Title: | Bootstrap for State Space Models |
Version: | 1.0.2 |
Description: | Provides a streamlined and user-friendly framework for bootstrapping in state space models, particularly when the number of subjects/units (n) exceeds one, a scenario commonly encountered in social and behavioral sciences. For an introduction to state space models in social and behavioral sciences, refer to Chow, Ho, Hamaker, and Dolan (2010) <doi:10.1080/10705511003661553>. |
URL: | https://github.com/jeksterslab/bootStateSpace, https://jeksterslab.github.io/bootStateSpace/ |
BugReports: | https://github.com/jeksterslab/bootStateSpace/issues |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
Depends: | R (≥ 3.5.0) |
Imports: | stats, simStateSpace, dynr |
Suggests: | knitr, rmarkdown, testthat |
RoxygenNote: | 7.3.2 |
NeedsCompilation: | no |
Packaged: | 2025-02-14 20:32:15 UTC; root |
Author: | Ivan Jacob Agaloos Pesigan
|
Maintainer: | Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-02-14 22:20:02 UTC |
bootStateSpace: Bootstrap for State Space Models
Description
Provides a streamlined and user-friendly framework for bootstrapping in state space models, particularly when the number of subjects/units (n) exceeds one, a scenario commonly encountered in social and behavioral sciences. For an introduction to state space models in social and behavioral sciences, refer to Chow, Ho, Hamaker, and Dolan (2010) doi:10.1080/10705511003661553.
Author(s)
Maintainer: Ivan Jacob Agaloos Pesigan r.jeksterslab@gmail.com (ORCID) [copyright holder]
See Also
Useful links:
Report bugs at https://github.com/jeksterslab/bootStateSpace/issues
Parametric Bootstrap for the State Space Model (Fixed Parameters)
Description
This function simulates data from
a state-space model
and fits the model using the dynr
package.
The process is repeated R
times.
It assumes that the parameters remain constant
across individuals and over time.
At the moment, the function only supports
type = 0
.
Usage
PBSSMFixed(
R,
path,
prefix,
n,
time,
delta_t = 1,
mu0,
sigma0_l,
alpha,
beta,
psi_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL,
mu0_fixed = FALSE,
sigma0_fixed = FALSE,
alpha_level = 0.05,
optimization_flag = TRUE,
hessian_flag = FALSE,
verbose = FALSE,
weight_flag = FALSE,
debug_flag = FALSE,
perturb_flag = FALSE,
xtol_rel = 1e-07,
stopval = -9999,
ftol_rel = -1,
ftol_abs = -1,
maxeval = as.integer(-1),
maxtime = -1,
ncores = NULL,
seed = NULL,
clean = TRUE
)
Arguments
R |
Positive integer. Number of bootstrap samples. |
path |
Path to a directory to store bootstrap samples and estimates. |
prefix |
Character string. Prefix used for the file names for the bootstrap samples and estimates. |
n |
Positive integer. Number of individuals. |
time |
Positive integer. Number of time points. |
delta_t |
Numeric.
Time interval.
The default value is |
mu0 |
Numeric vector.
Mean of initial latent variable values
( |
sigma0_l |
Numeric matrix.
Cholesky factorization ( |
alpha |
Numeric vector.
Vector of constant values for the dynamic model
( |
beta |
Numeric matrix.
Transition matrix relating the values of the latent variables
at the previous to the current time point
( |
psi_l |
Numeric matrix.
Cholesky factorization ( |
nu |
Numeric vector.
Vector of intercept values for the measurement model
( |
lambda |
Numeric matrix.
Factor loading matrix linking the latent variables
to the observed variables
( |
theta_l |
Numeric matrix.
Cholesky factorization ( |
type |
Integer. State space model type. See Details for more information. |
x |
List.
Each element of the list is a matrix of covariates
for each individual |
gamma |
Numeric matrix.
Matrix linking the covariates to the latent variables
at current time point
( |
kappa |
Numeric matrix.
Matrix linking the covariates to the observed variables
at current time point
( |
mu0_fixed |
Logical.
If |
sigma0_fixed |
Logical.
If |
alpha_level |
Numeric vector.
Significance level |
optimization_flag |
a flag (TRUE/FALSE) indicating whether optimization is to be done. |
hessian_flag |
a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated. |
verbose |
a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed |
weight_flag |
a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual |
debug_flag |
a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes |
perturb_flag |
a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting. |
xtol_rel |
Stopping criteria option
for parameter optimization.
See |
stopval |
Stopping criteria option
for parameter optimization.
See |
ftol_rel |
Stopping criteria option
for parameter optimization.
See |
ftol_abs |
Stopping criteria option
for parameter optimization.
See |
maxeval |
Stopping criteria option
for parameter optimization.
See |
maxtime |
Stopping criteria option
for parameter optimization.
See |
ncores |
Positive integer.
Number of cores to use.
If |
seed |
Random seed. |
clean |
Logical.
If |
Details
Type 0
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right)
where
\mathbf{y}_{i, t}
,
\boldsymbol{\eta}_{i, t}
,
and
\boldsymbol{\varepsilon}_{i, t}
are random variables
and
\boldsymbol{\nu}
,
\boldsymbol{\Lambda}
,
and
\boldsymbol{\Theta}
are model parameters.
\mathbf{y}_{i, t}
represents a vector of observed random variables,
\boldsymbol{\eta}_{i, t}
a vector of latent random variables,
and
\boldsymbol{\varepsilon}_{i, t}
a vector of random measurement errors,
at time t
and individual i
.
\boldsymbol{\nu}
denotes a vector of intercepts,
\boldsymbol{\Lambda}
a matrix of factor loadings,
and
\boldsymbol{\Theta}
the covariance matrix of
\boldsymbol{\varepsilon}
.
An alternative representation of the measurement error is given by
\boldsymbol{\varepsilon}_{i, t}
=
\boldsymbol{\Theta}^{\frac{1}{2}}
\mathbf{z}_{i, t},
\quad
\mathrm{with}
\quad
\mathbf{z}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\mathbf{I}
\right)
where
\mathbf{z}_{i, t}
is a vector of
independent standard normal random variables and
\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)
\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime}
=
\boldsymbol{\Theta} .
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right)
where
\boldsymbol{\eta}_{i, t}
,
\boldsymbol{\eta}_{i, t - 1}
,
and
\boldsymbol{\zeta}_{i, t}
are random variables,
and
\boldsymbol{\alpha}
,
\boldsymbol{\beta}
,
and
\boldsymbol{\Psi}
are model parameters.
Here,
\boldsymbol{\eta}_{i, t}
is a vector of latent variables
at time t
and individual i
,
\boldsymbol{\eta}_{i, t - 1}
represents a vector of latent variables
at time t - 1
and individual i
,
and
\boldsymbol{\zeta}_{i, t}
represents a vector of dynamic noise
at time t
and individual i
.
\boldsymbol{\alpha}
denotes a vector of intercepts,
\boldsymbol{\beta}
a matrix of autoregression
and cross regression coefficients,
and
\boldsymbol{\Psi}
the covariance matrix of
\boldsymbol{\zeta}_{i, t}
.
An alternative representation of the dynamic noise is given by
\boldsymbol{\zeta}_{i, t}
=
\boldsymbol{\Psi}^{\frac{1}{2}}
\mathbf{z}_{i, t},
\quad
\mathrm{with}
\quad
\mathbf{z}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\mathbf{I}
\right)
where
\left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)
\left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)^{\prime}
=
\boldsymbol{\Psi} .
Type 1
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right) .
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right)
where
\mathbf{x}_{i, t}
represents a vector of covariates
at time t
and individual i
,
and \boldsymbol{\Gamma}
the coefficient matrix
linking the covariates to the latent variables.
Type 2
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\kappa}
\mathbf{x}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right)
where
\boldsymbol{\kappa}
represents the coefficient matrix
linking the covariates to the observed variables.
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right) .
Value
Returns an object
of class bootstatespace
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
\boldsymbol{\hat{\theta}}
.- vcov
Sampling variance-covariance matrix of
\boldsymbol{\hat{\theta}}
.- est
Vector of estimated
\boldsymbol{\hat{\theta}}
.- fun
Function used ("PBSSMFixed").
- method
Bootstrap method used ("parametric").
Author(s)
Ivan Jacob Agaloos Pesigan
References
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553
See Also
Other Bootstrap for State Space Models Functions:
PBSSMLinSDEFixed()
,
PBSSMOUFixed()
,
PBSSMVARFixed()
Examples
# prepare parameters
set.seed(42)
## number of individuals
n <- 5
## time points
time <- 50
delta_t <- 1
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- 0.001 * diag(p)
psi_l <- t(chol(psi))
## measurement model
k <- 3
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.001 * diag(k)
theta_l <- t(chol(theta))
path <- tempdir()
pb <- PBSSMFixed(
R = 10L, # use at least 1000 in actual research
path = path,
prefix = "ssm",
n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0,
ncores = 1, # consider using multiple cores
seed = 42
)
print(pb)
summary(pb)
confint(pb)
vcov(pb)
coef(pb)
print(pb, type = "bc") # bias-corrected
summary(pb, type = "bc")
confint(pb, type = "bc")
Parametric Bootstrap for the Linear Stochastic Differential Equation Model using a State Space Model Parameterization (Fixed Parameters)
Description
This function simulates data from
a linear stochastic differential equation model
using a state-space model parameterization
and fits the model using the dynr
package.
The process is repeated R
times.
It assumes that the parameters remain constant
across individuals and over time.
At the moment, the function only supports
type = 0
.
Usage
PBSSMLinSDEFixed(
R,
path,
prefix,
n,
time,
delta_t = 0.1,
mu0,
sigma0_l,
iota,
phi,
sigma_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL,
mu0_fixed = FALSE,
sigma0_fixed = FALSE,
alpha_level = 0.05,
optimization_flag = TRUE,
hessian_flag = FALSE,
verbose = FALSE,
weight_flag = FALSE,
debug_flag = FALSE,
perturb_flag = FALSE,
xtol_rel = 1e-07,
stopval = -9999,
ftol_rel = -1,
ftol_abs = -1,
maxeval = as.integer(-1),
maxtime = -1,
ncores = NULL,
seed = NULL,
clean = TRUE
)
Arguments
R |
Positive integer. Number of bootstrap samples. |
path |
Path to a directory to store bootstrap samples and estimates. |
prefix |
Character string. Prefix used for the file names for the bootstrap samples and estimates. |
n |
Positive integer. Number of individuals. |
time |
Positive integer. Number of time points. |
delta_t |
Numeric.
Time interval
( |
mu0 |
Numeric vector.
Mean of initial latent variable values
( |
sigma0_l |
Numeric matrix.
Cholesky factorization ( |
iota |
Numeric vector.
An unobserved term that is constant over time
( |
phi |
Numeric matrix.
The drift matrix
which represents the rate of change of the solution
in the absence of any random fluctuations
( |
sigma_l |
Numeric matrix.
Cholesky factorization ( |
nu |
Numeric vector.
Vector of intercept values for the measurement model
( |
lambda |
Numeric matrix.
Factor loading matrix linking the latent variables
to the observed variables
( |
theta_l |
Numeric matrix.
Cholesky factorization ( |
type |
Integer. State space model type. See Details for more information. |
x |
List.
Each element of the list is a matrix of covariates
for each individual |
gamma |
Numeric matrix.
Matrix linking the covariates to the latent variables
at current time point
( |
kappa |
Numeric matrix.
Matrix linking the covariates to the observed variables
at current time point
( |
mu0_fixed |
Logical.
If |
sigma0_fixed |
Logical.
If |
alpha_level |
Numeric vector.
Significance level |
optimization_flag |
a flag (TRUE/FALSE) indicating whether optimization is to be done. |
hessian_flag |
a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated. |
verbose |
a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed |
weight_flag |
a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual |
debug_flag |
a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes |
perturb_flag |
a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting. |
xtol_rel |
Stopping criteria option
for parameter optimization.
See |
stopval |
Stopping criteria option
for parameter optimization.
See |
ftol_rel |
Stopping criteria option
for parameter optimization.
See |
ftol_abs |
Stopping criteria option
for parameter optimization.
See |
maxeval |
Stopping criteria option
for parameter optimization.
See |
maxtime |
Stopping criteria option
for parameter optimization.
See |
ncores |
Positive integer.
Number of cores to use.
If |
seed |
Random seed. |
clean |
Logical.
If |
Details
Type 0
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right)
where
\mathbf{y}_{i, t}
,
\boldsymbol{\eta}_{i, t}
,
and
\boldsymbol{\varepsilon}_{i, t}
are random variables
and
\boldsymbol{\nu}
,
\boldsymbol{\Lambda}
,
and
\boldsymbol{\Theta}
are model parameters.
\mathbf{y}_{i, t}
represents a vector of observed random variables,
\boldsymbol{\eta}_{i, t}
a vector of latent random variables,
and
\boldsymbol{\varepsilon}_{i, t}
a vector of random measurement errors,
at time t
and individual i
.
\boldsymbol{\nu}
denotes a vector of intercepts,
\boldsymbol{\Lambda}
a matrix of factor loadings,
and
\boldsymbol{\Theta}
the covariance matrix of
\boldsymbol{\varepsilon}
.
An alternative representation of the measurement error is given by
\boldsymbol{\varepsilon}_{i, t}
=
\boldsymbol{\Theta}^{\frac{1}{2}}
\mathbf{z}_{i, t},
\quad
\mathrm{with}
\quad
\mathbf{z}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\mathbf{I}
\right)
where
\mathbf{z}_{i, t}
is a vector of
independent standard normal random variables and
\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)
\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime}
=
\boldsymbol{\Theta} .
The dynamic structure is given by
\mathrm{d} \boldsymbol{\eta}_{i, t}
=
\left(
\boldsymbol{\iota}
+
\boldsymbol{\Phi}
\boldsymbol{\eta}_{i, t}
\right)
\mathrm{d}t
+
\boldsymbol{\Sigma}^{\frac{1}{2}}
\mathrm{d}
\mathbf{W}_{i, t}
where
\boldsymbol{\iota}
is a term which is unobserved and constant over time,
\boldsymbol{\Phi}
is the drift matrix
which represents the rate of change of the solution
in the absence of any random fluctuations,
\boldsymbol{\Sigma}
is the matrix of volatility
or randomness in the process, and
\mathrm{d}\boldsymbol{W}
is a Wiener process or Brownian motion,
which represents random fluctuations.
Type 1
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right) .
The dynamic structure is given by
\mathrm{d} \boldsymbol{\eta}_{i, t}
=
\left(
\boldsymbol{\iota}
+
\boldsymbol{\Phi}
\boldsymbol{\eta}_{i, t}
\right)
\mathrm{d}t
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\Sigma}^{\frac{1}{2}}
\mathrm{d}
\mathbf{W}_{i, t}
where
\mathbf{x}_{i, t}
represents a vector of covariates
at time t
and individual i
,
and \boldsymbol{\Gamma}
the coefficient matrix
linking the covariates to the latent variables.
Type 2
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\kappa}
\mathbf{x}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right)
where
\boldsymbol{\kappa}
represents the coefficient matrix
linking the covariates to the observed variables.
The dynamic structure is given by
\mathrm{d} \boldsymbol{\eta}_{i, t}
=
\left(
\boldsymbol{\iota}
+
\boldsymbol{\Phi}
\boldsymbol{\eta}_{i, t}
\right)
\mathrm{d}t
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\Sigma}^{\frac{1}{2}}
\mathrm{d}
\mathbf{W}_{i, t} .
State Space Parameterization
The state space parameters as a function of the linear stochastic differential equation model parameters are given by
\boldsymbol{\beta}_{\Delta t_{{l_{i}}}}
=
\exp{
\left(
\Delta t
\boldsymbol{\Phi}
\right)
}
\boldsymbol{\alpha}_{\Delta t_{{l_{i}}}}
=
\boldsymbol{\Phi}^{-1}
\left(
\boldsymbol{\beta} - \mathbf{I}_{p}
\right)
\boldsymbol{\iota}
\mathrm{vec}
\left(
\boldsymbol{\Psi}_{\Delta t_{{l_{i}}}}
\right)
=
\left[
\left(
\boldsymbol{\Phi} \otimes \mathbf{I}_{p}
\right)
+
\left(
\mathbf{I}_{p} \otimes \boldsymbol{\Phi}
\right)
\right]
\left[
\exp
\left(
\left[
\left(
\boldsymbol{\Phi} \otimes \mathbf{I}_{p}
\right)
+
\left(
\mathbf{I}_{p} \otimes \boldsymbol{\Phi}
\right)
\right]
\Delta t
\right)
-
\mathbf{I}_{p \times p}
\right]
\mathrm{vec}
\left(
\boldsymbol{\Sigma}
\right)
where p
is the number of latent variables and
\Delta t
is the time interval.
Value
Returns an object
of class bootstatespace
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
\boldsymbol{\hat{\theta}}
.- vcov
Sampling variance-covariance matrix of
\boldsymbol{\hat{\theta}}
.- est
Vector of estimated
\boldsymbol{\hat{\theta}}
.- fun
Function used ("PBSSMLinSDEFixed").
- method
Bootstrap method used ("parametric").
Author(s)
Ivan Jacob Agaloos Pesigan
References
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553
See Also
Other Bootstrap for State Space Models Functions:
PBSSMFixed()
,
PBSSMOUFixed()
,
PBSSMVARFixed()
Examples
# prepare parameters
## number of individuals
n <- 5
## time points
time <- 50
delta_t <- 0.10
## dynamic structure
p <- 2
mu0 <- c(-3.0, 1.5)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
iota <- c(0.317, 0.230)
phi <- matrix(
data = c(
-0.10,
0.05,
0.05,
-0.10
),
nrow = p
)
sigma <- matrix(
data = c(
2.79,
0.06,
0.06,
3.27
),
nrow = p
)
sigma_l <- t(chol(sigma))
## measurement model
k <- 2
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.001 * diag(k)
theta_l <- t(chol(theta))
path <- tempdir()
pb <- PBSSMLinSDEFixed(
R = 10L, # use at least 1000 in actual research
path = path,
prefix = "lse",
n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
iota = iota,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0,
ncores = 1, # consider using multiple cores
seed = 42
)
print(pb)
summary(pb)
confint(pb)
vcov(pb)
coef(pb)
print(pb, type = "bc") # bias-corrected
summary(pb, type = "bc")
confint(pb, type = "bc")
Parametric Bootstrap for the Ornstein–Uhlenbeck Model using a State Space Model Parameterization (Fixed Parameters)
Description
This function simulates data from
a Ornstein–Uhlenbeck (OU) model
using a state-space model parameterization
and fits the model using the dynr
package.
The process is repeated R
times.
It assumes that the parameters remain constant
across individuals and over time.
At the moment, the function only supports
type = 0
.
Usage
PBSSMOUFixed(
R,
path,
prefix,
n,
time,
delta_t = 0.1,
mu0,
sigma0_l,
mu,
phi,
sigma_l,
nu,
lambda,
theta_l,
type = 0,
x = NULL,
gamma = NULL,
kappa = NULL,
mu0_fixed = FALSE,
sigma0_fixed = FALSE,
alpha_level = 0.05,
optimization_flag = TRUE,
hessian_flag = FALSE,
verbose = FALSE,
weight_flag = FALSE,
debug_flag = FALSE,
perturb_flag = FALSE,
xtol_rel = 1e-07,
stopval = -9999,
ftol_rel = -1,
ftol_abs = -1,
maxeval = as.integer(-1),
maxtime = -1,
ncores = NULL,
seed = NULL,
clean = TRUE
)
Arguments
R |
Positive integer. Number of bootstrap samples. |
path |
Path to a directory to store bootstrap samples and estimates. |
prefix |
Character string. Prefix used for the file names for the bootstrap samples and estimates. |
n |
Positive integer. Number of individuals. |
time |
Positive integer. Number of time points. |
delta_t |
Numeric.
Time interval
( |
mu0 |
Numeric vector.
Mean of initial latent variable values
( |
sigma0_l |
Numeric matrix.
Cholesky factorization ( |
mu |
Numeric vector.
The long-term mean or equilibrium level
( |
phi |
Numeric matrix.
The drift matrix
which represents the rate of change of the solution
in the absence of any random fluctuations
( |
sigma_l |
Numeric matrix.
Cholesky factorization ( |
nu |
Numeric vector.
Vector of intercept values for the measurement model
( |
lambda |
Numeric matrix.
Factor loading matrix linking the latent variables
to the observed variables
( |
theta_l |
Numeric matrix.
Cholesky factorization ( |
type |
Integer. State space model type. See Details for more information. |
x |
List.
Each element of the list is a matrix of covariates
for each individual |
gamma |
Numeric matrix.
Matrix linking the covariates to the latent variables
at current time point
( |
kappa |
Numeric matrix.
Matrix linking the covariates to the observed variables
at current time point
( |
mu0_fixed |
Logical.
If |
sigma0_fixed |
Logical.
If |
alpha_level |
Numeric vector.
Significance level |
optimization_flag |
a flag (TRUE/FALSE) indicating whether optimization is to be done. |
hessian_flag |
a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated. |
verbose |
a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed |
weight_flag |
a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual |
debug_flag |
a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes |
perturb_flag |
a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting. |
xtol_rel |
Stopping criteria option
for parameter optimization.
See |
stopval |
Stopping criteria option
for parameter optimization.
See |
ftol_rel |
Stopping criteria option
for parameter optimization.
See |
ftol_abs |
Stopping criteria option
for parameter optimization.
See |
maxeval |
Stopping criteria option
for parameter optimization.
See |
maxtime |
Stopping criteria option
for parameter optimization.
See |
ncores |
Positive integer.
Number of cores to use.
If |
seed |
Random seed. |
clean |
Logical.
If |
Details
Type 0
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right)
where
\mathbf{y}_{i, t}
,
\boldsymbol{\eta}_{i, t}
,
and
\boldsymbol{\varepsilon}_{i, t}
are random variables
and
\boldsymbol{\nu}
,
\boldsymbol{\Lambda}
,
and
\boldsymbol{\Theta}
are model parameters.
\mathbf{y}_{i, t}
represents a vector of observed random variables,
\boldsymbol{\eta}_{i, t}
a vector of latent random variables,
and
\boldsymbol{\varepsilon}_{i, t}
a vector of random measurement errors,
at time t
and individual i
.
\boldsymbol{\nu}
denotes a vector of intercepts,
\boldsymbol{\Lambda}
a matrix of factor loadings,
and
\boldsymbol{\Theta}
the covariance matrix of
\boldsymbol{\varepsilon}
.
An alternative representation of the measurement error is given by
\boldsymbol{\varepsilon}_{i, t}
=
\boldsymbol{\Theta}^{\frac{1}{2}}
\mathbf{z}_{i, t},
\quad
\mathrm{with}
\quad
\mathbf{z}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\mathbf{I}
\right)
where
\mathbf{z}_{i, t}
is a vector of
independent standard normal random variables and
\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)
\left( \boldsymbol{\Theta}^{\frac{1}{2}} \right)^{\prime}
=
\boldsymbol{\Theta} .
The dynamic structure is given by
\mathrm{d} \boldsymbol{\eta}_{i, t}
=
\boldsymbol{\Phi}
\left(
\boldsymbol{\eta}_{i, t}
-
\boldsymbol{\mu}
\right)
\mathrm{d}t
+
\boldsymbol{\Sigma}^{\frac{1}{2}}
\mathrm{d}
\mathbf{W}_{i, t}
where
\boldsymbol{\mu}
is the long-term mean or equilibrium level,
\boldsymbol{\Phi}
is the rate of mean reversion,
determining how quickly the variable returns to its mean,
\boldsymbol{\Sigma}
is the matrix of volatility
or randomness in the process, and
\mathrm{d}\boldsymbol{W}
is a Wiener process or Brownian motion,
which represents random fluctuations.
Type 1
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right) .
The dynamic structure is given by
\mathrm{d} \boldsymbol{\eta}_{i, t}
=
\boldsymbol{\Phi}
\left(
\boldsymbol{\eta}_{i, t}
-
\boldsymbol{\mu}
\right)
\mathrm{d}t
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\Sigma}^{\frac{1}{2}}
\mathrm{d}
\mathbf{W}_{i, t}
where
\mathbf{x}_{i, t}
represents a vector of covariates
at time t
and individual i
,
and \boldsymbol{\Gamma}
the coefficient matrix
linking the covariates to the latent variables.
Type 2
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\nu}
+
\boldsymbol{\Lambda}
\boldsymbol{\eta}_{i, t}
+
\boldsymbol{\kappa}
\mathbf{x}_{i, t}
+
\boldsymbol{\varepsilon}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\varepsilon}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Theta}
\right)
where
\boldsymbol{\kappa}
represents the coefficient matrix
linking the covariates to the observed variables.
The dynamic structure is given by
\mathrm{d} \boldsymbol{\eta}_{i, t}
=
\boldsymbol{\Phi}
\left(
\boldsymbol{\eta}_{i, t}
-
\boldsymbol{\mu}
\right)
\mathrm{d}t
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\Sigma}^{\frac{1}{2}}
\mathrm{d}
\mathbf{W}_{i, t} .
The OU model as a linear stochastic differential equation model
The OU model is a first-order linear stochastic differential equation model in the form of
\mathrm{d} \boldsymbol{\eta}_{i, t}
=
\left(
\boldsymbol{\iota}
+
\boldsymbol{\Phi}
\boldsymbol{\eta}_{i, t}
\right)
\mathrm{d}t
+
\boldsymbol{\Sigma}^{\frac{1}{2}}
\mathrm{d}
\mathbf{W}_{i, t}
where
\boldsymbol{\mu} = - \boldsymbol{\Phi}^{-1} \boldsymbol{\iota}
and, equivalently
\boldsymbol{\iota} = - \boldsymbol{\Phi} \boldsymbol{\mu}
.
Value
Returns an object
of class bootstatespace
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
\boldsymbol{\hat{\theta}}
.- vcov
Sampling variance-covariance matrix of
\boldsymbol{\hat{\theta}}
.- est
Vector of estimated
\boldsymbol{\hat{\theta}}
.- fun
Function used ("PBSSMOUFixed").
- method
Bootstrap method used ("parametric").
Author(s)
Ivan Jacob Agaloos Pesigan
References
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553
See Also
Other Bootstrap for State Space Models Functions:
PBSSMFixed()
,
PBSSMLinSDEFixed()
,
PBSSMVARFixed()
Examples
# prepare parameters
## number of individuals
n <- 5
## time points
time <- 50
delta_t <- 0.10
## dynamic structure
p <- 2
mu0 <- c(-3.0, 1.5)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
mu <- c(5.76, 5.18)
phi <- matrix(
data = c(
-0.10,
0.05,
0.05,
-0.10
),
nrow = p
)
sigma <- matrix(
data = c(
2.79,
0.06,
0.06,
3.27
),
nrow = p
)
sigma_l <- t(chol(sigma))
## measurement model
k <- 2
nu <- rep(x = 0, times = k)
lambda <- diag(k)
theta <- 0.001 * diag(k)
theta_l <- t(chol(theta))
path <- tempdir()
pb <- PBSSMOUFixed(
R = 10L, # use at least 1000 in actual research
path = path,
prefix = "ou",
n = n,
time = time,
delta_t = delta_t,
mu0 = mu0,
sigma0_l = sigma0_l,
mu = mu,
phi = phi,
sigma_l = sigma_l,
nu = nu,
lambda = lambda,
theta_l = theta_l,
type = 0,
ncores = 1, # consider using multiple cores
seed = 42
)
print(pb)
summary(pb)
confint(pb)
vcov(pb)
coef(pb)
print(pb, type = "bc") # bias-corrected
summary(pb, type = "bc")
confint(pb, type = "bc")
Parametric Bootstrap for the Vector Autoregressive Model (Fixed Parameters)
Description
This function simulates data from
a vector autoregressive model
using a state-space model parameterization
and fits the model using the dynr
package.
The process is repeated R
times.
It assumes that the parameters remain constant
across individuals and over time.
At the moment, the function only supports
type = 0
.
Usage
PBSSMVARFixed(
R,
path,
prefix,
n,
time,
mu0,
sigma0_l,
alpha,
beta,
psi_l,
type = 0,
x = NULL,
gamma = NULL,
mu0_fixed = FALSE,
sigma0_fixed = FALSE,
alpha_level = 0.05,
optimization_flag = TRUE,
hessian_flag = FALSE,
verbose = FALSE,
weight_flag = FALSE,
debug_flag = FALSE,
perturb_flag = FALSE,
xtol_rel = 1e-07,
stopval = -9999,
ftol_rel = -1,
ftol_abs = -1,
maxeval = as.integer(-1),
maxtime = -1,
ncores = NULL,
seed = NULL,
clean = TRUE
)
Arguments
R |
Positive integer. Number of bootstrap samples. |
path |
Path to a directory to store bootstrap samples and estimates. |
prefix |
Character string. Prefix used for the file names for the bootstrap samples and estimates. |
n |
Positive integer. Number of individuals. |
time |
Positive integer. Number of time points. |
mu0 |
Numeric vector.
Mean of initial latent variable values
( |
sigma0_l |
Numeric matrix.
Cholesky factorization ( |
alpha |
Numeric vector.
Vector of constant values for the dynamic model
( |
beta |
Numeric matrix.
Transition matrix relating the values of the latent variables
at the previous to the current time point
( |
psi_l |
Numeric matrix.
Cholesky factorization ( |
type |
Integer. State space model type. See Details for more information. |
x |
List.
Each element of the list is a matrix of covariates
for each individual |
gamma |
Numeric matrix.
Matrix linking the covariates to the latent variables
at current time point
( |
mu0_fixed |
Logical.
If |
sigma0_fixed |
Logical.
If |
alpha_level |
Numeric vector.
Significance level |
optimization_flag |
a flag (TRUE/FALSE) indicating whether optimization is to be done. |
hessian_flag |
a flag (TRUE/FALSE) indicating whether the Hessian matrix is to be calculated. |
verbose |
a flag (TRUE/FALSE) indicating whether more detailed intermediate output during the estimation process should be printed |
weight_flag |
a flag (TRUE/FALSE) indicating whether the negative log likelihood function should be weighted by the length of the time series for each individual |
debug_flag |
a flag (TRUE/FALSE) indicating whether users want additional dynr output that can be used for diagnostic purposes |
perturb_flag |
a flag (TRUE/FLASE) indicating whether to perturb the latent states during estimation. Only useful for ensemble forecasting. |
xtol_rel |
Stopping criteria option
for parameter optimization.
See |
stopval |
Stopping criteria option
for parameter optimization.
See |
ftol_rel |
Stopping criteria option
for parameter optimization.
See |
ftol_abs |
Stopping criteria option
for parameter optimization.
See |
maxeval |
Stopping criteria option
for parameter optimization.
See |
maxtime |
Stopping criteria option
for parameter optimization.
See |
ncores |
Positive integer.
Number of cores to use.
If |
seed |
Random seed. |
clean |
Logical.
If |
Details
Type 0
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\eta}_{i, t}
where \mathbf{y}_{i, t}
represents a vector of observed variables
and \boldsymbol{\eta}_{i, t}
a vector of latent variables
for individual i
and time t
.
Since the observed and latent variables are equal,
we only generate data
from the dynamic structure.
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right)
where
\boldsymbol{\eta}_{i, t}
,
\boldsymbol{\eta}_{i, t - 1}
,
and
\boldsymbol{\zeta}_{i, t}
are random variables,
and
\boldsymbol{\alpha}
,
\boldsymbol{\beta}
,
and
\boldsymbol{\Psi}
are model parameters.
Here,
\boldsymbol{\eta}_{i, t}
is a vector of latent variables
at time t
and individual i
,
\boldsymbol{\eta}_{i, t - 1}
represents a vector of latent variables
at time t - 1
and individual i
,
and
\boldsymbol{\zeta}_{i, t}
represents a vector of dynamic noise
at time t
and individual i
.
\boldsymbol{\alpha}
denotes a vector of intercepts,
\boldsymbol{\beta}
a matrix of autoregression
and cross regression coefficients,
and
\boldsymbol{\Psi}
the covariance matrix of
\boldsymbol{\zeta}_{i, t}
.
An alternative representation of the dynamic noise is given by
\boldsymbol{\zeta}_{i, t}
=
\boldsymbol{\Psi}^{\frac{1}{2}}
\mathbf{z}_{i, t},
\quad
\mathrm{with}
\quad
\mathbf{z}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\mathbf{I}
\right)
where
\left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)
\left( \boldsymbol{\Psi}^{\frac{1}{2}} \right)^{\prime}
=
\boldsymbol{\Psi} .
Type 1
The measurement model is given by
\mathbf{y}_{i, t}
=
\boldsymbol{\eta}_{i, t} .
The dynamic structure is given by
\boldsymbol{\eta}_{i, t}
=
\boldsymbol{\alpha}
+
\boldsymbol{\beta}
\boldsymbol{\eta}_{i, t - 1}
+
\boldsymbol{\Gamma}
\mathbf{x}_{i, t}
+
\boldsymbol{\zeta}_{i, t},
\quad
\mathrm{with}
\quad
\boldsymbol{\zeta}_{i, t}
\sim
\mathcal{N}
\left(
\mathbf{0},
\boldsymbol{\Psi}
\right)
where
\mathbf{x}_{i, t}
represents a vector of covariates
at time t
and individual i
,
and \boldsymbol{\Gamma}
the coefficient matrix
linking the covariates to the latent variables.
Value
Returns an object
of class bootstatespace
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
\boldsymbol{\hat{\theta}}
.- vcov
Sampling variance-covariance matrix of
\boldsymbol{\hat{\theta}}
.- est
Vector of estimated
\boldsymbol{\hat{\theta}}
.- fun
Function used ("PBSSMVARFixed").
- method
Bootstrap method used ("parametric").
Author(s)
Ivan Jacob Agaloos Pesigan
References
Chow, S.-M., Ho, M. R., Hamaker, E. L., & Dolan, C. V. (2010). Equivalence and differences between structural equation modeling and state-space modeling techniques. Structural Equation Modeling: A Multidisciplinary Journal, 17(2), 303–332. doi:10.1080/10705511003661553
See Also
Other Bootstrap for State Space Models Functions:
PBSSMFixed()
,
PBSSMLinSDEFixed()
,
PBSSMOUFixed()
Examples
# prepare parameters
## number of individuals
n <- 5
## time points
time <- 50
## dynamic structure
p <- 3
mu0 <- rep(x = 0, times = p)
sigma0 <- 0.001 * diag(p)
sigma0_l <- t(chol(sigma0))
alpha <- rep(x = 0, times = p)
beta <- 0.50 * diag(p)
psi <- 0.001 * diag(p)
psi_l <- t(chol(psi))
path <- tempdir()
pb <- PBSSMVARFixed(
R = 10L, # use at least 1000 in actual research
path = path,
prefix = "var",
n = n,
time = time,
mu0 = mu0,
sigma0_l = sigma0_l,
alpha = alpha,
beta = beta,
psi_l = psi_l,
type = 0,
ncores = 1, # consider using multiple cores
seed = 42
)
print(pb)
summary(pb)
confint(pb)
vcov(pb)
coef(pb)
print(pb, type = "bc") # bias-corrected
summary(pb, type = "bc")
confint(pb, type = "bc")
Estimated Parameter Method for an Object of Class
bootstatespace
Description
Estimated Parameter Method for an Object of Class
bootstatespace
Usage
## S3 method for class 'bootstatespace'
coef(object, ...)
Arguments
object |
Object of Class |
... |
additional arguments. |
Value
Returns a vector of estimated parameters.
Author(s)
Ivan Jacob Agaloos Pesigan
Confidence Intervals Method for an Object of Class
bootstatespace
Description
Confidence Intervals Method for an Object of Class
bootstatespace
Usage
## S3 method for class 'bootstatespace'
confint(object, parm = NULL, level = 0.95, type = "pc", ...)
Arguments
object |
Object of Class |
parm |
a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. |
level |
the confidence level required. |
type |
Charater string.
Confidence interval type, that is,
|
... |
additional arguments. |
Value
Returns a matrix of confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Extract Generic Function
Description
A generic function for extracting elements from objects.
Usage
extract(object, what)
Arguments
object |
An object. |
what |
Character string. |
Value
A value determined by the specific method for the object's class.
Extract Method for an Object of Class
bootstatespace
Description
Extract Method for an Object of Class
bootstatespace
Usage
## S3 method for class 'bootstatespace'
extract(object, what = NULL)
Arguments
object |
Object of Class |
what |
Character string.
What specific matrix to extract.
If |
Value
Returns a list. Each element of the list is a list of bootstrap estimates in matrix format.
Author(s)
Ivan Jacob Agaloos Pesigan
Print Method for an Object of Class
bootstatespace
Description
Print Method for an Object of Class
bootstatespace
Usage
## S3 method for class 'bootstatespace'
print(x, alpha = NULL, type = "pc", digits = 4, ...)
Arguments
x |
Object of Class |
alpha |
Numeric vector.
Significance level |
type |
Charater string.
Confidence interval type, that is,
|
digits |
Digits to print. |
... |
additional arguments. |
Value
Prints a matrix of estimates, standard errors, number of bootstrap replications, and confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Summary Method for an Object of Class
bootstatespace
Description
Summary Method for an Object of Class
bootstatespace
Usage
## S3 method for class 'bootstatespace'
summary(object, alpha = NULL, type = "pc", digits = 4, ...)
Arguments
object |
Object of Class |
alpha |
Numeric vector.
Significance level |
type |
Charater string.
Confidence interval type, that is,
|
digits |
Digits to print. |
... |
additional arguments. |
Value
Returns a matrix of estimates, standard errors, number of bootstrap replications, and confidence intervals.
Author(s)
Ivan Jacob Agaloos Pesigan
Sampling Variance-Covariance Matrix Method for an Object of Class
bootstatespace
Description
Sampling Variance-Covariance Matrix Method for an Object of Class
bootstatespace
Usage
## S3 method for class 'bootstatespace'
vcov(object, ...)
Arguments
object |
Object of Class |
... |
additional arguments. |
Value
Returns the variance-covariance matrix of estimates.
Author(s)
Ivan Jacob Agaloos Pesigan