Type: Package
Title: Outlier Detection and Influence Diagnostics for Meta-Analysis
Version: 1.1-2
Date: 2023-05-21
Maintainer: Hisashi Noma <noma@ism.ac.jp>
Description: Computational tools for outlier detection and influence diagnostics of meta-analysis. Bootstrap distributions of the influence statistics are calculated, and the thresholds to determine outliers are explicitly provided.
Imports: stats, metafor, MASS
License: GPL-3
Encoding: UTF-8
LazyData: true
NeedsCompilation: no
Packaged: 2023-05-22 00:57:14 UTC; Hisashi
Author: Hisashi Noma [aut, cre], Masahiko Gosho [aut]
Repository: CRAN
Date/Publication: 2023-05-22 04:00:02 UTC

The 'boutliers' package.

Description

Computational tools for implementing outlier detection and influence diagnostics for meta-analysis. Bootstrap distributions of the influence statistics are calculated, and the thresholds to determine outliers are provided.

References

Hedges, L. V., and Olkins, I. (1985). Statistical Methods for Meta-Analysis. New York: Academic Press.

Noma, H., Gosho, M., Ishii, R., Oba, K., and Furukawa, T. A. (2020). Outlier detection and influence diagnostics in network meta-analysis. Research Synthesis Methods. 11(6): 891-902. doi:10.1002/jrsm.1455

Viechtbauer, W., and Cheung, M. W. (2010). Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods. 1(2): 112-125. doi:10.1002/jrsm.11


Likelihood ratio test using a mean-shifted model

Description

Implementing the likelihood ratio tests using the mean-shifted model for the DerSimonian-Laird-type random-effects model. The bootstrap p-values are provided.

Usage

LRT(y, v, B=2000, alpha=0.05)

Arguments

y

A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, RD)

v

A vector of the variance estimate of y

B

The number of bootstrap resampling (default: 2000)

alpha

The significance level (default: 0.05)

Value

Results of the likelihood ratio tests involving bootstrap p-values. The outputs are ordered by the p-values.

Examples

require(metafor)
data(SMT)

edat2 <- escalc(m1i=m1,sd1i=s1,n1i=n1,m2i=m2,sd2i=s2,n2i=n2,measure="MD",data=SMT)

LRT(edat2$yi, edat2$vi, B=10)   # This is an example command for illustration. B should be >= 1000.

Likelihood ratio test using a mean-shifted model by the fixed-effect model

Description

Implementing the likelihood ratio tests using the mean-shifted model for the fixed-effect model. The bootstrap p-values are provided.

Usage

LRT_FE(y, v, B=2000, alpha=0.05)

Arguments

y

A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, RD)

v

A vector of the variance estimate of y

B

The number of bootstrap resampling (default: 2000)

alpha

The significance level (default: 0.05)

Value

Results of the likelihood ratio tests involving bootstrap p-values. The outputs are ordered by the p-values.

Examples

require(metafor)
data(SMT)

edat2 <- escalc(m1i=m1,sd1i=s1,n1i=n1,m2i=m2,sd2i=s2,n2i=n2,measure="MD",data=SMT)

LRT_FE(edat2$yi, edat2$vi, B=10)
# This is an example command for illustration. B should be >= 1000.

Crocker et al. (2018)'s patient and public involvement (PPI) intervention data

Description

Usage

data(PPI)

Format

A data frame with 21 rows and 5 variables

References

Crocker, J. C., Ricci-Cabello, I., Parker, A., Hirst, J. A., Chant, A., Petit-Zeman, S., Evans, D., Rees, S. (2018). Impact of patient and public involvement on enrolment and retention in clinical trials: systematic review and meta-analysis. BMJ. 363: k4738. doi:10.1136/bmj.k4738


Rubinstein et al. (2019)'s chronic low back pain data

Description

Usage

data(SMT)

Format

A data frame with 23 rows and 8 variables

References

Rubinstein, S. M,, de Zoete, A., van Middelkoop, M., Assendelft, W. J. J., de Boer, M. R., van Tulder, M. W. (2019). Benefits and harms of spinal manipulative therapy for the treatment of chronic low back pain: systematic review and meta-analysis of randomised controlled trials. BMJ. 364: l689. doi:10.1136/bmj.l689


Studentized residuals by leave-one-out analysis

Description

Calculating the studentized residuals by leave-one-out analysis (studentized deleted residuals) and the percentiles of their bootstrap distributions.

Usage

STR(y, v, B=2000, alpha=0.95)

Arguments

y

A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, RD)

v

A vector of the variance estimate of y

B

The number of bootstrap resampling (default: 2000)

alpha

The bootstrap percentiles to be outputted; 0.5(1-alpha)th and (1-0.5(1-alpha))th pecentiles. Default is 0.95; 2.5th and 97.5th percentiles are calculated.

Value

The studentized residuals by leave-one-out analysis. The outputs are ordered by the sizes of the studentized residuals.

Examples

require(metafor)
data(PPI)

edat1 <- escalc(ai=d1,n1i=n1,ci=d2,n2i=n2,measure="OR",data=PPI)

STR(edat1$yi,edat1$vi,B=10)   # This is an example command for illustration. B should be >= 1000.

Studentized residuals by leave-one-out analysis for the fixed-effect model

Description

Calculating the studentized residuals by leave-one-out analysis (studentized deleted residuals) for the fixed-effect model and the percentiles of their bootstrap distributions.

Usage

STR_FE(y, v, B=2000, alpha=0.95)

Arguments

y

A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, RD)

v

A vector of the variance estimate of y

B

The number of bootstrap resampling (default: 2000)

alpha

The bootstrap percentiles to be outputted; 0.5(1-alpha)th and (1-0.5(1-alpha))th pecentiles. Default is 0.95; 2.5th and 97.5th percentiles are calculated.

Value

The studentized residuals by leave-one-out analysis. The outputs are ordered by the sizes of the studentized residuals.

Examples

require(metafor)
data(PPI)

edat1 <- escalc(ai=d1,n1i=n1,ci=d2,n2i=n2,measure="OR",data=PPI)

STR_FE(edat1$yi,edat1$vi)

Variance ratio influential statistics

Description

Calculating the variance ratio influential statistics by leave-one-out analysis and the percentiles of their bootstrap distributions.

Usage

VRATIO(y, v, B=2000, alpha=0.05)

Arguments

y

A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, RD)

v

A vector of the variance estimate of y

B

The number of bootstrap resampling (default: 2000)

alpha

The bootstrap percentile to be outputted (default: 0.05)

Value

The variance ratio influential statistics by leave-one-out analysis and their bootstrap percentiles. The outputs are ordered by the sizes of the variance ratio statistics.

Examples

require(metafor)
data(finasteride)

edat3 <- escalc(m1i=m1,sd1i=s1,n1i=n1,m2i=m0,sd2i=s0,n2i=n0,measure="MD",data=finasteride)

VRATIO(edat3$yi, edat3$vi, B=10)
# This is an example command for illustration. B should be >= 1000.

A multicenter clinical trial data assessing the treatment effect of finasteride for benign prostatic hyperplasia

Description

Usage

data(PPI)

Format

A data frame with 29 rows and 7 variables

References

Gormley, G. J., Stoner, E., Bruskewitz, R. C., et al. (1992). The effect of finasteride in men with benign prostatic hyperplasia. The Finasteride Study Group. New England Journal of Medicine. 327: 1185-1191. doi:10.1056/nejm199210223271701

Gould, A. L. (1998). Multi-centre trial analysis revisited. Statistics in Medicine. 17: 1779-1797.