Package 'bwimage'

July 22, 2025

Type Package

Title Describe Image Patterns in Natural Structures
Version 1.3
Date 2020-04-22
Author Carlos Biagolini-Jr.
Maintainer Carlos Biagolini-Jr. <c.biagolini@gmail.com></c.biagolini@gmail.com>
Depends stats, utils
Imports jpeg, png
Description A computational tool to describe patterns in black and white images from natural structures. 'bwimage' implemented functions for exceptionally broad subject. For instance, 'bwimage' provide examples that range from calculation of canopy openness, description of patterns in vertical vegetation structure, to patterns in bird nest structure.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2020-04-22 20:24:10 UTC
Contents
bwimage-package

 denseness_column
 7

 denseness_row
 8

 denseness_sample
 9

 denseness_total
 10

 heigh_maximum
 11

 heigh_propotion
 12

 heigh_propotion_test
 13

 hole_columm
 14

 hole_row
 15

2 bwimage-package

bwimage-package Describe Image Patterns in Natural Structures				
Index				26
	topline			
	threshold_image_list			
	stretch threshold_color			
	plot_samples			
	light_gap			
	image_information		 	 18
	hole_section_data		 	 17
	hole_section		 	 16

Description

A computational tool to describe patterns in black and white images from natural structures. 'bwimage' implemented functions for exceptionally broad subject. For instance, 'bwimage' provide examples that range from calculation of canopy openness, description of patterns in vertical vegetation structure, to patterns in bird nest structure.

Details

The DESCRIPTION file:

Package: bwimage Type: Package

Title: Describe Image Patterns in Natural Structures

Version: 1.3

Date: 2020-04-22

Author: Carlos Biagolini-Jr.

Maintainer: Carlos Biagolini-Jr.<c.biagolini@gmail.com>

Depends: stats, utils Imports: jpeg, png

Description: A computational tool to describe patterns in black and white images from natural structures. 'bwimage' impler

License: GPL (>= 2)

Index of help topics:

aggregation_index Aggregation index calculator altitudinal_profile Highest black pixel by sections

bwimage-package Describe Image Patterns in Natural Structures

compressCompress square to circledenseness_columnDenseness in column sectionsdenseness_rowDenseness in row sectionsdenseness_sampleDenseness in samples

aggregation_index 3

denseness_total Denseness for whole image

heigh_maximum Height of the highest black pixel in the image

heigh_propotion Cumulative denseness for each line

hole_columm Holes description in columns sections hole_row Holes description in row sections

hole_section Hole finder

hole_section_data Summary of holes information image_information Summary of image information

light_gap Light gap

plot_samples Plot samples from denseness_sample

stretch stretch circle to square threshold_color Image to matrix - Single threshold_image_list Image to matrix - List

topline Top line

A computational tool to describe patterns in black and white images from natural structures.

Author(s)

Carlos Biagolini-Jr.

Maintainer: Carlos Biagolini-Jr.<c.biagolini@gmail.com>

References

Biagolini-Jr C, Macedo RH (2019) bwimage: A package to describe image patterns in natural structures. F1000Research 8 Lambers M (2016) Mappings between sphere, disc, and square. Journal of Computer Graphics Techniques Vol 5:1-21 Nobis M, Hunziker U (2005) Automatic thresholding for hemispherical canopy-photographs based on edge detection. Agricultural and forest meteorology 128:243-250 Shirley P, Chiu K (1997) A low distortion map between disk and square. Journal of graphics tools 2:45-52 Zehm A, Nobis M, Schwabe A (2003) Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants 198:142-160

```
bush<-system.file("extdata/bush.JPG", package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)
aggregation_index(bush_imagematrix)</pre>
```

4 aggregation_index

Description

The function aggregation_index calculate the aggregation index. It works for matrix with and without transparent pixel. The aggregation index is a standardized estimation of the average proportion of same-color pixels around each image pixel. First, the proportion of same-color neighboring pixels (SCNP) is calculated (marginal lines and columns are excluded). Next, the SCNP for all pixels are averaged; then, given the proportion of black and white pixels, number of pixels in height and width, and location of transparent pixels (when present), the maximum and minimum possible aggregation indexes are calculated. Finally, the observed aggregation is standardized to a scale where the minimum possible value is set at zero and the maximum value is set at one.

Usage

```
aggregation_index(imagematrix)
```

Arguments

imagematrix The matrix to be analysed.

Value

```
adjusted_aggregation
Standardized aggregation.
non_adjusted_aggregation
Observed aggregation.
```

Author(s)

Carlos Biagolini-Jr.

See Also

threshold color

```
# First, get a matrix from your image. Here an example of a bush image is used.
# Using aggregation_index to estimate vegetation agregation
bush<-system.file("extdata/bush.JPG", package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
aggregation_index(bush_imagematrix)

# Using aggregation_index to estimate aggregation of nest wall holes
nestwall<-system.file("extdata/bird_nestwall.png", package ="bwimage")
nestwall_imagematrix<-threshold_color(nestwall, "png", "width_fixed", target_width=300)
aggregation_index(nestwall_imagematrix)</pre>
```

altitudinal_profile 5

altitudinal_profile Highest black pixel by sections

Description

Break the original matrix in a number of section (n_sections), then find the higher black pixel in each image section.

Usage

```
altitudinal_profile(imagematrix, n_sections, height_size)
```

Arguments

imagematrix The matrix to be analysed.

n_sections Break the image in this number of columns. height_size Real size of image height (in mm, cm, m, etc..).

Value

Mean Height mean of the highest black pixel in sections.

SD Standard deviations of the highest black pixel in sections.

Size Height of the highest black pixel in sections.

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Profile of highest black pixels on sections of the bush image matrix
altitudinal_profile(bush_imagematrix,n_sections = 10, height_size=100)
# Conclusions:
# i) the mean height of the highest black pixel is 45.28 cm.
# ii) standard deviation of highest black height is 21.54.</pre>
```

6 compress

compress	Compress square to circle	

Description

Compress data from square image to circular in binary matrix

Usage

```
compress(imagematrix, method = "radial", background = NA)
```

Arguments

imagematrix The matrix to be compressed.

method Compress algorithm. Four algorithms (radial, shirley, squircle, and elliptical)

are available to stretch the image. The algorithms were adapted from Lambers

2016.

background Code for background cell value. When compressing a squared matrix, corners

of the transformed matrix will no have corresponding pixel from original matrix. Thus, the background value will be the value of transformed matrix corners.

Value

A matrix of 0, 1 and NA representing white, black and transparent pixels, respectively.

Author(s)

Carlos Biagolini-Jr.

References

Lambers 2016 Mappings between Sphere, Disc, and Square. Journal of Computer Graphics Techniques, 5(2): 1-21.

```
img_location <- system.file("extdata/chesstable.png",package ="bwimage")
image_matrix<- threshold_color(img_location,"png", "frame_fixed",target_width = 50,target_height=50)
compress(image_matrix,method="radial")</pre>
```

denseness_column 7

denseness_column

Denseness in column sections

Description

Calculate the denseness (proportion of black pixel in relation to the total number of pixels) for a given number of sections (n_sections). n_sections should be set as a number, in this situation denseness_column will break the original matrix in slices, and apply denseness_total function for each section. For instance, in a matrix of 1000x1000 if n_sections = 10, it will break to 10 sections of 1000x100 and analyze it. In other words, the sections will be the following sections of the original matrix [1:1000, 1:100], [1:1000,101:200], [1:1000,201:300], [1:1000,301:400], [1:1000,401:500], [1:1000,501:600], [1:1000,601:700], [1:1000,701:800], [1:1000,801:900], [1:1000,901:1000]. The default for parameter n_sections is "all", it will calculate denseness for each column of pixel. In other words, it will break the image in a number of section equal to the image pixel width.

Usage

```
denseness_column(imagematrix, n_sections = "all")
```

Arguments

imagematrix The matrix to be analysed.

n_sections Break the image in this number of columns.

Value

Denseness of each column section.

Mean Mean of column sections denseness.

SD standard deviations of column sections denseness.

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

denseness_total threshold_color

8 denseness_row

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Calculate vegetation denseness in 20 column sections
denseness_column(bush_imagematrix,20)</pre>
```

denseness_row

Denseness in row sections

Description

Calculate the denseness (proportion of black pixel in relation to the total number of pixels) for a given number of sections (n_sections). n_sections should be set as a number, in this situation denseness_row will break the original matrix in slices, and apply denseness_total function for each section. For instance, in a matrix of 1000x1000 if n_sections = 10, it will break to 10 sections of 100x1000 and analyze it. In other words, the sections will be the following sections of the original matrix [1:100, 1:1000], [101:200, 1:1000], [201:300, 1:1000], [301:400, 1:1000], [401:500, 1:1000], [501:600, 1:1000], [601:700, 1:1000], [701:800, 1:1000], [801:900, 1:1000], [901:1000, 1:1000]. The default for parameter n_sections is "all", it will calculate denseness for each row of pixel. In other words, it will break the image in a number of section equal to the image pixel height.

Usage

```
denseness_row(imagematrix, n_sections = "all")
```

Arguments

imagematrix The matrix to be analysed.

n_sections Break the image in this number of rows.

Value

Denseness Denseness of each row section.

Mean Mean of row sections denseness.

SD standard deviations of row sections denseness.

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

denseness_sample 9

See Also

denseness_total threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)
# Calculate vegetation denseness in 20 row sections
denseness_row(bush_imagematrix, n_sections = 20)</pre>
```

denseness_sample

Denseness in samples

Description

Calculate the denseness (proportion of black pixel in relation to the total number of pixels) for a given number of samples.

Usage

```
denseness_sample(imagematrix, width_size, height_size, sample_width,
  sample_height, method = "random", sample_shape = "rectangle",
  n_samples = 10, n_sample_horizontal = 10, n_sample_vertical = 1,
  proportion_horizontal = 1, proportion_vertical = 1,
  aligin_horizontal = "center", aligin_vertical = "bottom")
```

Arguments

imagematrix The matrix to be analysed. Real size of image width (in mm, cm, m, etc..). width_size height_size Real size of image height (in mm, cm, m, etc..). sample_width Width of sample area. sample_height Height of sample area. method Method for sample ("random" or "uniform"). sample_shape The shape of sample unity ("rectangle" or "ellipse"). See plot_samples function. n samples Defines the number of samples, when sample_shape="random". n_sample_horizontal Defines the number of samples column, when sample shape="uniform". n_sample_vertical Defines the number of samples lines, when sample_shape="uniform". proportion_horizontal

Range from 0 to 1. Represent the proportion of horizontal plane to be sample. If proportion_horizontal=1 (default) all columns beacome potentially sample.

10 denseness_total

proportion_vertical

Range from 0 to 1. Represent the proportion of vertical plane to be sample. If proportion_vertical=1 (default) all lines become potentially sample.

aligin_horizontal

Define horizontal align. Three options are available: "center", "left" or "right".

aligin_vertical

Define vertical align. Three options are available: "middle", "bottom" or "top".

Value

Sample_denseness

Proportion of black pixels in samples. It do not take into account transparent

pixels (when present)..

Height Height of each sample (in mm, cm, m, etc. ..). Central point used as reference.

Distance(left) Distance ti the left side of each sample (in mm, cm, m, etc. ..). Central point

used as reference.

Matrix(line) Imagem matrix line coordinates.

Matrix(column) Imagem matrix column coordinates.

Author(s)

Carlos Biagolini-Jr.

See Also

plot_samples

Examples

```
# Get a matrix from your image. Here examples provided by bwimage package.
```

```
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)
denseness_sample(bush, width_size=100, height_size=100, sample_width=5, sample_height=5)</pre>
```

denseness_total

Denseness for whole image

Description

Proportion of black pixels in relation to all pixels. It do not take into account transparent pixels (when present).

Usage

```
denseness_total(imagematrix)
```

heigh_maximum 11

Arguments

imagematrix The matrix to be analysed.

Value

Proportion of black pixels in relation to all pixels. It do not take into account transparent pixels (when present).

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

Examples

```
# Get a matrix from your image. Here examples provided by bwimage package.

# I) Calculate vegetation denseness
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)
denseness_total(bush_imagematrix)

# II) Calculate canopy openness
# Convert image into binary matrix
canopy<-system.file("extdata/canopy.JPG",package ="bwimage")
canopy_matrix<-threshold_color(canopy,"jpeg", compress_method="proportional",compress_rate=0.1)
1-denseness_total(canopy_matrix) # canopy openness</pre>
```

heigh_maximum

Height of the highest black pixel in the image

Description

Find the higher black pixel in the whole image.

Usage

```
heigh_maximum(imagematrix, height_size)
```

heigh_propotion

Arguments

imagematrix The matrix to be analysed.

height_size Real size of image width (in mm, cm, m, etc..).

Value

Height of the highest black pixel. It is scaleted for the real size (in mm, cm, m, etc..) based in the information from argument height_size.

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)

# Calculate height of the highest black pixel in the bush image matrix
heigh_maximum(bush_imagematrix,height_size=100)
# Conclusions: The highest vegetation unit ,i.e. highest black pixel, is 84.4 cm above ground.</pre>
```

heigh_propotion

Cumulative denseness for each line

Description

Proportion of black pixel below each matrix line.

Usage

```
heigh_propotion(imagematrix)
```

Arguments

imagematrix The matrix to be analysed.

heigh_propotion_test 13

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Proportion of black pixel below each matrix line.
heigh_propotion(bush_imagematrix)</pre>
```

heigh_propotion_test Cumulative denseness test

Description

Find the height which a given proportion of black pixel is found.

Usage

```
heigh_propotion_test(imagematrix, proportion, height_size)
```

Arguments

imagematrix The matrix to be analysed.proportion Proportion of denseness to test.height_size Real size of image height (in mm, cm, m, etc..).

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

14 hole_columm

See Also

threshold color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# See the proportion of black pixels (1) below each bush image matrix row
heigh_propotion_test(bush_imagematrix,0.75,100)
# Conclusion: in this imagem, 75 percent of the vegetation is hold below 31.2 cm.</pre>
```

hole_columm

Holes description in columns sections

Description

Summary information of holes in a given number of columns (n_sections). n_sections must be set as a number, in this situation hole_column will sample columns, and apply hole_section_data function for each section. Next, all results will be display on hole_column output. Example of how column sample works: in a matrix of 250x250 if n_sections = 5, it will sample columns 1,51,101,151, and 201 and analyze it. In other words, the sections will be following sections of the original matrix [1:250,1], [1:250,51], [1:250,101], [1:250,151], [1:250,201]. The default for parameter n_sections is "all", it will calculate hole_section_data for each column of pixel. In other words, it will break the image in a number of section equal to the image pixel width.

Usage

```
hole_columm(imagematrix, color = 0, n_sections = "all")
```

Arguments

imagematrix The matrix to be analysed. color Color of the hole (0 or 1).

n_sections Sample this number of columns.

Value

N	Number of sections.	
Mean	Mean sections size.	

SD standard deviations of sections size.

Min Minimum sections size sections size.

Max Maximum sections size.

LH Stratum with largest hole count.

hole_row 15

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

hole_section_data threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Information of white (i.e. 0s in matrix) holes in 5 columns uniformly sample among matrix.
hole_column(bush_imagematrix, n_sections=5)
# Information of black (i.e. 1s in matrix) holes in 20 columns uniformly sample among matrix.
hole_column(bush_imagematrix, n_sections=20)</pre>
```

hole_row

Holes description in row sections

Description

Summary information of holes in a given number of rows (n_sections). n_sections must be set as a number, in this situation hole_row will sample rows, and apply hole_section_data function for each section. Next, all results will be display on hole_column output. Example of how row sample works: in a matrix of 250x250 if n_sections = 5, it will sample rows 1,51,101,151, and 201 and analyze it. In other words, the sections will be following sections of the original matrix [1,1:250], [51,1:250], [101,1:250], [151,1:250], [201,1:250]. The default for parameter n_sections is "all", it will calculate hole_section_data for each row of pixel. In other words, it will break the image in a number of section equal to the image pixel height.

Usage

```
hole_row(imagematrix, color = 0, n_sections = "all")
```

Arguments

imagematrix The matrix to be analysed. color Color of the hole (0 or 1). n_sections Sample this number of rows.

16 hole_section

Value

N	Number of sections.
Mean	Mean sections size.
SD	standard deviations of section

SD standard deviations of sections size.

Min Minimum sections size sections size.

Maximum sections size.

LH Stratum with largest hole count.

Author(s)

Carlos Biagolini-Jr.

See Also

hole_section_data threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Information of white (i.e. 0s in matrix) holes in 10 rows uniformly sample among matrix.
hole_row(bush_imagematrix, n_sections=10)
# Information of black (i.e. 1s in matrix) holes in 15 rows uniformly sample among matrix.
hole_row(bush_imagematrix, n_sections=15)</pre>
```

 $hole_section$

Hole finder

Description

Description of when a sequence of same color pixel start and end.

Usage

```
hole_section(section)
```

Arguments

section

Section to be analysed.

Value

Description of start and end of each same color sequence

hole_section_data 17

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

hole_section_data threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Find pixel hole sections in the column 200 of bush image
hole_section(bush_imagematrix[,200])
# Find pixel hole sections in the row 250 of bush image
hole_section(bush_imagematrix[250,])</pre>
```

hole_section_data

Summary of holes information

Description

Summary information of holes of a given color in a given section. Result unit is the number of cell.

Usage

```
hole_section_data(section, color = 0)
```

Arguments

section	Section to be analysed.		
color	Color of the hole (0 or 1).		

Value

N	Number of hole sections
Mean	Mean size of hole sections

SD Standard deviation of hole sections size

Min Minimum size of hole sections

Max Maximum size of hole sections

18 image_information

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

hole_section threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Detail information of white (0) holes sections in the column 200 of bush image
hole_section_data(bush_imagematrix[,200], color = 0)
# Detail information of black (1) holes sections in the row 250 of bush image
hole_section_data(bush_imagematrix[250,], color = 1)</pre>
```

 $image_information$

Summary of image information

Description

Provide the information of: number of black, white and transparent pixels, total number of pixels, height and width size.

Usage

```
image_information(imagematrix)
```

Arguments

imagematrix The matrix to be analysed.

Value

Black Number of black pixels
White Number of white pixels
Transparent Number of transparent pixels

Total number of pixels

Height Size in height Width Size in width

light_gap

Author(s)

Carlos Biagolini-Jr.

See Also

threshold_color

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)
image_information(bush_imagematrix)</pre>
```

light_gap

Light gap

Description

Left and right distances from first black pixel to image edge.

Usage

```
light_gap(imagematrix, width_size = NA, scale = TRUE)
```

Arguments

imagematrix The matrix to be analysed

width_size Real size of image width (in mm, cm, m, etc..).
scale If FALSE do not ajust the output for real size.

Value

Distances without black pixel in each side of the picture

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

20 plot_samples

Examples

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# Calculate vegetation Light gap in the bush image matrix
light_gap(bush_imagematrix,width_size=100)
# Conclusion: there is no light gap on both sides of bush image.</pre>
```

plot_samples

Plot samples from denseness_sample

Description

Plot samples from denseness_sample.

Usage

```
plot_samples(imagematrix, central_lines, central_collumns, width_size,
  height_size, sample_width, sample_height, sample_shape)
```

Arguments

The matrix to be analysed. imagematrix central_lines Lines data (i.e. "Matrix(line)") provided by denseness_sample central_collumns Collumns data (i.e. "Matrix(column)") provided by denseness_sample Real size of image width (in mm, cm, m, etc..). width_size height_size Real size of image height (in mm, cm, m, etc..). sample_width Width of sample area. sample_height Height of sample area. Inform the shape of sample unity used ("rectangle" or "ellipse"). See densesample_shape ness_sample function.

Value

Plot of the analysed matrix (black and white) and sample locations (red).

Author(s)

Carlos Biagolini-Jr.

See Also

denseness_sample

stretch 21

Examples

```
# Get a matrix from your image. Here examples provided by bwimage package.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush<-threshold_color(bush, "jpeg", "proportional",compress_rate = 0.1)</pre>
```

a<-denseness_sample(bush, width_size=100, height_size=100, sample_width=5, sample_height=5) plot_samples(bush, a[,4],a[,5], 100,100, 5, 5,"rectangle")

stretch

stretch circle to square

Description

Stretch data from circular image to square in binary matrix

Usage

```
stretch(imagematrix, method = "radial")
```

Arguments

imagematrix The matrix to be stretched.

method Stretch algorithm. Four algorithms (radial, shirley, squircle, and elliptical) are

available to stretch the image. The algorithms were adapted from Lambers 2016.

Value

A matrix of 0, 1 and NA representing white, black and transparent pixels, respectively.

Author(s)

Carlos Biagolini-Jr.

References

Lambers 2016 Mappings between Sphere, Disc, and Square. Journal of Computer Graphics Techniques, 5(2): 1-21.

```
img_location <- system.file("extdata/chesstable.png",package ="bwimage")
image_matrix<- threshold_color(img_location,"png", "frame_fixed",target_width = 50,target_height=50)
stretch(image_matrix,method="radial")</pre>
```

22 threshold_color

threshold_color

Image to matrix - Single

Description

Convert a single image into a matrix

Usage

```
threshold_color(filename, filetype = "jpeg", compress_method = "none",
  compress_rate = 1, target_width = 100, target_height = 100,
  threshold_value = 0.5, transparency_regulation = 0.5,
  channel = "rgb")
```

Arguments

filename

Name of the file to be load - ex: "Figure01.JPG".

filetype

Type of the file to be load. Compatible file types: ".JPGE", ".JPG" or ".PNG".

compress_method

For high resolution files, i.e. numbers of pixels in width and height, it is suggested to reduce the resolution to create a smaller matrix, it strongly reduce GPU usage and time necessary to run analyses. On the other hand, by reducing resolution, it will also reduce the accuracy of data description. The available methods for image reduction are: i) frame_fixed, which resamples images to a desired target width and height; ii) proportional, which resamples the image by a given ratio provided in the argument "proportion"; iii) width_fixed, which resamples images to a target width, and also reduces the image height by the same factor. For instance, if the original file had 1000 pixels in width, and the new width_was set to 100, height will be reduced by a factor of 0.1 (100/1000); and iv) height_fixed, analogous to width_fixed, but assumes height as reference.

compress_rate

Compress rate to by apply if compress_method=proportional. Note: it should be ser as number range from 0 to 1 .

target_width

Target width to be used if compress_method=frame_fixed or compress_method=width_fixed.

target_height

Target height to be used if compress_method=frame_fixed or compress_method=height_fixed.

threshold_value

For each pixel, the intensity of color channels (red, green and blue) are averaged and compared to a threshold_value (threshold). If the average intensity is less than the threshold_value (default is 0.5) the pixel will be set as black, otherwise it will be white. See channel argument.

transparency_regulation

For PNG images, the alpha channel is used to set transparent pixels, i.e. alpha channel values above transparency_regulation (a threshold) will set the pixel as transparent, default is 0.5. NOTE: In the data matrix the value 1 represents black pixels, 0 represents white pixels and NA represents transparent pixels.

threshold_image_list

channel

RGB channel to be considered in threshold. If channel=RGB (default), the intensity of red, green and blue is averaged and compared to threshold_value. If the average intensity is less than the threshold_value (default is 50 If only one channel is defined ("R" for red, "G" for green, and "B" for blue), the average intensity selected channel compared direct to the threshold_value value.

23

Value

A matrix of 0, 1 and NA representing white, black and transparent pixels, respectively.

Author(s)

Carlos Biagolini-Jr.

Examples

```
bush<-system.file("extdata/bush.JPG",package ="bwimage")
threshold_color(bush,"jpeg", "frame_fixed",target_width = 15,target_height=15)

# For your images, if the file is in the working directory type:
# threshold_color("FILE_NAME.EXTENSION", filetype ="FILE_EXTENSION")
# or, if the file is in the other directory:
# threshold_color("C:/PATH TO FILE FOLDER/YOUR_FILE_NAME.EXTENSION", "FILE_EXTENSION")</pre>
```

Description

Convert two or more images into a list of matrices

Usage

```
threshold_image_list(list_names, filetype = "jpeg",
  compress_method = "none", compress_rate = 1, target_width = 100,
  target_height = 100, threshold_value = 0.5,
  transparency_regulation = 0.5, channel = "rgb")
```

Arguments

list_names An object contains the names of the files.

filetype Type of the file to be load. Compatible file types: ".JPGE", ".JPG" or ".PNG". compress_method

For high resolution files, i.e. numbers of pixels in width and height, it is suggested to reduce the resolution to create a smaller matrix, it strongly reduce GPU usage and time necessary to run analyses. On the other hand, by reducing resolution, it will also reduce the accuracy of data description. The available methods for image reduction are: i) frame_fixed, which resamples images to a

24 threshold_image_list

desired target width and height; ii) proportional, which resamples the image by a given ratio provided in the argument "proportion"; iii) width_fixed, which resamples images to a target width, and also reduces the image height by the same factor. For instance, if the original file had 1000 pixels in width, and the new width_was set to 100, height will be reduced by a factor of 0.1 (100/1000); and iv) height_fixed, analogous to width_fixed, but assumes height as reference.

compress_rate

Compress rate to by apply if compress_method=proportional. Note: it should be ser as number range from 0 to 1 .

target_width

Target width to be used if compress_method=frame_fixed or compress_method=width fixed.

target_height

Target height to be used if compress_method=frame_fixed or compress_method=height_fixed.

threshold_value

For each pixel, the intensity of color channels (red, green and blue) are averaged and compared to a threshold_value (threshold). If the average intensity is less than the threshold_value (default is 0.5) the pixel will be set as black, otherwise it will be white. See channel argument.

transparency_regulation

For PNG images, the alpha channel is used to set transparent pixels, i.e. alpha channel values above transparency_regulation (a threshold) will set the pixel as transparent, default is 0.5. NOTE: In the data matrix the value 1 represents black pixels, 0 represents white pixels and NA represents transparent pixels.

channel

RGB channel to be considered in threshold. If channel=RGB (default), the intensity of red, green and blue is averaged and compared to threshold_value. If the average intensity is less than the threshold_value (default is 50 If only one channel is defined ("R" for red, "G" for green, and "B" for blue), the average intensity selected channel compared direct to the threshold_value value.

Value

A matrix of 0, 1 and NA representing white, black and transparent pixels, respectively.

Author(s)

Carlos Biagolini-Jr.

See Also

threshold_color

```
# Image examples provided by bwimage package
bush<-system.file("extdata/bush.JPG",package ="bwimage")
canopy<-system.file("extdata/canopy.JPG",package ="bwimage")

# Convert images to a list of matrices
working_matrices<-threshold_image_list(c(bush,canopy), "jpeg", "proportional", compress_rate = 0.1)</pre>
```

topline 25

Description

Line running along the crest of highest black pixel.

Usage

```
topline(imagematrix, height_size = NA, width_size = NA)
```

Arguments

```
imagematrix The matrix to be analysed.
```

height_size Real size of image height (in mm, cm, m, etc..).
width_size Real size of image width (in mm, cm, m, etc..).

Value

Top line size that cover black pixels

Author(s)

Carlos Biagolini-Jr.

References

Zehm et al 2003 Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora-Morphology, Distribution, Functional Ecology of Plants, 198: 142-160.

See Also

threshold_color

```
# First, get a matrix from your image. Here an example of a bush image is used.
bush<-system.file("extdata/bush.JPG",package ="bwimage")
bush_imagematrix<-threshold_color(bush, "jpeg", "proportional", compress_rate = 0.1)
# See the proportion of black pixels (1) below each bush image matrix row
topline(bush_imagematrix,100,100)
# Conclusion: topline size is 785.6 cm.</pre>
```

Index

```
* animal
                                                  threshold_color, 22
    bwimage-package, 2
                                                  threshold_image_list, 23
*\ ecology\ methods
                                                  topline, 25
    bwimage-package, 2
* field
    bwimage-package, 2
* image analyses
    bwimage-package, 2
* image processing
    bwimage-package, 2
* vegetation patterns
    bwimage-package, 2
aggregation_index, 3
altitudinal_profile, 5
bwimage (bwimage-package), 2
bwimage-package, 2
compress, 6
denseness_column, 7
denseness_row, 8
denseness_sample, 9
denseness_total, 10
heigh_maximum, 11
\  \, \text{heigh\_propotion}, \, 12
heigh_propotion_test, 13
hole_columm, 14
hole_row, 15
hole_section, 16
hole_section_data, 17
image\_information, 18
light_gap, 19
plot_samples, 20
stretch, 21
```