## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo=TRUE,message=FALSE, warning=FALSE----------------------------------- library(bliss) ## ----eval=TRUE,include = TRUE------------------------------------------------- set.seed(1) param <- list( # define the "param" to simulate data Q=1, # the number of functional covariate n=50, # n is the sample size and p is the p=c(20), # number of time observations of the curves beta_types=c("smooth"), # define the shape of the "true" coefficient function grids_lim=list(c(0,1))) # Give the beginning and the end of the observation's domain of the functions. data <- sim(param) # Simulate the data ## ----eval=TRUE, include = TRUE------------------------------------------------ param <- list( # define the required values of the Bliss method. iter=5e2, # The number of iteration of the main numerical algorithm of Bliss. burnin=2e2, # The number of burnin iteration for the Gibbs Sampler K=c(3)) # The number of intervals of the beta res_bliss<-fit_Bliss(data=data,param=param) # Structure of a Bliss object # str(res_bliss) ## ----eval=FALSE, include = TRUE,fig.height=5,fig.width=7---------------------- # library(ggplot2) # image_Bliss(res_bliss$beta_posterior_density,param,q=1) ## ----eval=FALSE, include = TRUE,fig.height=5,fig.width=7---------------------- # image_Bliss(res_bliss$beta_posterior_density,param,q=1) + # lines_bliss(res_bliss$data$grids[[1]],res_bliss$Bliss_estimate[[1]]) + # lines_bliss(res_bliss$data$grids[[1]],res_bliss$smooth_estimate[[1]],lty = "dashed")+ # lines_bliss(res_bliss$data$grids[[1]],data$betas[[1]],col="purple") ## ----eval=TRUE, include = TRUE,fig.height=5,fig.width=7----------------------- plot(res_bliss$alpha[[1]],type="o",xlab="time",ylab="posterior probabilities") ## ----eval=TRUE, include = TRUE,fig.height=5,fig.width=7----------------------- plot(res_bliss$alpha[[1]],type="o",xlab="time",ylab="posterior probabilities") abline(h=0.5,col=2,lty=2) for(i in 1:nrow(res_bliss$support_estimate[[1]])){ segments(res_bliss$support_estimate[[1]]$begin[i],0.05, res_bliss$support_estimate[[1]]$end[i],0.05,col="red" ) points(res_bliss$support_estimate[[1]]$begin[i],0.05,col="red",pch="|",lwd=2) points(res_bliss$support_estimate[[1]]$end[i],0.05,col="red",pch="|",lwd=2) } ## ----eval=TRUE, include = TRUE,fig.height=5,fig.width=7----------------------- res_bliss$support_estimate[[1]] ## ----eval=FALSE, include = TRUE----------------------------------------------- # param <- list(Q=2, # n=50, # p=c(40,10), # beta_shapes=c("simple","smooth"), # grids_lim=list(c(0,1),c(0,2))) # # data <- sim(param) ## ----eval=FALSE, include = TRUE----------------------------------------------- # param <- list( # define the required values of the Bliss method. # iter=1e3, # The number of iteration of the main numerical algorithm of Bliss. # burnin=2e2, # The number of burnin iteration for the Gibbs Sampler # K=c(3,3)) # The number of intervals of the beta # # res_Bliss_mult <- fit_Bliss(data=data,param=param) ## ----eval=FALSE, include = TRUE,fig.height=5,fig.width=7---------------------- # image_Bliss(res_Bliss_mult$beta_posterior_density,param,q=1) + # lines_bliss(res_Bliss_mult$data$grids[[1]],res_Bliss_mult$Bliss_estimate[[1]]) + # lines_bliss(res_Bliss_mult$data$grids[[1]],res_Bliss_mult$smooth_estimate[[1]],lty = "dashed")+ # lines_bliss(res_Bliss_mult$data$grids[[1]],data$betas[[1]],col="purple") # # image_Bliss(res_Bliss_mult$beta_posterior_density,param,q=2) + # lines_bliss(res_Bliss_mult$data$grids[[2]],res_Bliss_mult$Bliss_estimate[[2]]) + # lines_bliss(res_Bliss_mult$data$grids[[2]],res_Bliss_mult$smooth_estimate[[2]],lty = "dashed")+ # lines_bliss(res_Bliss_mult$data$grids[[2]],data$betas[[2]],col="purple") ## ----session,echo=FALSE,message=FALSE, warning=FALSE-------------------------- sessionInfo()