negative log-likelihood function for Roy's bivariate geometric model
Usage
loglikgeomRoy(par, x, y)
Arguments
par |
a vector containing the values of the three parameters |
x |
numeric vector of sample |
y |
numeric vector of sample |
Value
Value of the negative log-likelihood function
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# random sample of size n=1000:
set.seed(12345)
n <- 1000
d <- rbivgeomRoy(n, theta1, theta2, theta3)
# parameter estimation, using the different proposed methods:
hattheta <- estbivgeomRoy(d[,1], d[,2], "ML")
loglikgeomRoy(hattheta, x=d[,1], y=d[,2])
# negative value of the (maximized) log-likelihood function
Log-likelihood function
Description
Log-likelihood function (with minus sign) for Roy's bivariate geometric model
Usage
minuslogRoy(x, y, theta1 = 0.5, theta2 = 0.5, theta3 = 1)
Arguments
x |
a vector of observed values (non-negative integers) |
y |
a vector of observed values (non-negative integers) of the same length as |
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
Value
The value of the log-likelihood function, changed in sign
Note
Just to be used inside the estbivgeomRoy
function
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Pseudo-random generation
Description
Generation of pseudo-random values from Roy's bivariate geometric model
Usage
rbivgeomRoy(n, theta1, theta2, theta3)
Arguments
n |
a positive integer, corresponding to the sample size |
theta1 |
paramater |
theta2 |
paramater |
theta3 |
paramater |
Value
A n\times 2
numeric matrix containing the bivariate sample values
Author(s)
Alessandro Barbiero
References
Roy, D. (1993) Reliability measures in the discrete bivariate set-up and related characterization results for a bivariate geometric distribution, Journal of Multivariate Analysis 46(2), 362-373.
See Also
Examples
theta1 <- 0.5
theta2 <- 0.7
theta3 <- 0.9
# random sample of size n=1000:
set.seed(12345)
n <- 1000
d <- rbivgeomRoy(n, theta1, theta2, theta3)
# joint frequency distribution:
table(d[,1],d[,2])